首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To test the hypothesis that isolates of Phytophthora infestans attacking wild Solanaceae exhibit specialization for particular host species, 115 isolates of P. infestans were collected from cultivated potatoes, nontuber-bearing Solanum spp. of the Basarthrum section and wild tomatoes from five departments in the northern and central highlands of Peru, and characterized using several neutral markers. All isolates belonged to one of four clonal lineages described previously in Peru: EC-1, US-1, PE-3 and PE-7. There was a strong association of three lineages with host species: PE-3 was only isolated from cultivated potato, while PE-7 and US-1 were only isolated from nontuber-bearing Solanum spp. ( Basarthrum section and wild tomatoes). EC-1 was isolated from all host groups sampled. A subset ( n  = 74) of the isolates was evaluated for metalaxyl resistance. High levels of resistance were found almost exclusively in EC-1 and PE-3, while US-1 and PE-7 isolates were generally sensitive. In a detached-leaf assay for lesion diameter using five EC-1 isolates from S. caripense and seven EC-1 isolates from cultivated potato, there was a significant interaction between isolate origin and inoculated host, caused by higher aggressiveness of EC-1 from cultivated potato on its host of origin. In a comparison of EC-1 (seven isolates from cultivated potato) and US-1 (three isolates from S. caripense ), each pathogen lineage was more aggressive on its original host species, causing a highly significant interaction between isolate origin and inoculated host. Wild tomatoes and nontuber-bearing Solanum spp. harbour several pathogen lineages in Peru and could serve as reservoirs of inoculum that might contribute to epidemics on potato or tomato. Potential risks associated with the use of wild Solanum hosts as sources of resistance to P. infestans are discussed .  相似文献   

2.
To determine the potential of sexual reproduction among host-adapted populations of Phytophthora infestans sensu lato in Ecuador, 13 A1 isolates belonging to clonal lineages US-1, EC-1 and EC-3, and 11 A2 isolates belonging to the clonal lineage EC-2, were paired on agar plates to induce crossing. In the first experiment, six A1 isolates (three US-1, two EC-1 and one EC-3) were each crossed with three A2 isolates (total = 18 crosses). Matings involving isolates of the EC-1 lineage produced more oospores of healthy appearance than did matings with isolates of US-1 or EC-3. In the second experiment, the oospores of 35 crosses (21 EC-1 × EC-2; 10 US-1 × EC-2; four EC-3 × EC-2) were dispersed on water agar to assess oospore germination. Overall, germination percentages were low. Only one cross produced enough progeny for evaluation. Twenty-three single-oospore offspring were isolated and evaluated for mating type; electrophoretic patterns of glucose-6-phosphate isomerase ( Gpi ) and peptidase ( Pep ) alloenzyme loci; mitochondrial DNA haplotype; and genomic DNA fingerprint. Multilocus genotype data indicated that all 23 isolates resulted from meiotic recombination. Four progeny with homothallic phenotype appeared to be unstable heterokaryons. Markers at several loci segregated according to simple Mendelian expectations for a diploid organism, but the ratios of three RFLP loci and the Pep locus were not consistent with Mendelian expectations. All progeny were nonpathogenic on hosts of the parental genotypes. Reduced mating success and reduced pathogenic fitness of progeny appear to be postmating mechanisms of reproductive isolation in populations of P. infestans sensu lato in Ecuador.  相似文献   

3.
The genetic diversity of the late blight pathogen Phytophthora infestans infecting cultivated potato and alternative hosts growing in the vicinity of fields in the main potato-growing areas of the Peruvian Andes was characterized using collections from 1997–2013 as reference. The Peruvian P. infestans population, including previously collected and current isolates, consists of four clonal lineages (EC-1, US-1, PE-3 and PE-7) that belong to the A1 mating type and have been present in the country for decades. The first report of US-1 was in isolates collected between 1982 and 1986; meanwhile, EC-1 and PE-3 appeared for the first time in isolates from 1992 and PE-7 was found in 1997. The pathogen has a very broad host range among the solanaceous plants infecting cultivated potato, tomato, pear melon and several wild species. The solanaceous species growing in the vicinity of the potato fields sampled were identified and surveyed for late blight-like symptoms. Phytophthora infestans was isolated from nine wild species, including three new host species: Solanum zahlbruckneri, Solanum grandidentatum and Iochroma grandiflorum. There was no clear host specialization, but geographical substructuring was found as well as changes in the pathogen populations at the regional level. The clonal lineage EC-1, which is mostly resistant to metalaxyl, has complex virulence and contains a high level of subclonal variation, continues to dominate the population. Some multilocus genotypes of the EC-1 lineage were sampled in high frequencies and were found among the previously collected and new samples.  相似文献   

