首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Fifteen isolates of binucleate Rhizoctonia fungi (BNR) were studied as potential biocontrol agents for protection of potato from Rhizoctonia canker in artificially infested greenhouse soil and potato fields naturally infested with Rhizoctonia solani (AG-3). Eight of the BNR reduced incidence and severity of Rhizoctonia stem canker in greenhouse experiments by an average of 78 and 85%, respectively. In a field naturally infested with R. solani, selected isolates of BNR and the fungicide Tops 2.5D (thiophanate-methyl) were equally protective of potato from Rhizoctonia stem canker. BNR isolates gave protection of potato from Rhizoctonia stolon canker similar to PCNB and superior to Tops 2.5D. Cultivars Atlantic, Irish Cobbler, Kennebec, Norchip, Russet Burbank, and Superior were protected equally from Rhizoctonia stem canker by selected isolates of BNR under field conditions. Isolates of BNR show potential as biocontrol agents for protection of potato from Rhizoctonia canker.  相似文献   

3.
Pseudomonas CMR12a was previously selected as an efficient biocontrol strain producing phenazines and cyclic lipopeptides (CLPs). In this study, biocontrol capacity of Pseudomonas CMR12a against Rhizoctonia root rot of bean and the involvement of phenazines and CLPs in this ability were tested. Two different anastomosis groups (AGs) of Rhizoctonia solani, the intermediately aggressive AG 2-2 and the highly aggressive AG 4 HGI, were included in growth-chamber experiments with bean plants. The wild-type strain CMR12a dramatically reduced disease severity caused by both R. solani AGs. A CLP-deficient and a phenazine-deficient mutant of CMR12a still protected bean plants, albeit to a lesser extent compared with the wild type. Two mutants deficient in both phenazine and CLP production completely lost their biocontrol activity. Disease-suppressive capacity of CMR12a decreased after washing bacteria before application to soil and thereby removing metabolites produced during growth on plate. In addition, microscopic observations revealed pronounced branching of hyphal tips of both R. solani AGs in the presence of CMR12a. More branched and denser mycelium was also observed for the phenazine-deficient mutant; however, neither the CLP-deficient mutant nor the mutants deficient in both CLPs and phenazines influenced hyphal growth. Together, results demonstrate the involvement of phenazines and CLPs during Pseudomonas CMR12a-mediated biocontrol of Rhizoctonia root rot of bean.  相似文献   

4.
Mazzola M 《Phytopathology》1997,87(6):582-587
ABSTRACT Rhizoctonia spp. were isolated from the roots of apple trees and associated soil collected in orchards located near Moxee, Quincy, East Wenatchee, and Wenatchee, WA. The anastomosis groups (AGs) of Rhizoctonia spp. isolated from apple were determined by hyphal anastomosis with tester strains on 2% water agar and, where warranted, sequence analysis of the rDNA internal transcribed spacer region and restriction analysis of an amplified fragment from the 28S ribosomal RNA gene were used to corroborate these identifications. The dominant AG of R. solani isolated from the Moxee and East Wenatchee orchards were AG 5 and AG 6, respectively. Binucleate Rhizoctonia spp. were recovered from apple roots at three of four orchards surveyed and included isolates of AG-A, -G, -I, -J, and -Q. In artificial inoculations, isolates of R. solani AG 5 and AG 6 caused extensive root rot and death of 2- to 20-week-old apple transplants, providing evidence that isolates of R. solani AG 6 can be highly virulent and do not merely exist as saprophytes. The effect of binucleate Rhizoctonia spp. on growth of apple seedlings was isolate-dependent and ranged from growth enhancement to severe root rot. R. solani AG 5 and AG 6 were isolated from stunted trees, but not healthy trees, in an orchard near Moxee, WA, that exhibited severe symptoms of apple replant disease, suggesting that R. solani may have a role in this disease complex.  相似文献   

