首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wine contamination with ochratoxin A (OTA) is due to the attack of wine grapes by ochratoxigenic Aspergillus carbonarius and Aspergillus spp. section Nigri. Four A. pullulans strains, AU14-3-1, AU18-3B, AU34-2, and LS30, are resistant to and actively degrade ochratoxin A in vitro. The less toxic ochratoxin alpha and the aminoacid L-beta-phenylalanine were the major degradation products, deriving from the cleavage of the amide bond linking these two moieties of OTA. The same strains were studied further as biocontrol agents of A. carbonarius on wine grapes in laboratory experiments. Three of the four strains significantly prevented infections by A. carbonarius. Berries pretreated with the biocontrol agents and infected with A. carbonarius contained lower amounts of OTA as compared to the untreated infected control berries. Two of these strains were shown to degrade OTA to ochratoxin alpha in fresh grape must, but the mechanisms of the decrease of OTA accumulation in infected berries pretreated with the biocontrol agents remain to be elucidated. Assessment of one strain carried out in the vineyard during the growing season of 2006 showed that the tested strain was an effective biocontrol agent, reducing both severity of Aspergillus rots and OTA accumulation in wine grapes. To our knowledge this is the first report describing the positive influence of biocontrol agents on OTA accumulation in this crop species.  相似文献   

2.
ABSTRACT We detected the generation of the reactive oxygen species (ROS) superoxide anion ( O.(-) (2)) and hydrogen peroxide (H(2)O(2)) in apple wounds 2 immediately after wounding, and assessed the relationships between (i) timely colonization of apple wounds by biocontrol yeasts, (ii) resistance of these microorganisms to oxidative stress caused by ROS, and (iii) their antagonism against postharvest wound pathogens. We analyzed a model system consisting of two yeasts with higher (Cryptococcus laurentii LS-28) or lower (Rhodotorula glutinis LS-11) antagonistic activity against the postharvest pathogens Botrytis cinerea and Penicillium expansum. LS-28 exhibited faster and greater colonization of wounds than LS-11. In contrast to LS-28, the number of LS-11 cells dropped 1 and 2 h after application, and then increased only later. In vitro, LS-28 was more resistant to ROS-generated oxidative stress. The combined application of biocontrol yeasts and ROS-deactivating enzymes in apple wounds prevented the decrease in number of LS-11 cells mentioned above, and enhanced colonization and antagonistic activity of both biocontrol yeasts against B. cinerea and P. expansum. Polar lipids of LS-11 contained the more unsaturated and oxidizable alpha-linolenic acid, which was absent in LS-28. Resistance to oxidative stress could be a key mechanism of biocontrol yeasts antagonism against postharvest wound pathogens.  相似文献   

3.
The biocontrol yeast isolates Rhodotorula glutinis LS11, Cryptococcus laurentii LS28 and Aureobasidium pullulans LS30 were tested against Botrytis cinerea and Penicillium expansum on apples artificially inoculated and stored at 3 and 20 °C. Isolates LS28 and LS30 were most effective, consistently resulting in high reductions of fungal decay, while isolate LS11 was effective only on apples stored at 3 °C. The yeasts showed good in vitro resistance to dicarboximides and copper fungicides, while they were inhibited by triazoles. Isolate LS11, in contrast to LS28 and LS30, was also inhibited by benzimidazoles. The yeasts were tested on naturally-infected apples in semi-commercial conditions for 2 years. They were applied twice: soon after harvesting and 20 days later, at the beginning of the cold storage. The antagonists significantly reduced fungal decay when combined with a low dosage of benomyl showing an activity comparable to that exerted by the fungicide alone at full dosage. Periodical monitoring of the epiphytic biocontrol yeast populations in both the field and cold room showed a good rate of survival of the antagonists on the skin of treated apples. Specific fingerprints relying on amplified restriction length polymorphism (AFLP) were used to integrate the morphology-based monitoring of the yeasts.  相似文献   