4.
To determine whether populations of Phytophthora infestans attacking wild and cultivated potatoes in the highlands of Peru are specialized on their hosts of origin, we characterized isolates using several neutral markers, metalaxyl resistance and for aggressiveness in a detached leaf assay. One hundred and fifty-three isolates were collected from the northern and central highlands of Peru from different potato cultivars (both modern and native cultivars) and from different species of wild, tuber-bearing potatoes. All the isolates analyzed belonged to one of four clonal lineages that had been described previously in Peru: EC-1, US-1, PE-3 and PE-7. The EC-1 lineage (n = 133) was dominant and present in similar frequencies on wild and cultivated potatoes. PE-3 (n = 14) was found primarily on cultivated potatoes, with only one isolate coming from a wild host. US-1 (n = 2) and PE-7 (n = 4) were rare; all but one (PE-7) occurred on wild potatoes. Isolates from the EC-1 lineage from modern cultivars were compared in three separate detached leaf inoculation assays with EC-1 isolates from the wild potato species S. sogarandinum, S. bill-hookerii or S. huancabambense, respectively. No significant interactions between isolate type (from wild or cultivated potato) and host type (wild or cultivated) were measured for any assay. It appears that the pathogen genotypes in the EC-1 lineage indiscriminately attack both wild and cultivated tuber-bearing solanaceous hosts in Peru, and breeders should be able to select for resistance using the common EC-1 lineage.  相似文献   

5.
Thirty-nine isolates of Phytophthora infestans were collected from the wild host Solanum ochranthum in the highland tropics of Ecuador and characterized with a set of phenotypic and molecular markers (mating type, metalaxyl sensitivity, the allozyme loci Gpi, and Pep, mitochondrial DNA haplotype, RFLP, and SSR), as well as for pathogenicity on various hosts. Three groups of isolates (A, B, and C) were identified based on their multilocus genotypes and variable abilities to cause disease on different hosts. Group A had a combination of alleles for the Gpi (86/100), Pep (96/100) and mtDNA (Ia) loci, as well as an RFLP fingerprint, that have not been reported for P. infestans in Ecuador, or elsewhere. Group B shares many marker characteristics with the US-1 lineage described in Ecuador on tomato, pear melon (S. muricatum), and S. caripense, but has SSR alleles not present in typical US-1 isolates. Group C for all markers tested is identical to the EC-1 lineage described on cultivated and wild potatoes in Ecuador. All isolates from S. ochranthum were able to re-infect their host of origin in the detached leaf assay; however, we did not draw clear conclusions as to the relative aggressiveness of the three groups on this host. Isolates of group A were the most specialized and were generally non-pathogenic or weakly pathogenic on all hosts other than S. ochranthum. Groups B and C infected tuber-bearing hosts, including the cultivated potato but were generally non-pathogenic on other non-tuber bearing hosts. Solanum ochranthum was infected by isolates coming from tuber-bearing Solanum hosts (i.e., the EC-1 lineage of P. infestans) and some US-1 isolates from non-tuber bearing hosts. Thus, in nature this species might be a potential reservoir of inoculum of different pathogen populations able to infect the cultivated hosts potato, tomato and pear melon (S.␣muricatum). Unlike potato and tomato in Ecuador, each of which is primarily attacked by a highly specialized pathogen population, S. ochranthum appears to harbour at least three pathogen groups of␣different genetic make-up. The unresolved issue of potential host specificity in isolates found on S.␣ochranthum could complicate efforts to use this species in tomato improvement.  相似文献   