5.
ABSTRACT Inoculation of bean hypocotyls with a nonpathogenic binucleate Rhizoctonia (BNR) species induced systemic resistance and protection of the roots and cotyledons to later challenge with the root rot pathogen Rhizoctonia solani or the anthracnose pathogen Colletotrichum lindemuthianum. Bean seedlings that were treated with BNR 48 h prior to their challenge with R. solani or C. lindemuthianum had few necrotic lesions and reduced disease severity as compared with seedlings not treated with BNR. Treatment with BNR 48 h prior to their challenge also elicited a significant and systemic increase in all cellular fractions of peroxidases, 1,3-beta-glucanases, and chitinases compared with the diseased and control plants. Compared with control plants, total peroxidases and glucanases increased twofold and eightfold, respectively, in all protected bean tissues. BNR 232-CG could not be recovered from the challenged hypocotyls or cotyledons, indicating that there was no contact between the inducer and the pathogen. Both the 1,3-beta-glucanases and the peroxidases were positively correlated with induced resistance.  相似文献   

6.
Foot rot of mature tomato plants was found in four cities of Hokkaido, Japan, from 2004 to 2007. Six of eight isolates obtained from damaged tissues were identified as Rhizoctonia solani anastomosis group (AG)-3, and the remaining two isolates belonged to AG-2-1. We compared these isolates with nine reference isolates including the different subgroups in AG-3 (PT, TB and TM) and AG-2-Nt (pathogen of tobacco leaf spot) within AG-2-1 in terms of pathogenicity to tomato, tobacco and potato. All eight isolates caused foot rot on tomato. The six AG-3 isolates caused stem rot on young potato plants. While, all reference isolates of AG-3 PT causing stem rot of young potato plants incited foot rot on tomato. The two AG-2-1 isolates and an AG-2-Nt reference isolate caused severe leaf spot on tobacco leaves. The sequences of rDNA- ITS region and rDNA-IGS1 region of the AG-3 isolates showed high similarity to that of AG-3 PT isolates. Phylogenetic tree based on ITS and IGS1 regions of rDNA indicated that the AG-2-1 isolates from tomato formed a single clade with AG-2-Nt isolates and that they were separate from Japanese AG-2-1 isolates (culture type II). Pathogenicity tests and DNA sequence evaluation of the causal fungi revealed that the present isolates of AG-3 and AG-2-1 belonged to AG-3 PT and AG-2-Nt, respectively. This is the first report of tomato foot rot caused by R. solani in Japan.  相似文献   

7.
Rhizoctonia leaf spot of tobacco in South Africa   总被引:1,自引:0,他引:1  
Leaf spot of tobacco caused by Rhizoctonia solani isreported forthe first time from South Africa. All the leaf spot isolates anastomosed with the AG-3 tester strain.  相似文献   

8.
Kim DS  Cook RJ  Weller DM 《Phytopathology》1997,87(5):551-558
ABSTRACT Strain L324-92 is a novel Bacillus sp. with biological activity against three root diseases of wheat, namely take-all caused by Gaeumannomyces graminis var. tritici, Rhizoctonia root rot caused by Rhizoctonia solani AG8, and Pythium root rot caused mainly by Pythium irregulare and P. ultimum, that exhibits broad-spectrum inhibitory activity and grows at temperatures from 4 to 40 degrees C. These three root diseases are major yieldlimiting factors for wheat in the U.S. Inland Pacific Northwest, especially wheat direct-drilled into the residue of a previous cereal crop. Strain L324-92 was selected from among approximately 2,000 rhizosphere/rhizoplane isolates of Bacillus species isolated from roots of wheat collected from two eastern Washington wheat fields that had long histories of wheat. Roots were washed, heat-treated (80 degrees C for 30 min), macerated, and dilution-plated on (1)/(10)-strength tryptic soy agar. Strain L324-92 inhibited all isolates of G. graminis var. tritici, Rhizoctonia species and anastomosis groups, and Pythium species tested on agar at 15 degrees C; provided significant suppression of all three root diseases at 15 degrees C in growth chamber assays; controlled either Rhizoctonia root rot, takeall, or both; and increased yields in field tests in which one or more of the three root diseases of wheats were yield-limiting factors. The ability of L324-92 to grow at 4 degrees C probably contributes to its biocontrol activity on direct-drilled winter and spring wheat because, under Inland Northwest conditions, leaving harvest residues of the previous crop on the soil surface keeps soils cooler compared with tilled soils. These results suggest that Bacillus species with desired traits for biological control of wheat root diseases are present within the community of wheat rhizosphere microorganisms and can be recovered by protocols developed earlier for isolation of fluorescent Pseudomonas species effective against take-all.  相似文献   

