首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
罗文  张昊  许景升  徐进  冯洁 《植物保护》2016,42(2):192-197
由禾谷镰刀菌复合种(Fusarium graminearum species complex,FGSC)引起的麦类赤霉病,是农业生产上的重要病害。为明确中国长江中下游冬小麦主产区小麦赤霉病菌种的构成及其地理分布,对2008年从江苏、浙江和湖北3省采集的656株小麦赤霉病菌株进行了分类鉴定。结果显示,其中558个菌株为亚洲镰刀菌(Fusarium asiaticum),98个菌株为禾谷镰刀菌(Fusarium graminearum sensu stricto),表明中国长江中下游冬小麦主产区小麦赤霉病的主要致病菌是亚洲镰刀菌。选择亚洲镰刀菌(F.asiaticum)为研究对象,通过PCR-RFLP的方法对其进行产NX-2毒素菌株的检测。结果没有检测到产NX-2毒素菌株,表明中国长江中下游冬小麦主产区并未出现NX-2毒素群体。本研究旨在了解NX-2毒素群体在中国长江中下游地区的地理分布,为进一步研究麦类赤霉病菌群体遗传多样性和演化趋势奠定基础,为麦类赤霉病的防治和毒素污染的控制提供理论依据。  相似文献   

2.
The genetic diversity and pathogenicity of isolates of Fusarium graminearum and F. asiaticum isolated from wheat heads in China were examined and compared with those of isolates of F. graminearum , F. asiaticum and F. meridionale from Europe, USA and Nepal. Genetic diversity was assessed by SSCP (single strand conformation polymorphism) and AFLP (amplified fragment length polymorphism) analysis and by molecular chemotyping. SSCP analysis of the Fg16F/Fg16R PCR amplicon differentiated F. graminearum , F. asiaticum and F. meridionale and revealed three haplotypes among sequence-characterized amplified region (SCAR) type 1 F. graminearum isolates. AFLP analysis showed a high level of genetic diversity and clustered the majority of Chinese isolates in one group along with other isolates of Asian origin. The second cluster contained F. graminearum isolates from China, Europe and the USA. Of the Chinese isolates, 79% were F. asiaticum and 81% of these were of the 3-AcDON chemotype, with only 9·5% of either chemotype 15-AcDON or NIV. All the Chinese and USA isolates of F. graminearum were 15-AcDON, whereas among the isolates from Europe, 21% were NIV and 8% were 3-AcDON chemotype. No evidence was found for possible differences in aggressiveness between F. graminearum and F. asiaticum . Highly aggressive isolates were present in each region and no evidence was found for any association between aggressiveness and geographical origin or chemotype among the isolates examined. No difference was observed in pathogenicity towards wheat seedlings between Chinese isolates and those from Europe, the USA or Nepal.  相似文献   

3.
为明确我国不同种、地理来源和毒素化学型小麦茎基腐病菌的致病力分化情况,采用纸塔法对来自全国9个省市80个采样点分离的224株小麦茎基腐病菌进行致病力分析。结果表明,不同种镰刀菌的致病力不同,黄色镰刀菌Fusarium culmorum,禾谷镰刀菌F.graminearum,假禾谷镰刀菌F.pseudograminearum及亚洲镰刀菌F.asiaticum致病力强于其他种。F.culmorum致病力显著高于F.pseudograminearum和F.asiaticum,而F.pseudograminearum,F.graminearum及F.asiaticum三者之间无显著性差异。中华镰刀菌F.sinensis,木贼镰刀菌F.equiseti,锐顶镰刀菌F.acuminatum致病力较弱,三者间苗期致病力无显著性差异;多数省份F.pseudograminearum群体间致病力无显著差异,仅山东F.pseudograminearum群体的致病性显著低于河南群体;此外,产毒类型为3ADON的F.pseudograminearum群体致病力显著高于15ADON群体。  相似文献   