6.
ABSTRACT Sixty Ecuadorian isolates of Phytophthora infestans from potato and 60 isolates from tomato were compared for dilocus allozyme genotype, mitochondrial DNA haplotype, mating type, and specific virulence on 11 potato R-gene differential plants and four tomato cultivars, two of which contained different Ph genes. Restriction fragment length polymorphism (RFLP) fingerprints of subsamples of isolates from each host were compared by using RG57 as the probe. All potato isolates had the allozyme genotype, haplotype, and mating type of the clonal lineage EC-1, which had been previously described in Ecuador. With the same markers, only one isolate from tomato was classified as EC-1; all others belonged to the globally distributed US-1 clonal lineage. RFLP fingerprints of isolate subsets corroborated this clonal lineage classification. Specific virulence on potato differentials was broadest among potato isolates, while specific virulence on tomato cultivars was broadest among tomato isolates. Some tomato isolates infected all tomato differentials but no potato differentials, indicating that specific virulence for the two hosts is probably controlled by different avirulence genes in P. infestans. In two separate experiments, the diameters of lesions caused by nine isolates from potato and 10 from tomato were compared on three tomato and three potato cultivars. All isolates produced larger lesions on the host from which they were isolated. No isolates were found that were highly aggressive on both tomato and potato. We conclude that there are two different populations of P. infestans in Ecuador and that they are separated by host.  相似文献   

7.
ABSTRACT Isolates of the late blight pathogen Phytophthora infestans (n = 327) from the central to southern Peruvian Andes were systematically collected in 1997 to 1999 and analyzed to determine the pathogen's population structure at its host's center of diversity. No isolates of the A2 mating type were detected. Cluster analysis of DNA fingerprinting data indicated that the collection consisted of five major groups that were interpreted to be clonal lineages. Two of the lineages (US-1 and EC-1) have been previously described, and three (PE-3, 5, and 6) are described here for the first time. Collections from three areas in the central Peruvian Andes, including two key sites used in an international potato breeding program, consisted of isolates of the EC-1 lineage, which has been reported to dominate the pathogen population in Andean countries to the north of Peru. The collections from Cusco and Puno were more diverse. More than one lineage was detected in 10 of the 20 fields sampled in Cusco. Data on virulence, metalaxyl sensitivity, and band data for allozymes, mitochondrial DNA, and ipiB1 suggested that PE-3 may have been produced through recombination events between US-1 and EC-1. Restriction fragment length polymorphism and amplified fragment length polymorphism marker data were not consistent with this hypothesis.  相似文献   

8.
In recent years, late blight, caused by Phytophthora infestans (Mont) De Bary, has increased in severity in many parts of the world, and this has been associated with migrations which have introduced new, arguably more aggressive, populations of the pathogen. In Taiwan, late blight has been endemic on outdoor tomato crops grown in the highlands since the early 1900s, but recent epidemics have been more damaging. To ascertain the present status of the Taiwanese population of P infestans, 139 isolates of the pathogen collected and maintained by the Asian Vegetable Research and Development Center (AVRDC) were characterized using mating type, metalaxyl sensitivity, allozyme genotype, mitochondrial haplotype and RFLP fingerprinting. Up to 1997, all isolates were found to belong to the old clonal lineage of P infestans (US-1 and variants), but in isolates from 1998 a new genotype appeared, and by 2000 this had apparently completely displaced the old population. This new genotype was an A1 mating type and has the dilocus allozyme genotype 100/100/111, 100/100 for the loci coding for glucose-6-phosphate isomerase and peptidase, respectively. These characters, together with RG57 fingerprinting, indicated that these isolates belonged to the US-11 clonal lineage, a minority (11%) being a previously unreported variant of US-11. Whereas metalaxyl-resistant isolates were not detected in the old population, 96% of the new genotypes proved resistant, with the remainder being intermediate in sensitivity. It may be inferred from this sudden, marked change in the characteristics of the Taiwanese P infestans that a new population of the pathogen was introduced around 1997-98 and that this may well have already been metalaxyl-resistant when it arrived, although a role for in situ selection cannot be excluded.  相似文献   