9.
几丁质裂解微生物防治棉苗立枯病   总被引:3,自引:0,他引:3  
研究了几丁质裂解微生物对立枯丝核菌引起的棉花立枯病的防治作用。用几丁质改良的Hutchinson培养基对几丁质裂解微生物进行分离,在42株几丁质裂解微生物中,有2株放线菌在培养基和土壤中都对立枯丝核菌有较强的抑制作用。选择上述两个菌株和几丁质配成10%生物拌种素,并用5%几丁质粉及20%几丁质酸溶物(20%拌种素),进行对棉花出苗的影响和对立枯丝核菌(立枯病)防效的田间试验。结果表明,10%生物拌种素对棉花出苗有明显促进作用,提高出苗率8.9%,出苗期提前5d以上。20%拌种素和5%几丁质对棉花出苗无明显不利影响;10%生物拌种素、5%几丁质和20%拌种素对棉花立枯病均有较好的防效,分别达68.2%、64.8%和51.9%。  相似文献   

10.
A new rot caused by a binucleate Rhizoctonia sp. affecting the tuberous root cortex of the domesticated yacon ( Smallanthus sonchifolius ) has been observed in Brazil. Isolates of a binucleate Rhizoctonia sp. were collected from roots with rot symptoms and characterized by the number of nuclei per cell, hyphal anastomosis, RAPD molecular markers, ITS-5·8S rDNA sequence and pathogenicity tests. All isolates had a mean of 1·9–2·2 nuclei per cell and anastomosed with the binucleate Rhizoctonia sp. AG G-tester strain. RAPD analysis was carried out between 11 isolates recovered from yacon and 11 AG (A, Ba, Bb, Bo, C, D, F, G, O, P, Q) standard testers of binucleate Rhizoctonia sp. Genetic similarities of 94·8–100% were observed among isolates of the binucleate Rhizoctonia sp. from yacon and all isolates were genetically more closely related to the AG G tester than other strains according to upgma analysis using RAPD markers. Homologies of complete ITS nucleotide sequences were 100% between binucleate isolates of Rhizoctonia sp. from yacon and the AG G tester. According to pathogenicity tests, the isolates caused typical rot symptoms of yacon tubers 90 days after inoculation  相似文献   

11.
苯并噻二唑诱发水稻对纹枯病的抗性   总被引:7,自引:0,他引:7       下载免费PDF全文
研究了苯并噻二唑(B1H)诱发水稻产生对纹枯病的抗性。离体条件下,1.0mmol/L BTH对纹枯病菌菌丝生长无明显抑制作用。BTH叶面或灌根处理四叶一心期水稻幼苗,并将植株第2、3和4叶离体接种纹枯病菌,水稻叶片纹枯病病斑长度明显下降,BTH诱发苗期水稻产生抗性的最佳诱导期在处理后的3—5天,最佳浓度为0.1mmol/L,BTH灌根处理诱发抗性的效果较好。用BTH溶液叶面喷雾处理成株期水稻倒二叶后离体接种纹枯病菌,倒二叶、倒一叶和剑叶上病斑长度显著低于对照,最佳诱导期在处理后3—5天。用BTH处理苗期水稻第2叶或成株期倒二叶,可使未经处理的苗期水稻第3和4叶以及成株期水稻倒一叶和剑叶上纹枯病病斑长度显著下降。  相似文献   