4.
Calcium salts have been reported to play an important role in the inhibition of postharvest decay of apples and in enhancing the efficacy of postharvest biocontrol agents. Therefore, the present study was conducted in order to examine and compare the effects of calcium and magnesium salts on the germination and metabolism of the postharvest pathogens Botrytis cinerea and Penicillium expansum , and to determine the effects of these salts on the biocontrol activity of two isolates (182 and 247) of the yeast Candida oleophila. Increasing concentrations of CaCl2 (25–175 mM) resulted in decreased spore germination and germ-tube growth of both pathogens. The greatest effect was observed in the case of B. cinerea. The inhibitory effect could be overcome by the addition of glucose to the germination medium. MgCl2 (25–175 mM) had no effect on germination or germ-tube growth of either pathogen, indicating that the calcium cation rather than the chloride anion was responsible for the inhibition. The pectinolytic activity of crude enzyme obtained from the culture medium of both pathogens was also inhibited by 25–175 mM CaCl2, with the greatest effect on the crude enzyme from P. expansum. Biocontrol activity of isolate 182 was enhanced by the addition of 90 or 180 MM CaCl2, whereas there was no effect on the biocontrol activity of isolate 247. This was apparently due to the inability of isolate 247 to proliferate in apple wounds. It is postulated that enhanced biocontrol activity of isolate 182 of the yeast C. oleophila in the presence of Ca2+ ions is directly due to the inhibitory effects of calcium ions on pathogen spore germination and metabolism, and indirectly due to the ability of isolate 182 to maintain normal metabolism in the presence of"toxic" levels of calcium.  相似文献   

5.
6.
ABSTRACT Viability of the postharvest biocontrol agent Candida sake CPA-1 stored as liquid formulation was evaluated by studying the effect of growth, preservation medium, and temperature. C. sake was grown in molasses medium with unmodified water activity (a(w)) and in the same with a(w) modified to 0.98 with the addition of several solutes. Cells were preserved with isotonic solutions of different substances. Efficacy of liquid formulations stored for different periods was tested against infection by Penicillium expansum on apples. The best growth media were the (unmodified one and those modified to 0.98 a(w) with the addition of glycerol or sorbitol. For all growth media, the best preservation medium was the isotonic solution prepared with trehalose. When the effect of trehalose concentration in the preservation medium was studied, generally, at trehalose concentrations below the isotonic one, C. sake viabilities increased with increased trehalose. However, the best results were obtained when cells were preserved with the trehalose solution which was isotonic with cells. After 7 months of storage at 4 degrees C, cells that were grown in the sorbitol-modified medium and preserved with the isotonic solution of trehalose (0.96 M) maintained their viability and efficacy against P. expansum infection of apples.  相似文献   

7.
Penicillium expansum is one of the main postharvest pathogens of apples in Israel. Heating apple fruit inoculated with P. expansum for 96 h at 38°C completely inhibited decay development. Fruit held for 24 h at 42°C or 12 h at 46°C had significantly reduced decay after an additional 14 days incubation at 20°C, compared with unheated inoculated control fruit. Mycelial growth and percentage spore germination in vitro were inversely proportional to length of time of exposure to various temperatures. The ET50 for spore germination was 42, 34 and 20 h at 38, 42 and 46°C, respectively, while the ET50 for mycelial growth was 48, 44 and 36 h at those temperatures. When Penicillium spores were incubated on crude extract prepared from the peel of apple fruits held 4 days at 38°C, germ tube elongation was significantly reduced, while the walls of the tubes were thicker, compared with germ tubes from spores incubated on crude extract prepared from peel of non-heated fruit. The evidence presented here supports the hypothesis that the effect of heating on the decay of apples caused by P. expansum is not only the result of direct inhibition of fungal germination and growth by high temperature, but is also partly due to the formation of an inhibitory substance in the heated peel.  相似文献   