4.
A large number of Fusarium graminearum and F. asiaticum isolates were collected from wheat spikes from all regions in China with a history of fusarium head blight (FHB) epidemics. Isolates were analysed to investigate their genetic diversity and geographic distribution. Sequence characterized amplified region (SCAR) analyses of 437 isolates resolved both species, with 21% being F. graminearum (SCAR type 1) and 79% being F. asiaticum (SCAR type 5). AFLP profiles clearly resolved two groups, A and B, that were completely congruent with both species. However, more diversity was detected by AFLP, revealing several subgroups within each group. In many cases, even for isolates from the same district, AFLP haplotypes differed markedly. Phylogenetic analyses of multilocus DNA sequence data indicated that all isolates of SCAR type 1, AFLP group A were F. graminearum , whilst isolates of SCAR type 5, AFLP group B were F. asiaticum , demonstrating that it is an efficient method for differentiating these two species. Both species seem to have different geographic distributions within China. Fusarium graminearum was mainly obtained from wheat growing in the cooler regions where the annual average temperature was 15°C or lower. In contrast, the vast majority of F. asiaticum isolates were collected from wheat growing in the warmer regions where the annual average temperature is above 15°C and where FHB epidemics occur most frequently. This is the first report of the distribution of, and genetic diversity within, F. graminearum and F. asiaticum on wheat spikes throughout China.  相似文献   

5.
We report on a large gene bank of Fusarium isolates established by a broad survey conducted in 2005 in which infected barley ears were collected in 23 counties of seven provinces and two municipalities along the Yangtze River in China. In total, 1,894 single spore isolates were obtained. The isolates were characterized at the species level by a newly developed and robust set of diagnostic primers based on single nucleotide polymorphisms (SNPs) among members of the F. graminearum clade. In addition, we determined their chemotype using previously described polymerase chain reaction (PCR) primers. The results showed that in all regions F. asiaticum was the predominant species causing Fusarium head blight (FHB) on barley in China (N = 1,706), while in the upper valleys of the Yangtze River also F. graminearum sensu stricto, F. meridionale, and F. proliferatum were found. Major differences in the chemotypes were found in the F. asiaticum populations, from very high to exclusive nivalenol (NIV) chemotypes in the mountainous upper valleys of the Yangtze River to predominantly deoxynivalenol (DON) chemotypes in the middle and lower valleys. In contrast to the F. asiaticum isolates from three counties in Sichuan province, which were largely NIV producers (278 of 291), F. graminearum isolates from these sampling sites were for the vast majority (27 of 28) DON producers, indicating that despite sharing the same habitat, these sympatric species apparently have unique mycotoxin chemotypes.  相似文献   

6.
Members of the Fusarium graminearum species complex (FGSC) cause Fusarium head blight in small cereal grains all over the world. To determine the species and trichothecene chemotype composition and population structure of FGSC in Jiangsu and Anhui provinces, an area where epidemics occur regularly, 891 isolates were collected in two consecutive years (2011 and 2012) and characterized with species- and chemotype-specific polymerase chain reaction. Of the 891 isolates typed, 83 were F. graminearum sensu stricto (s. str.) and 808 were F. asiaticum. All 83 F. graminearum s. str. isolates were of a 3ADON (26.51 %) or 15ADON (73.49 %) type, while F. asiaticum isolates included 696 3ADON producers, 46 15ADON producers, and 66 NIV producers. Eight variable number tandem repeat (VNTR) markers were tested on a representative 384 F. asiaticum isolates from 55 sampling sites. VNTR analysis showed high gene diversity and genotypic diversity but low linkage disequilibrium in both populations Fg2011 and Fg2012 grouped based on the year of collection. Low genetic differentiation (F ST ? =?0.026) and high gene flow (N m ?=?15.13) was observed between the two populations and among subpopulations within the same population (N m ?=?3.53 to 48.37), indicating that few influence of temporal and spatial variations on population differentiation in this area. Similar result was obtained from 3ADON, 15ADON and NIV populations or carbendazim resistant and sensitive populations, indicating that chemotype of Fusarium isolates and carbendazim application had minor influence on population subdivision.  相似文献   