9.
ABSTRACT The population genetic structure of Phytophthora infestans in Ecuador was assessed from 101 isolates collected from 1990 to 1992 and 111 isolates collected in 1993. All isolates were analyzed for mating type and allozyme genotype. Both samples were dominated (>95%) by a clonal lineage (EC-1) defined from neutral markers: 90/100 genotype for glucose-6-phosphate isomerase, 96/100 genotype for peptidase, A1 mating type, and a previously unreported nuclear DNA fingerprint. The remaining isolates belonged to the US-1 clonal lineage, which has a worldwide distribution. Isolates in the 1993 sample were analyzed for virulence and metalaxyl sensitivity. All representatives of EC-1 had complex patho-types, with three pathotypes representing >60% of the collection. There was variation for metalaxyl sensitivity. There was no evidence for geographical substructuring on the basis of neutral markers, but there was evidence for limited substructuring based on metalaxyl sensitivity and specific virulence. We hypothesize that EC-1 has been recently introduced to Ecuador.  相似文献   

10.
ABSTRACT LATEBLIGHT, a mathematical model that simulates the effects of weather, host growth and resistance, and fungicide use on asexual development and growth of Phytophthora infestans on potato foliage, was modified so that it can be used in the Andes and, eventually, worldwide. The modifications included (i) the incorporation of improved equations for the effect of temperature on lesion growth rate (LGR) and sporulation rate (SR); (ii) the incorporation of temperature-dependent latent period (LP); and (iii) the use of experimentally measured parameters of LGR, SR, and LP for specific potato cultivars and pathogen lineages. The model was parameterized for three Peruvian potato cultivars (Tomasa, Yungay, and Amarilis) infected with isolates of a new clonal lineage of P. infestans that is currently predominant in Ecuador and Peru (EC-1).  相似文献   

11.
The population of Phytophthora infestans in Brazil consists of two clonal lineages, US-1 associated with tomatoes and BR-1 associated with potatoes. To assess whether host specificity in these lineages resulted from differences in aggressiveness to potato and tomato, six aggressiveness-related epidemiological components – infection frequency (IF), incubation period (IP), latent period (LP), lesion area (LA), lesion expansion rate (LER) and sporulation at several lesion ages (SSLA) – were measured on detached leaflets of late blight-susceptible potato and tomato plants. Infection frequency of US-1 was similar on potato and tomato leaflets, but IF of BR-1 was somewhat reduced on tomato. Incubation period was longer on both hosts with US-1, although this apparent lineage affect was not significant. Overall there was no host effect on IP. On potato, BR-1 had a shorter LP (110·3 h) and a larger LA (6·5 cm2) than US-1 (LP = 162·0 h; LA = 2·8 cm2). The highest LER resulted when isolates of BR-1 (0·121 cm2 h−1) and US-1 (0·053 cm2 h−1) were inoculated on potato and tomato leaflets, respectively. The highest values of the area under the sporulation capacity curve (AUSC) were obtained for isolates of US-1 inoculated on tomato leaflets (6146) and for isolates of BR-1 on potato leaflets (3775). In general, higher values of LA, LER, SSLA and AUSC, and shorter values of LP were measured when isolates of a clonal lineage were inoculated on their original host than with the opposite combinations. There is evidence that there are quantitative differences in aggressiveness components between isolates of US-1 and BR-1 clonal lineages that probably contribute to host specificity of P. infestans populations in Brazil.  相似文献   