8.
ABSTRACT Eight strains of Metschnikowia pulcherrima isolated over a 4-year period from an unmanaged orchard and selected for their biocontrol activity against blue mold (caused by Penicillium expansum) of apples were characterized phenotypically, genetically, and for their biocontrol potential against blue mold on apples. All strains grew well and only differed slightly in their growth in nutrient yeast dextrose broth medium at 1 degrees C after 216 h, but large differences occurred at 0 degrees C, with strain T5-A2 outgrowing other strains by more than 25% transmittance after 360 h. This strain was also one of the most resistant to diphenylamine (DPA), a postharvest antioxidant treatment. All strains required biotin for growth in minimum salt (MS) medium, although strain ST2-A10 grew slightly in MS medium containing riboflavin or folic acid, as did ST3-E1 in MS medium without vitamins. None of the strains produced killer toxins against an indicator strain of Saccharomyces cerevisiae. Analysis of Biolog data from YT plates for all eight strains using the MLCLUST program resulted in separation of the strains into one major cluster containing four strains and four scattered strains from which strain ST1-D10 was the most distant from all other strains. This was particularly apparent in 3-D and principle component analysis. Genetic differentiation of the eight strains using maximum parsimony analysis of nucleotide sequences from domain D1/D2 of nuclear large subunit (26S) ribosomal DNA resulted in detection of two clades. Strain ST1-D10 grouped with the type strain of M. pulcherrima but the remaining seven strains grouped separately, which might possibly represent a new species. All strains significantly reduced blue mold on mature Golden Delicious apples during 1 month of storage at 1 degrees C followed by 7 days at room temperature, but strains T5-A2 and T4-A2 were distinctly more effective under these conditions. Strain T5-A2 also was the most effective in tests on harvest mature apples treated with the lowest concentration of the antagonist and stored for 3 months at 0.5 degrees C. Populations of all eight strains increased in apple wounds by approximately 2 log units after 1 month at 1 degrees C followed by 5 days at 24 degrees C. Our results indicate that M. pulcherrima is an excellent candidate for biological control of postharvest diseases of pome fruit. The variation in phenotypic, genetic, and biocontrol characteristics among strains of M. pulcherrima isolated from the same orchard should make it possible to select antagonists with characteristics that are most desirable for postharvest application.  相似文献   

9.
Undiluted culture filtrates of two commercial products of Trichoderma spp., Trichopel and Trichoflow, and two isolates of Penicillium citrinum completely inhibited the conidial germination of macroconidia of Claviceps africana , the cause of ergot or sugary disease of sorghum ( Sorghum bicolor ) in vitro . Similarly, Pseudomonas aeruginosa and Burkholderia cepacia completely inhibited macroconidial germination, with the former being more effective at high dilutions. In contrast, these bacterial isolates failed to inhibit infection in vivo in glasshouse tests with ergot-inoculated sorghum, but all fungal biocontrol agents (including an isolate of Epicoccum nigrum ) reduced the severity of disease (percentage of infected spikelets per panicle), in some cases completely inhibiting the development of ergot. In a second glasshouse trial, optimum control was achieved when the biocontrol agents were applied 3–7 days before inoculation with conidia of C. africana .  相似文献   

10.
ABSTRACT Unmodified and low water activity (a(w))-tolerant cells of Candida sake CPA-1 applied before harvest were compared for ability to control blue mold of apples ('Golden Delicious') caused by Penicillium expansum under commercial storage conditions. The population dynamics of strain CPA-1 on apples were studied in the orchard and during storage following application of 3 x 10(6) CFU/ml of each treatment 2 days prior to harvest. In the field, the population size of the unmodified treatment remained relatively unchanged, while the population size of the low-a(w)-modified CPA-1 cells increased. During cold storage, the populations in both treatments increased from 10(3) to 10(5) CFU/g of apple after 30 days, and then declined to about 2.5 x 10(4) CFU/g of apple. In laboratory studies, the low-a(w)-tolerant cells provided significantly better disease control as compared with the unmodified cells and reduced the number of infected wounds and lesion size by 75 and 90%, respectively, as compared with the non-treated controls. After 4 months in cold storage, both unmodified and low-a(w)-tolerant cells of C. sake were equally effective against P. expansum on apple (>50% reduction in size of infected wounds).  相似文献   

11.
Qin GZ  Tian SP 《Phytopathology》2005,95(1):69-75
ABSTRACT Exogenous application of silicon (Si) in the form of sodium metasilicate reduced disease development caused by Penicillium expansum and Monilinia fructicola in sweet cherry fruit at 20 degrees C. The inhibition of fruit decay was correlated closely with Si concentrations. Silicon at concentrations of 1%, in combination with the biocontrol agent Cryptococcus laurentii at 1 x 10(7) cells per ml, provided synergistic effects against both diseases. Population dynamics of C. laurentii were stimulated by Si 48 h after the yeast treatment in the wounds of sweet cherry fruit. Silicon strongly inhibited spore germination and germ tube elongation of P. expansum and M. fructicola in vitro. Based on results with scanning electron microscopy, growth of both pathogens was significantly inhibited by Si in the wounds of sweet cherry fruit. Compared with the wounded water control, Si treatment induced a significant increase in the activities of phenylalanine ammonia-lyase, polyphenoloxidase, and peroxidase in sweet cherry fruit but did not increase the levels of lignin. Application of Si activated a cytochemical reaction and caused tissue browning near the site of wounding. Based on our studies, the improvement in biocontrol efficacy of antagonistic yeast when combined with Si may be associated with the increased population density of antagonistic yeast by Si, the direct fungitoxicity property of Si to the pathogens, and the elicitation of biochemical defense responses in fruit.  相似文献   