7.
河南省小麦赤霉病菌种群组成及致病力分化   总被引:1,自引:0,他引:1  
 为明确河南省小麦赤霉病种群组成和致病力分化情况,2007—2014年对河南省15个市84个田块的327个小麦赤霉病菌进行种群鉴定、毒素化学型分析和致病力分化研究,结果表明:Fusarium graminearum s. str.和F. asiaticum是河南省小麦赤霉病的优势种群(97%),F. pseudograminearum(2.1%)、F. culmorum(0.3%)、F. equiseti(0.3%)、F. verticillioids(0.3%)为次要种群;对于禾谷镰刀菌复合群来说,豫北地区分布只有F. graminearum s. str.,豫中地区F. graminearum s. str.和F. asiaticum都存在,以F. graminearum s. str.为主,豫南地区F. graminearum s. str.和F. asiaticum都存在,以F. asiaticum为主;291个F. graminearum s. str.都为15ADON类型,26个F. asiaticum菌株中22个为3ADON,1个为15ADON,3个为NIV类型;F. graminearum s. str.(15ADON)也存在致病力分化,强、中、弱致病力的菌株在河南省的比例约为2:2:1。  相似文献   

8.
董杰  张金良  杨建国  张昊  冯洁 《植物保护》2016,42(6):116-121
本文分析了北京市与河北省小麦赤霉病菌群体遗传结构以及基础生物学特性。结果表明所有菌株均为禾谷镰刀菌(Fusarium graminearum),属于一个大的单一群体,群体内具有较高的遗传多样性。毒素化学型测定表明,北京与河北地区小麦真菌毒素污染的主要风险为DON与15ADON毒素。表型测定显示,与F.asiaticum群体相比,F.graminearum具有较高的产孢能力,而生长速率和产毒能力较低。该群体对主要杀菌剂多菌灵、戊唑醇和氰烯菌酯均无抗药性。  相似文献   

9.
小麦赤霉病流行区镰刀菌致病种及毒素化学型分析   总被引:5,自引:0,他引:5  
 为从分子水平上明确小麦赤霉病流行区镰刀菌致病种及其B 型毒素化学型的分布特点,本研究对2008 年度采自四川、重庆、湖北、安徽、江苏、河南6 省33 县市的赤霉病穗上分离获得的433 个镰刀菌单孢菌株,用鉴定种和鉴定B 型毒素化学型的特异性引物进行了鉴定分析。致病种检测结果表明,四川病穗检测到Fusarium asiaticum、F. graminearum、F.avenaceum 和F. meridionale 4 个镰刀菌种,重庆、湖北、安徽和江苏病穗检测到F. asiaticum 和F. graminearum 2 个种,河南病穗仅检测到F. graminearum 1 个种。毒素化学型检测结果表明,Nivalenol(NIV)是四川和重庆镰刀菌主要毒素化学型,Deoxynivalenol(DON)是湖北、河南、安徽和江苏镰刀菌主要毒素化学型;将DON 化学型进一步划分为3-AcDON 和15-AcDON 显示,四川、湖北、江苏镰刀菌毒素以3-AcDON 为主,安徽镰刀菌毒素为3-AcDON 和15-AcDON 两者参半,河南镰刀菌全部产生15-AcDON。结果揭示,F. asiaticum 是四川、重庆、湖北和江苏等赤霉病流行麦区的优势致病种;镰刀菌产生的DON 和NIV 毒素化学型存在明显的地域分布,长江上游的麦区以NIV 为优势化学型,长江中下游麦区以DON 为优势化学型;镰刀菌致病种与DON 毒素的化学型间存在一定关系。  相似文献   

10.
由禾谷镰孢菌群Fusarium graminearum clade引起的赤霉病是小麦的重要病害。为明确山东省小麦赤霉病菌的种群组成及其致病力,于2011年和2012年从山东省15地市分离了95株小麦赤霉病菌,在形态和分子生物学鉴定种的基础上,采用鉴定B型毒素化学型的特异性引物进行毒素化学型分析。在95个菌株中,93株分离物为禾谷镰孢菌F.graminearum,2株为燕麦镰孢菌F.avenaceum。94株分离物为脱氧雪腐镰孢菌烯醇(deoxynivalenol,DON)化学型,1株为雪腐镰孢菌烯醇(nivalenol,NIV)化学型。在94株DON毒素化学型菌株中,90株为15-乙酰脱氧雪腐镰孢菌烯醇(15-acetyldeoxynivalenol,15-AcDON)化学型,4株为3-乙酰脱氧雪腐镰孢菌烯醇(3-acetyldeoxynivalenol,3-AcDON)化学型。在小麦扬花期,采用单花滴注接种法对29个菌株进行了致病力测定,供试菌株的致病力分化明显。表明在山东省冬小麦产区,产15-AcDON毒素的F.gra-minearum是小麦赤霉病菌的优势种群。  相似文献   