12.
BACKGROUND: The widespread acceptance of reduced‐tillage farming in cereal cropping systems in the Pacific Northwest of the United States has resulted in increased use of herbicides for weed control. However, soil residual concentrations of widely used imidazalone herbicides limit the cultivation of barley, which is more sensitive than wheat. In addition, increased severity of the root rot disease caused by Rhizoctonia solani is associated with reduction in tillage. Many crops exhibit altered disease responses after application of registered herbicides. In this study, the injury symptoms in barley caused by sublethal rates of two acetolactate synthase (ALS)‐inhibiting herbicides, imazamox and propoxycarbazone‐sodium, were assessed in factorial combinations with a range of inoculum concentrations of the root rot pathogen Rhizoctonia solani AG‐8. RESULTS: Both herbicides and pathogen had negative impacts on plant growth parameters such as root and shoot dry weight, shoot height and first leaf length, and interactions between pathogen and herbicide were detected. CONCLUSIONS: The results suggested that sublethal rates of herbicides and R. solani could alter severity of injury symptoms, possibly owing to the herbicide predisposing the plant to the pathogen. Copyright © 2012 Society of Chemical Industry  相似文献   

13.
 由致病性尖孢镰孢菌(Fusarium oxysporum)引起的根腐病严重危害果蔬生产,但非致病性镰孢菌可作为潜在的生防菌。为筛选防治根腐病的非致病生防镰孢菌,从京津冀设施大棚采集茄科、葫芦科果蔬78份根际土样中分离2 402株真菌,筛选出对致病性尖孢镰孢菌(F. oxysporum)具有拮抗效果的真菌173株。利用镰孢菌通用引物进行PCR扩增,从中筛选出28株候选镰孢菌;通过镰孢菌发酵液泡根进行安全性测试,筛选出对寄主黄瓜幼苗安全无害的镰孢菌菌株4株(1418、1441、1436和1473)。进一步通过镰孢菌测序通用引物TEF1αF/TEF1αR结合菌落和分生孢子的形态学特征,1418菌株和1441菌株被鉴定为尖孢镰孢菌(F. oxysporum)、1436菌株被鉴定为茄病镰孢菌(F. solani)。盆栽测试发现,除1441菌株外,1418菌株、1436菌株和1473菌株对黄瓜根腐病的防效均在50%以上,其中1418菌株的防效为70%,与杀菌剂咪酰胺的防效相当,具有很好的应用潜力。本研究筛选获得的具有生防潜力的镰孢菌不仅为镰孢菌致病力分化的研究提供了实验材料,也为新型生防产品的研制奠定了基础。  相似文献   

14.
Rhizoctonia solani AG 2-1 was recorded in Central Italy on kohlrabi plants showing root and stem rot. After artificial inoculation the fungus caused damping-off of 7-day-old seedlings and root and stem rot of 4-month-old plants developed after 15 days of incubation. This seems to be the first record ofR. solani AG 2-1 on kohlrabi.  相似文献   