12.
ABSTRACT Since 1991, dramatic changes have occurred in the genetic composition of populations of Phytophthora infestans in the United States. Clonal lineages recently introduced into the United States (US-7 and US-8) are more common now than the previously dominant lineage (US-1). To help determine why these changes occurred, four clonal lineages of P. in-festans common during the early 1990s in the United States and Canada were evaluated for sensitivity to the protectant fungicides mancozeb and chlorothalonil using amended agar assays for isolates collected from 1990 to 1994. No isolate or lineage was resistant to either mancozeb or chlorothalonil. There were significant differences among isolates for degree of sensitivity to one fungicide individually, but there were no significant (P = 0.05) differences among the US-1, US-6, US-7, and US-8 clonal lineages for degree of sensitivity to both fungicides. Therefore, resistance to protectant fungicides cannot explain the rapid increase in frequency of the US-7 and US-8 clonal lineages. Three components of pathogenic fitness (latent period, lesion area, and sporulation after 96 h) were tested for the three clonal lineages that were detected most commonly during 1994 (US-1, US-7, and US-8). All but one of the isolates in this analysis were collected during 1994 and evaluated within 10 months of collection by inoculating detached leaflets of the susceptible potato cultivar Norchip. There were significant differences between the US-1 and US-8 clonal lineages for lesion area and sporulation, and between US-1 and US-7 for latent period. The US-6 clonal lineage was excluded from the pathogenic fitness experiments, because no isolates of this lineage were collected during 1994. Compared with US-7 and US-8, US-1 had the longest latent period and the smallest lesions with the least sporulation. Incorporation of the differences between US-1 and US-8 in computer simulation experiments revealed that significantly more protectant fungicide (e.g., 25%) would be required to suppress epidemics caused by the US-8 clonal lineage compared with US-1. These differences in pathogenic fitness components probably contribute to the general predominance of the "new" clonal lineages (especially US-8) relative to the "old" US-1 lineage.  相似文献   

13.
The aggressiveness of four Phytophthora infestans isolates collected from wild and cultivated potato species (sect. Petota ) and the level of resistance of nine Petota species were assessed in the highland tropics of Ecuador. For this, isolates of P. infestans were inoculated on whole plants of Petota species in the field and net house and six epidemiological components – infection frequency (IF), incubation period (IP), latent period (LP), lesion size (LS), lesion growth rate (LGR), and relative area under the lesion expansion curve (RAULEC) – were measured during a single infection cycle. Additionally, host specificity was determined by testing for a significant host by pathogen interaction using the same components. The results showed significant differences among isolates of the EC-1 clonal lineage for IP, IF, and RAULEC. Significant differences among isolates were not found for the other components measured. There were significant differences in resistance among the accessions of Petota hosts tested. RAULEC, LGR, LP, and LS were in general more adequate in differentiating among the more resistant and more susceptible accessions but the importance of each component varied with host species. There was slight and inconsistent evidence for the existence of host specificity in some isolates of Petota hosts. IP was the only component for which a significant host by isolate interaction was observed and in most cases the isolates had the greatest aggressiveness on their hosts of origin.  相似文献   

14.
Late blight caused by the oomycete Phytophthora infestans is a disease of potato and tomato of worldwide relevance and is widespread throughout Europe and the Mediterranean region. While pathogen populations in northern Europe have been sampled and characterized for many years, the genetic structure of populations from southern Europe, including Italy, has been less studied. Between 2018 and 2019, we collected 91 samples of P. infestans from potato and tomato crops in Italy, Algeria, and Tunisia on FTA cards and genotyped them using 12-plex microsatellites. These samples were compared to genotypes of P. infestans previously collected within the framework of the EuroBlight network and from published sources. Four clonal lineages were identified: 13_A2 (Blue 13), 2_A1, 23_A1, and 36_A2. Two other isolates collected could not be matched to any currently known clonal lineage. The 13_A2 and 36_A2 lineages were found exclusively in southern Italy and Algeria, while 2_A1 was only found in Algeria. This is the first report of the 36_A2 lineage in Italy. Two isolates from Solanum nigrum were 13_A2, suggesting this weed host could be a reservoir of inoculum. The 23_A1 lineage was found widely on infected tomato crops in Italy and is the same as the lineage US-23 that is widespread in North America. Differences in genotypes across the country suggests that there may be different sources of introduction into Italy, possibly via infected seed tubers from other countries in Europe, tubers for consumption from North Africa, or tomatoes.  相似文献   