12.
European Journal of Plant Pathology - The aim of the study was to test in vitro and in vivo the efficacy of triazoles and biocontrol agents (BCAs) against Fusarium proliferatum and F. oxysporum,...  相似文献   

13.
Pome fruits are poor in nitrogenous compounds and the addition of nitrogen can improve colonisation of the fruits by antagonists. Twenty-two nitrogenous compounds were evaluated for their effect on Candida sake (CPA-1) growth in vitro. Ten compounds that induced greater growth were applied with the antagonist to wounded fruits to evaluate their effect on enhancing control of Penicillium expansum. Calcium chloride and 2-deoxy-D-glucose were also tested. L-serine and L-aspartic acid enhanced biocontrol by C. sake against P. expansum on apples. On apples and pears, ammonium molybdate, calcium chloride and 2-deoxy-D-glucose improved the capacity of the antagonist to control P. expansum. The addition of ammonium molybdate at 1 mM allowed C. sake to be used on apples and pears at a lower concentration without diminishing control. Similar results were observed with the addition of calcium chloride to the antagonist. 2-deoxy-D-glucose at 6 and 18 mM enhanced biocontrol on pears by over 81%, but on apples the improvement of biocontrol was observed only at 6 mM. In cold storage, the combination of ammonium molybdate and C. sake completely eliminated the incidence of blue mould on pears, and reduced its severity and incidence by more than 80% on apples.  相似文献   

14.
A reduced risk fungicide, fludioxonil, was tested for its efficacy against blue mold caused by thiabendazole-resistant and -sensitive Penicillium expansum (Link) Thom in apples under three storage conditions. In a co-treatment, fludioxonil and inoculum were applied together to test the protective activity of the fungicide on wounds that had been aged for 1 or 2 days. The fungicide was also tested for its curative activity in post-inoculation treatment on apples that had been inoculated for 1 or 2 days. Fludioxonil was very effective as co-treatment and as post-inoculation treatment. At a concentration of 300 mg litre(-1), fludioxonil gave complete control of post-harvest blue mold caused by the thiabendazole-resistant and -sensitive P expansum for 105 days in controlled atmosphere (CA) storage at 2 (+/-1) degrees C, for 42 days in common cold storage at 4 (+/-1) degrees C and also in a shelf-life study for 6 days at 20 (+/-1) degrees C. Comparison on the effect of fludioxonil in CA storage and common cold storage showed that higher concentrations of fungicide were needed in cold storage than in CA storage. Fludioxonil at a concentration of 450 mg litre(-1), gave 98 and 92% control of blue mold of apples in the simulated shelf-life studies after CA and common cold storages, respectively. Fludioxonil has a potential to be incorporated in the fungicide resistance management strategies for control of blue mold in apples stored for 105 days.  相似文献   

15.
16.
ABSTRACT Biocontrol agents may compete with pathogens for nutrients and space to delay or prevent decay of fruits after harvest. These mechanisms of biological control have been difficult to study because no method has been available to determine the significance of each of the components of competition. We developed a nondestructive method using tissue culture plates with cylinder inserts containing defusing membrane at one end to study competition for nutrients without competition for space. Other biocontrol mechanisms in which direct contact between an antagonist and a pathogen is not required also can be studied. The method was used to determine the competition between the yeastlike biocontrol agent, Aureobasidium pullulans, and Penicillium expansum for limited nutrients in apple juice during 24 h incubation, simulating a fruit wound. The antagonist depleted amino acids and inhibited germination of P. expansum conidia. Exposing these conidia to fresh apple juice increased conidial germination to the level comparable to that exhibited by conidia which were not exposed to the antagonist. Because the culture plate method was nondestructive, follow-up experiments in an agar diffusion test were conducted. Juice in which the antagonist grew did not inhibit germination of P. expansum conidia that were seeded on the plates. This corroborates findings from the culture plate method that inhibition of the conidia germination resulted from competition for nutrients. The new method can be coupled with existing techniques to improve understanding of antagonist-pathogen interaction for biological control of postharvest diseases.  相似文献   