11.
Gale LR  Ward TJ  Balmas V  Kistler HC 《Phytopathology》2007,97(11):1434-1439
ABSTRACT A collection of 712 Fusarium graminearum sensu stricto (s.s.) strains, predominantly gathered between 1999 and 2000 from nine states within the United States, was examined for population structure and polymerase chain reaction-based trichothecene type. Most strains belonged to a cohesive genetic population characterized by a 15-acetyldeoxynivalenol (15ADON) trichothecene type. However, using a Bayesian model-based clustering method, we also identified genetically divergent groups of strains in some sampled locations of Minnesota and North Dakota. Strains of the major group of divergent populations were of a 3ADON trichothecene type and formed a distinct cluster with a collection of previously gathered strains from Italy, which displayed all three trichothecene types (15ADON, 3ADON, and nivalenol). The co-existence of genetically divergent populations of F. graminearum s.s. in the Upper Midwest allows for the rejection of the hypothesis that F. graminearum s.s. in the United States consists of a single population. These results also suggest that recombination has been insufficiently frequent in this homothallic (selfing) fungal species to homogenize the divergent populations observed in the Upper Midwest.  相似文献   

12.
Fusarium head blight (FHB) is one of the most important fungal diseases affecting wheat worldwide and it is caused mainly by species within the Fusarium graminearum species complex (FGSC). This study evaluated the presence of FGSC in durum wheat from the main growing area in Argentina and analyzed the trichothecene genotype and chemotype of the strains isolated. Also, the genetic variability of the strains was assayed using ISSR markers. Molecular analysis revealed that among the strains isolated and identified morphologically as F. graminearum, there were 14 strains identified as F. cerealis. Also, it revealed that durum wheat grains were mostly contaminated by F. graminearum, being this the only species reported so far, within the FGSC, affecting durum wheat in Argentina. Analysis of molecular variance (AMOVA) indicated a high genetic variability within rather than between F. graminearum populations. All F. graminearum strains presented 15ADON genotype and were able to produce DON while all F. cerealis strains presented the NIV genotype and most of them were able to produce this toxin. The finding of F. cerealis in durum wheat grains indicates the need for investigating if this fungus is the responsible for the NIV contamination found in wheat in Argentina.  相似文献   

13.
采用菌丝生长速率法,测定了2019—2021年采自河南省11个市的278株禾谷镰孢菌Fusarium graminearum对丙硫菌唑的敏感性。结果表明:供试278株禾谷镰孢菌对丙硫菌唑的敏感频率呈单峰且近似正态分布,各菌株EC50值的范围在0.609~3.868μg/mL之间,最大值为最小值的6.35倍,平均值为(1.741±0.690)μg/mL。此外,不同年份的禾谷镰孢菌对丙硫菌唑的敏感性水平无显著差别。2020年菌株最不敏感,平均EC50值为(1.894±0.652)μg/mL,2021年菌株最敏感,平均EC50值为(1.643±0.701)μg/mL。不同地区的禾谷镰孢菌对丙硫菌唑的敏感性水平有显著性差异。济源市的菌株最不敏感,平均EC50值为(2.175±0.632)μg/mL;开封市的菌株最敏感,平均EC50值为(1.137±0.419)μg/mL;焦作市菌株间敏感性差异最大,最大值为最小值的6.21倍,平均EC50值为(2.073±0.68...  相似文献   