15.
Sharon M  Freeman S  Sneh B 《Phytopathology》2011,101(7):828-838
Certain hypovirulent Rhizoctonia isolates effectively protect plants against well-known important pathogens among Rhizoctonia isolates as well as against other pathogens. The modes of action involved in this protection include resistance induced in plants by colonization with hypovirulent Rhizoctonia isolates. The qualifications of hypovirulent isolates (efficient protection, rapid growth, effective colonization of the plants, and easy application in the field) provide a significant potential for the development of a commercial microbial preparation for application as biological control agents. Understanding of the modes of action involved in protection is important for improving the various aspects of development and application of such preparations. The hypothesis of the present study is that resistance pathways such as systemic acquired resistance (SAR), induced systemic resistance (ISR), and phytoalexins are induced in plants colonized by the protective hypovirulent Rhizoctonia isolates and are involved in the protection of these plants against pathogenic Rhizoctonia. Changes in protection levels of Arabidopsis thaliana mutants defective in defense-related genes (npr1-1, npr1-2, ndr1-1, npr1-2/ndr1-1, cim6, wrky70.1, snc1, and pbs3-1) and colonized with the hypovirulent Rhizoctonia isolates compared with that of the wild type (wt) plants colonized with the same isolates confirmed the involvement of induced resistance in the protection of the plants against pathogenic Rhizoctonia spp., although protection levels of mutants constantly expressing SAR genes (snc1 and cim6) were lower than that of wt plants. Plant colonization by hypovirulent Rhizoctonia isolates induced elevated expression levels of the following genes: PR5 (SAR), PDF1.2, LOX2, LOX1, CORI3 (ISR), and PAD3 (phytoalexin production), which indicated that all of these pathways were induced in the hypovirulent-colonized plants. When SAR or ISR were induced separately in plants after application of the chemical inducers Bion and methyl jasmonate, respectively, only ISR activation resulted in a higher protection level against the pathogen, although the protection was minor. In conclusion, plant colonization with the protective hypovirulent Rhizoctonia isolates significantly induced genes involved in the SAR, ISR, and phytoalexin production pathways. In the studied system, SAR probably did not play a major role in the mode of protection against pathogenic Rhizoctonia spp.; however, it may play a more significant role in protection against other pathogens.  相似文献   

16.

Black root rot disease of cotton seedlings caused by Thielavioposis basicola was first reported in New South Wales (NSW), Australia in 1990. In 2018, T. basicola was reclassified into a new genus Berkeleyomyces, accommodating two closely related species: B. basicola and B. rouxiae. However, species status of cotton-T. basicola in NSW remains unsolved. Ninety-five isolates recovered from black root rot diseased cotton seedlings sampled across NSW in 2017/18 season was subjected to morphological, multigene sequencing (ITS, MCM7, RPB2), and pathogenicity assessments for their species identification. Berkeleyomyces rouxiae was accurately identified as the causal agent of black root rot of cotton.

  相似文献   

17.
ABSTRACT Root and stem rot of cut-flower roses (Rosa spp.) was observed in commercial glasshouse-grown roses in 10 prefectures of Japan from 1998 through 2001. Binucleate-like Rhizoctonia spp. were isolated mainly from the disease plants. In all, 670 isolates were divided into two types based on cultural appearance; 168 isolates of light brown to brown type and 502 isolates of whitish type. A hyphal anastomosis reaction using representative isolates from each type revealed that the light brown to brown type belonged to anastomosis group G (AG-G), whereas the whitish type (AG-CUT) failed to anastomose with tester strains of binucleate Rhizoctonia AG-A through AG-S. Neither isolates of AG-G nor AG-CUT anastomosed with tester strains of a previously reported unknown AG (AG-MIN) of binucleate Rhizoctonia spp. collected from miniature roses. In pathogenicity tests, randomly selected isolates of the three groups caused root and stem rot on cut-flower and miniature roses. To differentiate AG-CUT and AG-MIN from known AGs of binucleate Rhizoctonia spp., restriction fragment length polymorphism (RFLP) and sequence analyses of a ribosomal (r)DNA internal transcribed spacer (ITS) region were conducted. Among the eight restriction enzymes used, HaeIII produced DNA banding patterns for AG-CUT that differed from those of tester strains and AG-MIN. Additionally, restriction profiles of AG-MIN differed from those of all tester strains. AG-G isolates from cut-flower roses had the same RFLP pattern as the tester strains of AG-G. Based on the results of hyphal anastomosis and RFLP and sequence analysis of an rDNA-ITS region, we propose that AG-CUT be designated AG-T and AG-MIN be designated AG-U, two new AGs of binucleate Rhizoctonia spp. The phylogenetic tree based on the sequence data of the rDNA-ITS region showed that isolates of AG-MIN were in a distinct clade from other AGs, whereas isolates of AG-CUT were in the same clade as those of AG-A. More detailed phylogenetic analysis besides rDNA-ITS region might be necessary for AG classification of binucleate Rhizoctonia spp.  相似文献   