15.
ABSTRACT Twenty-six isolates of a Phytophthora population from two wild solanaceous species, Solanum tetrapetalum (n 11) and S. brevifolium (n = 15), were characterized morphologically, with genetic and phenotypic markers, and for pathogenicity on potato and tomato. Based on morphology, ribosomal internal transcribed spacer region 2 (ITS2) sequence, and pathogenicity, all isolates closely resembled P. infestans and were tentatively placed in that species. Nonetheless, this population of Phytophthora is novel. Its primary host is neither potato nor tomato, and all isolates had three restriction fragment length polymorphism (RFLP) bands (probe RG57) and a mitochondrial DNA haplotype that have not been reported for P. infestans. All the isolates were the A2 mating type when tested with a P. infestans A1 isolate. The A2 mating type has not been found among isolates of P. infestans from potato or tomato in Ecuador. Geographical substructing of the Ecuadorian A2 population was detected. The three isolates from the village of Nono, identical to the others in all other aspects, differed by three RFLP bands; those from Nono lacked bands 10 and 16, but possessed band 19. Most of the Ecuadorian A2 isolates were nonpathogenic on potato and tomato, but a few caused very small lesions with sparse sporulation on necrotic tissue. Cluster analysis of multilocus genotypes (RFLP, mating type, and two allozymes) dissociated this A2 population from genotypes representing clonally propagated populations of P. infestans worldwide. The current hypotheses for the historical global movements of P. infestans do not satisfactorily explain the origin or possible time of introduction into Ecuador of this A2 population. Assuming the population is P. infestans, its presence in Ecuador suggests either a hitherto unreported migration of the pathogen or an indigenous population that had not previously been detected.  相似文献   

16.
ABSTRACT The Ceratocystis fimbriata complex includes many undescribed species that cause wilt and canker diseases of many economically important plants. Phylogenetic analyses of DNA sequences have delineated three geographic clades within Ceratocystis fimbriata. This study examined host specialization in the Latin American clade, in which a number of lineages were identified using sequences of the internal transcribed spacer (ITS) region of the rDNA. Three host-associated lineages were identified from cacao (Theobroma cacao), sweet potato (Ipomoea batatas), and sycamore (Platanus spp.), respectively. Isolates from these three lineages showed strong host specialization in reciprocal inoculation experiments on these three hosts. Six cacao isolates from Ecuador, Trinidad, and Columbia differed genetically from other cacao isolates and were not pathogenic to cacao in inoculation tests. Further evidence of host specialization within the Latin American clade of Ceratocystis fimbriata was demonstrated in inoculation experiments in growth chambers using sweet potato, sycamore, Colocasia esculenta, coffee (Coffea arabica), and mango (Mangifera indica) plants; inoculation experiments in Brazil using Brazilian isolates from cacao, Eucalyptus spp., mango, and Gmelina arborea; and inoculation experiments in Costa Rica using Costa Rican isolates from cacao, coffee, and Xantho-soma sp. Hosts native to the Americas appeared to be colonized by only select pathogen genotypes, whereas nonnative hosts were colonized by several genotypes. We hypothesize that local populations of Ceratocystis fimbriata have specialized to different hosts; some of these populations are nascent species, and some host-specialized genotypes have been moved to new areas by humans.  相似文献   

17.
Pineapple heart rot disease, caused by Phytophthora nicotianae (syn. P. parasitica), is responsible for significant annual reductions in crop yield due to plant mortality. In Ecuador, new infections arise during the rainy season and increase production costs due to the need for biocontrol and fungicide applications. Studies of P. nicotianae population structure suggest that certain genetic groups are associated with host genera; however, it is not clear how many host‐specific lineages of the pathogen exist or how they are related. The objectives of this study were to determine the level of genetic variation in the P. nicotianae population causing heart rot disease of pineapple in Ecuador and compare the genotypes found on pineapple to those previously reported from citrus, tobacco and ornamentals. Thirty P. nicotianae isolates collected from infected pineapple leaves from four farms were genotyped using nine simple sequence repeat loci. In addition, the DNA sequences of mitochondrial loci cox2 + spacer and trnG‐rns were analysed. Together, these loci supported a single clonal lineage with two multilocus genotypes differing in a single allele and low mitochondrial diversity. This lineage was distinct but closely related to isolates collected from vegetables and ornamentals in Italy. The results support the hypothesis of host specialization of P. nicotianae in intensive cropping systems and contribute to the understanding of population structure of this important pathogen.  相似文献   