14.
The main causative agents of Fusarium head blight in central Europe are Fusarium graminearum and F. culmorum. We examined the mycotoxin producing ability, aggressiveness and molecular variability of F. graminearum isolates. Altogether twenty-six Hungarian, three Austrian isolates and representatives of eight species identified in the F. graminearum species complex were involved in this study. Mycotoxin producing abilities of the isolates were tested by GC-MS and HPLC. The central European isolates were found to belong to chemotype I (producing deoxynivalenol). Most isolates produced more 15-acetyl-deoxynivalenol than 3-acetyl-deoxynivalenol suggesting that they belong to chemotype Ib. All F. graminearum isolates were found to be highly pathogenic in in vitro aggressiveness tests. Phylogenetic analysis of random amplified polymorphic DNA profiles, and restriction profiles of the intergenic spacer region of the ribosomal RNA gene cluster of the isolates allowed clustering of the central European isolates into 17 and 16 haplotypes, respectively. When RAPD and IGS-RFLP data were combined, almost every single central European F. graminearum isolate could be differentiated (27/29 haplotypes). Sequence analysis of a putative reductase gene of some isolates was also performed. Based on molecular data, the majority of the central European isolates belonged to F. graminearum sensu stricto characteristic to the northern hemisphere, with the exception of one Hungarian isolate, which was not related to any known species of the F. graminearum species complex based on sequence data. The taxonomic assignment of two other Hungarian isolates, previously suggested as belonging to F. boothii based on mitochondrial DNA restriction profiles, was supported by sequence analysis.  相似文献   

15.
 本研究对2015年收集的春玉米区玉米穗腐病样本的病原菌进行了分离鉴定。结果表明,禾谷镰孢复合种(Fusarium graminearum species complex)的总分离频率最高,为35.90%,为优势菌。进一步分析显示,山西、河北、吉林和黑龙江省以禾谷镰孢复合种为主,分离频率分别为81.25%、 75.00%、 44.00%和44.44%;内蒙古以拟轮枝镰孢菌(F. verticillioides)为主,分离频率为56.25%;辽宁省拟轮枝镰孢菌和哈茨木霉(Trichoderma harzianum)的分离频率分别为34.48%和31.03%;而在陕西省,禾谷镰孢复合种、拟轮枝镰孢菌和亚粘团镰孢菌(F. subglutinans)分离频率均为28.57%。以禾谷镰孢复合种的EF-1α基因序列为基础构建系统发生树,进一步对分离到的禾谷镰孢复合种进行亚种鉴定。结果表明,春玉米区禾谷镰孢复合种为禾谷镰孢菌和布氏镰孢菌,且以布氏镰孢菌为主。  相似文献   

16.
The incidence of pathogenic Fusarium and Microdochium species in stem bases of winter wheat was investigated in a total of nine crops in 3 years, i.e. 1987, 1988 and 1989. Four Fusarium species were isolated: F. nivale ( = Microdochium nivale ), F. avenaceum , F. culmorum and F. graminearum . The predominant species was F. nivale followed by F. avenaceum and F. culmorum . Isolations of F. graminearum were made only from shoots collected during August 1989. The highest incidence of F. nivale occurred during April 1989 in the cultivar Brock when the fungus was isolated from 65% of the shoots sampled. The highest incidence of F. avenaceum was 60% (August 1988, cv. Slejpner) and F. culmorum 37% (August 1989, cv. Mercia). A delay in the isolation of Fusarium spp. during 1987 was attributed to the low January temperatures, and an upsurge of F. culmorum and F. graminearum during 1989 to the warm dry summer. The incidence of F. nivale fluctuated during the 1988 and 1989 seasons, particularly during spring. The effects of fungicide spray programmes and the growth and development of the wheat crop are discussed as possible contributory factors to this.  相似文献   