18.
ABSTRACT Research on the mechanisms employed by the biocontrol agent Trichoderma virens to suppress cotton (Gossypium hirsutum) seedling disease incited by Rhizoctonia solani has shown that mycoparasitism and antibiotic production are not major contributors to successful biological control. In this study, we examined the possibility that seed treatment with T. virens stimulates defense responses, as indicated by the synthesis of terpenoids in cotton roots. We also examined the role of these terpenoid compounds in disease control. Analysis of extracts of cotton roots and hypocotyls grown from T. virens-treated seed showed that terpenoid synthesis and peroxidase activity were increased in the roots of treated plants, but not in the hypocotyls of these plants or in the untreated controls. Bioassay of the terpenoids for toxicity to R. solani showed that the pathway intermediates desoxyhemigossypol (dHG) and hemigossypol (HG) were strongly inhibitory to the pathogen, while the final product gossypol (G) was toxic only at a much higher concentration. Strains of T. virens and T. koningii were much more resistant to HG than was R. solani, and they thoroughly colonized the cotton roots. A comparison of biocontrol efficacy and induction of terpenoid synthesis in cotton roots by strains of T. virens, T. koningii, T. harzianum, and protoplast fusants indicated that there was a strong correlation (+0.89) between these two phenomena. It, therefore, appears that induction of defense response, particularly terpenoid synthesis, in cotton roots by T. virens may be an important mechanism in the biological control by this fungus of R. solani-incited cotton seedling disease.  相似文献   

19.
Krause MS  Madden LV  Hoitink HA 《Phytopathology》2001,91(11):1116-1123
ABSTRACT Potting mixes prepared with dark, highly decomposed Sphagnum peat, with light, less decomposed Sphagnum peat, or with composted pine bark, all three of which were colonized by indigenous microorganisms, failed to consistently suppress Rhizoctonia damping-off of radish or Rhizoctonia crown and root rot of poinsettia. Inoculation of these mixes with Chryseobacterium gleum (C(299)R(2)) and Trichoderma hamatum 382 (T(382)) significantly reduced the severity of both diseases in the composted pine bark mix in which both biocontrol agents maintained high populations over 90 days. These microorganisms were less effective against damping-off in the light and dark peat mixes, respectively, in which populations of C(299)R(2) declined. In contrast, crown and root rot, a disease that is severe late in the crop, was suppressed in all three types of mixes. High populations of T(382) in all three mixes late during the cropping cycle may have contributed to control of this disease.  相似文献   

20.
广东省新推广大豆品种病害的初步调查   总被引:1,自引:0,他引:1  
本文采用普查和定点调查以及传统的植物病害鉴定方法,在2006年6月至2010年10月对广东省新推广高产优质大豆品种的病害种类、发生危害及分布进行了调查.发现病害共有12种,其中真菌病害9种,分别是锈病、霜霉病、红冠腐病、丝核菌叶枯病、炭疽病、白绢病、白粉病、镰刀菌根腐病和煤烟病;细菌性病害、线虫病害和病毒病害各1种,分别为细菌性叶斑病、根结线虫病和花叶病.主要病害为锈病、霜霉病、红冠腐病、花叶病、丝核菌叶枯病和炭疽病等.不同季节大豆的主要病害发生情况不同.春大豆以霜霉病发生较为严重;而夏大豆则以红冠腐病、锈病、花叶病毒病和丝菌核叶枯病发生较严重.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号