17.
ABSTRACT Little information is available concerning the expression of pathogenesis-related (PR) proteins in grapevine (Vitis vinifera) and their effect properties on the major fungal pathogens of grape. A systematic study was performed on the effect of total or individual grape proteins on mycelial growth, spore germination, and germ tube growth of Uncinula necator, Phomopsis viticola, and Botrytis cinerea. Two proteins, identified as PR proteins by immunological methods and by N-terminal sequencing as osmotin and thaumatin-like protein, exhibited strong antifungal activities in vitro, blocking the growth of Phomopsis viticola and Botrytis cinerea mycelia. In addition, they inhibited spore germination and germ tube growth of U. necator, Phomopsis viticola, and Botrytis cinerea. The presence of both proteins displayed a synergistic effect. The expression of osmotin and thaumatin-like protein was induced in grapevine leaves and berries infected with U. necator and Phomopsis viticola. Thaumatin previously was thought to occur exclusively in berries. Immunoblot analyses revealed the accumulation of the two PR proteins in infected leaves and berries, supporting a role in vivo in increasing the resistance of grapevine to fungal attack.  相似文献   

18.
The activity of Trichoderma harzianum in the spermosphere and rhizosphere of different plant species was studied by use of a beta-glucuronidase (GUS) transformant (strain T3a). Hereby, direct observation of micro-habitats supporting metabolic activity of T. harzianum is reported. Germination of conidia and mycelial growth were not supported by exudates from healthy roots of various ages. Instead, growth and activity of T. harzianum depended on access to dead organic substrates such as seed coats, decaying roots, and wounds, including those caused by infecting pathogens. A correlation between the GUS activity of T. harzianum and the biomass of Pythium ultimum in infected roots was established. On the basis of our observations, we suggest that the biocontrol ability of T. harzianum involves competition with the pathogen for substrates including the seed coat, and wounded or infected root tissue.  相似文献   

19.
木霉菌REMI转化体对番茄灰霉病的防治及其机理的研究   总被引:2,自引:1,他引:2  
研究不同木霉菌转化体对番茄灰霉病防治效果及机理,为木霉菌生物防治的合理利用奠定基础。利用限制性内切酶介导基因整合技术(restriction enzyme-mediated integration,REMI),通过插入线性化质粒DNA获得了生物防治番茄灰霉病(Botrytis cinerea)效果优于出发菌T21菌株(出发菌)的3个木霉菌转化体Ttrm31、Ttrm34和Ttrm55,对侵染花器和叶片的灰霉病防效分别比原生物防治木霉菌株提高了16.9%和8%。木霉菌转化体的产孢能力、分生孢子的萌发率、对碳氮源的利用能力及对高温的抵抗能力都有所提高;木霉菌转化体本身产生的几丁质酶和β-1,3-葡聚糖酶的活性均比出发菌高,因此通过REMI技术可以获得新的有益木霉菌转化体,在一定程度上提高了生物菌株防治番茄灰霉病的水平。说明REMI技术可以用于改良生防木霉菌株的功能,提高生物防治效果。  相似文献   

20.
Although Aspergillus species are not usually considered as serious plant pathogens, Aspergilli are frequently encountered in plant products. The most important consequence of their presence is mycotoxin contamination. The main mycotoxins produced by Aspergilli are the aflatoxins, ochratoxin A and patulin, which are produced by a variety of Aspergillus species in different plant commodities. Phylogenetic analysis of sequences of the ribosomal RNA gene cluster is useful for clarifying taxonomic relationships among toxigenic Aspergilli causing pre- and postharvest contamination of agricultural products. Molecular data has enabled us to clarify the taxonomy of black Aspergilli, A. flavus and its relatives, and sections Circumdati and Clavati, which include ochratoxin and patulin-producing species. Phylogenetically unrelated species were found to produce the same mycotoxins, indicating that mycotoxin-producing abilities of the isolates have been lost (or gained) several times during the evolution of the genus. The data also indicate that biosynthetic gene-based probes are necessary for molecular detection of these mycotoxin-producing organisms. The organisation of the biosynthetic genes of patulin and ochratoxins is unknown, although experiments are in progress in several laboratories to clarify the genetic background of biosynthesis of these mycotoxins. Identification of biosynthetic genes responsible for mycotoxin production is essential for clarifying the evolution of mycotoxin biosynthesis in Aspergilli, and to develop specific gene probes for the detection of mycotoxin-producing Aspergilli in agricultural products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号