17.
Fusarium crown rot of wheat has been spreading in the Huanghuai wheat-growing area in China since 2010, leading to a potential yield loss. To investigate the pathogens associated with this disease in Jiangsu and Shandong provinces in recent years, 617 Fusarium isolates were isolated from nine sites in these two provinces between 2014 and 2016. Of these isolates, 372 were identified as Fusarium pseudograminearum, and the remaining isolates were identified as F. asiaticum and F. graminearum, suggesting that F. pseudograminearum is becoming a predominant causative pathogen of crown rot of wheat in eastern China. Trichothecene gene detection and chemical analyses of trichothecenes indicated that the F. pseudograminearum isolates belonged to the 3-ADON or 15-ADON chemotype, and one isolate had the NIV genotype but produced no detectable NIV. 3-ADON isolates were predominant in Jiangsu, whereas 15-ADON isolates were prevalent in Shandong. The mating type of the F. pseudograminearum isolates were identified. MAT-1 and MAT-2 existed, but in most collections, particularly those in Jiangsu, the ratios of the two mating types deviated significantly from an expected 1:1 ratio. The reason for the occurrence of F. pseudograminearum is hypothesized, and the chemotype and mating type distribution of this species in these two provinces are analysed.  相似文献   

18.
A multiplex PCR assay was developed for simultaneous identification of the species and trichothecene chemotypes for Fusarium asiaticum and F. graminearum sensu stricto based on the genes related to trichothecene biosynthesis. PCR was carried out in a single reaction with three pairs of primers designed for the tri6 region and one pair of primers designed for tri3. We confirmed that the multiplex PCR was able to identify species and chemotypes for all tested strains of F. asiaticum and F. graminearum s. str. isolated in Japan. This technique would be a useful and rapid tool for diagnosis, epidemiology, and population structure studies of the F. graminearum complex in Japan.  相似文献   

19.
The presence of Fusarium spp. causing Fusarium head blight (FHB) of wheat was studied in Flanders (Belgium) in 2007 and 2008. Symptoms, deoxynivalenol content (DON), Fusarium spp. and trichothecene chemotypes were determined at seven locations on different commercial wheat varieties. Overall, significant differences in disease pressure between locations and varieties were observed within 1 year. In addition, we were able to detect consistent and significant resistance differences among the common varieties both under high disease pressure (2007) and low disease pressure (2008). The accumulation of DON was not related to the presence of F. graminearum but showed a clear correlation with rainfall during and after the period of anthesis. During the two-year survey, characterisation of 756 Fusarium samples by species-specific PCR designated F. poae and F. graminearum as the predominant species in Flanders. Furthermore, most of the ears were colonised by multiple FHB pathogens in 2007 whereas the Fusarium population was less complex in 2008. Log-linear analysis of these multiple (two- and three-way) species interactions revealed a clear correlation between F. poae and several pathogens of the FHB disease complex. Finally, chemotype analysis showed that F. culmorum and F. graminearum were respectively of the NIV chemotype and DON chemotype. 3-ADON and 15-ADON chemotypes occurred in more or less equal amounts within the F. graminearum population both in 2007 and 2008. The congruence of these results with observations throughout Europe are discussed.  相似文献   

20.
Fusarium graminearum is an important pathogen causing Fusarium head blight (FHB) on wheat and barley and Fusarium ear rot (FER) on maize, and harvested grains often are contaminated with trichothecenes such as deoxynivalenol (DON) and nivalenol (NIV) that are a major health and food safety concern due to their toxicity to humans and farm animals. In this study, species identity and trichothecene toxin potential of 294 members of the Fusarium graminearum species complex (FGSC) collected from wheat, barley and maize in France in 2011 was determined using a microsphere-based multilocus genotyping assay. F. graminearum was predominant on all three hosts, but three isolates of F. cortaderiae and two isolates representing F. graminearum × F. boothii hybrids were also identified from maize. The 15-ADON trichothecene chemotype predominated on all three hosts, representing 94.7 %, 87.8 % and 85.4 % of the strains on barley (N?=?19), wheat (N?=?90), and maize (N?=?185), respectively. However, the NIV chemotype was found in 12.2 % of the wheat isolates and in 14.6 % of the maize isolates. Only a single FGSC isolate from this study, originating from barley, was found to have the 3-ADON chemotype. Regional differences could be observed in the distribution of the 15-ADON and NIV chemotypes, with the NIV producing-isolates being present at higher frequency (21.2 %) in the South of France compared to the rest of the country (4.4 %). Such information is critical because of the increased concern associated with NIV contamination of cereals. In addition, these results are needed to develop management strategies for FHB and FER in France and to improve understanding of the distribution and significance of FGSC diversity in Europe and worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号