18.
Mizubuti ES  Fry WE 《Phytopathology》1998,88(8):837-843
ABSTRACT Sporangia germination of Phytophthora infestans isolates belonging to three clonal lineages (US-1, -7, and -8) was assessed at temperatures ranging from 10 to 25 degrees C. At 10 degrees C there were no significant differences in germination percents among US-1, -7, and -8. At 18 or 20 degrees C US-7 and -8 had significantly lower germination percents than US-1. At 21, 24, or 25 degrees C all clonal lineages had low germination percents. Sporangia of the US-7 and -8 lineages germinated more quickly at 15 degrees C (P = 0.001) during the first 2 h than did the US-1 lineage. The incubation period (IP), lesion area (LA), and sporulation per unit of lesion area (SPU) of the isolates were assessed on inoculated detached leaflets of susceptible potato cv. Norchip kept at 10, 15, 20, or 25 degrees C. In general, IP declined exponentially and LA increased exponentially with increasing temperatures. SPU had a quadratic shape, with the maximum at 15 degrees C. Averaged over all temperatures, the US-7 lineage had the shortest IP (59.3 h compared to 66.4 h for US-1 [P = 0.012] and 71.7 h for US-8 [P = 0.026]). Again, averaged over all temperatures, the US-8 lineage had a larger LA (P = 0.030) than US-1. There was no significant difference between US-7 and -1 for LA. There were no significant differences among lineages in terms of SPU. These results indicate that clonal lineages differ from each other in epidemiological attributes, but the differences can be complex.  相似文献   

19.
ABSTRACT The extracellular protein INF1 of Phytophthora infestans is a member of the elicitin family of protein elicitors known to induce a hypersensitive response on some solanaceous and cruciferous plants. The presence of INF1 elicitin in culture filtrates of 102 P. infestans isolates from 15 countries was examined. All tested isolates produced INF1 except five isolates collected in 1976 and 1977 from infected potatoes in East Germany (the former German Democratic Republic). Based on hybridization to the multi-locus DNA fingerprint probe RG57, all the INF1-nonproducing isolates were shown to belong to the clonal lineage US-1 that dominated world populations until the 1980s. Phylogenetic analysis of a set of European US-1 isolates using amplified fragment length polymorphism fingerprint data indicated that loss of INF1 production evolved independently in separate lineages within US-1. DNA and RNA blot hybridizations showed that INF1-nonproducing isolates still retain a copy of the inf1 gene, whereas little inf1 mRNA could be detected. Hypothetical interpretations of the evolution in a restricted geographic area of P. infestans lineages deficient in the production of a specific elicitor protein are discussed.  相似文献   

20.
ABSTRACT Dramatic changes occurred within populations of Phytophthora infestans in the United States and Canada from 1994 through 1996. Occurrence of the US-8 genotype, detected rarely during 1992 and 1993, increased rapidly and predominated in most regions during 1994 through 1996. US-7, which infected both potato and tomato and made up almost 50% of the sample during 1993, was detected only rarely among 330 isolates from the United States analyzed during 1994. It was not detected at all in more limited samples from 1996. Thus, ability to infect both potato and tomato apparently did not increase the fitness of this genotype relative to US-8, as predicted previously. US-1, the previously dominant genotype throughout the United States and Canada, made up 8% or less of the samples analyzed during 1994 through 1996. A few additional genotypes were detected, which could indicate the beginnings of sexual reproduction of P. infestans within the United States and Canada. However, clonal reproduction still predominated in all locations sampled; opportunities for sexual reproduction probably were limited, because the A1 and A2 mating types usually were separated geographically. The high sensitivity of the US-1 genotype to the fungicide metalaxyl also could have reduced opportunities for contact between the mating types in fields where this compound was applied. The previous correlation between metalaxyl sensitivity and genotype was confirmed and extended to a new genotype, US-17: all US-1 isolates tested were sensitive; all isolates of the US-7, US-8, and US-17 genotypes tested to date have been resistant. Isolates of P. capsici and P. erythroseptica, two other species often found on tomato and potato, could be easily distinguished from each other and from P. infestans using a simple allozyme assay for the enzyme glucose-6-phosphate isomerase. This technique could be useful for rapid identification of species, in addition to genotype of P. infestans. It generally was not possible to predict which genotypes would be present in a location from 1 year to the next. Long-distance movement of US-8 in seed tubers was documented, and this was probably the primary means for the rapid spread of this genotype from 1993 through 1996.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号