首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the mycelial reactions of 435 combinations of 14 Fusarium pseudograminearum and 15 F. graminearum isolates, it was demonstrated for the first time that mycelial reactions/barrage formation cannot be clearly used to distinguish F. graminearum and F. pseudograminearum. Mutually compatible isolates produced very different patterns of compatibility with other isolates. However, about 60% of pairings between F. graminearum and F. pseudograminearum isolates were compatible, indicating common ancestry. The Mantel tests used to determine any possible associations between mycelial compatibility reactions and AFLP genotypic diversity data revealed no association between the two systems in either species. In addition, no association was found between mycelial compatibility reactions and sexual reproduction in the two species. Implications of the higher frequency of mycelial compatibility reactions observed in F. pseudograminearum than in F. graminearum are discussed.  相似文献   

2.
Jo YK  Chang SW  Rees J  Jung G 《Phytopathology》2008,98(1):108-114
Nitrate-nonutilizing (nit) mutants were recovered for the first time from 21 isolates of Sclerotinia homoeocarpa collected in the United States. Mutants were selected from shredded mycelium of each isolate when cultured on water agar medium amended with 4% (wt/vol) potassium chlorate. The mutants could be classified into three phenotypes: nit1, nit3, and NitM, based on their growth on minimal medium (Czapek solution agar) supplemented with NaNO(2) or hypoxanthine. Complementary heterokaryons were observed in pairings between different phenotypes of nit mutants derived from compatible isolates, but not in self-fusions or pairings between incompatible isolates. The vigor of prototrophic growth varied with isolates and mutant phenotypes. Strong and continuous heterokaryons, as well as weak and spontaneous ones, formed depending on pairings of nit mutants. Stable heterokaryons between compatible isolates, but apoptotic reactions between incompatible isolates, were observed immediately after hyphal fusion under the epifluorescence microscope. The 21 isolates used in this study, which were previously assigned into 11 different vegetative compatibility groups (VCGs) based on the formation of a barrage zone at the contact site of paired isolates on complete medium (potato dextrose agar), were regrouped into five VCGs based on heterokaryon formation between nit mutants on minimal medium.  相似文献   

3.
Auxotrophic mutants were used to determine vegetative relatedness among isolates of Fusarium oxysporum f.sp. dianthi (F.o.d.) , the vascular wilt pathogen of carnation. At the first stage, different nitrate-non-utilizing (nit) mutants were produced from 11 isolates of F.o.d. collected in Israel. Complementation (heterokaryon) tests showed that all the isolates belonged to a single vegetative compatibility group (VCG), and two mutants were chosen as its testers. Additional isolates of Fusarium from carnation, collected during 1986-88, were analysed for pathogenicity and vegetative compatibility with the testers. A total of 170 Fusarium isolates, obtained from 42 cultivars at 40 sites, were tested. All the nit mutants of all the 132 pathogenic isolates formed heterokaryons with the testers, indicating that they belonged to the same VCG. None of the 38 non-pathogenic isolates was vegetatively compatible with the testers. The nit mutants retained pathogenicity to carnation. The F.o.d. testers were not compatible with testers of five other formae speciales of F. oxysporum. Thus, F.o.d. appears to constitute a distinct genetic population within the F. oxysporum complex.  相似文献   

4.
ABSTRACT A total of 106 isolates of Fusarium oxysporum obtained from diseased cucumber plants showing typical root and stem rot or Fusarium wilt symptoms were characterized by pathogenicity, vegetative compatibility, and random amplified polymorphic DNA (RAPD). Twelve isolates of other formae speciales and races of F. oxysporum from cucurbit hosts, three avirulent isolates of F. oxysporum, and four isolates of Fusarium spp. obtained from cucumber were included for comparison. Of the 106 isolates of F. oxysporum from cucumber, 68 were identified by pathogenicity as F. oxysporum f. sp. radicis-cucumerinum, 32 as F. oxysporum f. sp. cucumerinum, and 6 were avirulent on cucumber. Isolates of F. oxysporum f. sp. radicis-cucumerinum were vegetatively incompatible with F. oxysporum f. sp. cucumerinum and the other Fusarium isolates tested. A total of 60 isolates of F. oxysporum f. sp. radicis-cucumerinum was assigned to vegetative compatibility group (VCG) 0260 and 5 to VCG 0261, while 3 were vegetatively compatible with isolates in both VCGs 0260 and 0261 (bridging isolates). All 68 isolates of F. oxysporum f. sp. radicis-cucumerinum belonged to a single RAPD group. A total of 32 isolates of F. oxysporum f. sp. cucumerinum was assigned to eight different VCGs and two different RAPD groups, while 2 isolates were vegetatively self-incompatible. Pathogenicity, vegetative compatibility, and RAPD were effective in distinguishing isolates of F. oxysporum f. sp. radicis-cucumerinum from those of F. oxysporum f. sp. cucumerinum. Parsimony and bootstrap analysis of the RAPD data placed each of the two formae speciales into a different phylogenetic branch.  相似文献   

5.
ABSTRACT We developed a method for inducing sexual outcrosses in the homothallic Ascomycete fungus Gibberella zeae (anamorph: Fusarium graminearum). Strains were marked with different nitrate nonutilizing (nit) mutations, and vegetative compatibility groups served as additional markers in some crosses. Strains with complementary nit mutations were cocultured on carrot agar plates. Ascospores from individual perithecia were plated on a minimal medium (MM) containing nitrate as the sole nitrogen source. Crosses between different nit mutants segregated in expected ratios (3:1 nit(-):nit(+)) from heterozygous perithecia. Analysis of vegetative compatibility groups of progeny of two crosses indicated two and three vegetative incompatibility (vic) genes segregating, respectively. For rapid testing of sexual recombination between nit mutants, perithecia were inverted over MM to deposit actively discharged ascospores. Development of proto-trophic wild-type colonies was taken as evidence of sexual recombination. Strains of G. zeae group 2 from Japan, Nepal, and South Africa, and from Indiana, Kansas, and Ohio in the United States were sexually interfertile. Four group 1 strains were not interfertile among themselves or with seven group 2 strains. Attempts to cross G. zeae with representatives of F. acuminatum, F. avenaceum, F. culmorum, F. crookwellense, F. oxysporum, and three mating populations of G. fujikuroi were not successful.  相似文献   

6.
Chen Y  Wang JX  Zhou MG  Chen CJ  Yuan SK 《Phytopathology》2007,97(12):1584-1589
ABSTRACT Monoconidial isolates of 33 carbendazim-sensitive isolates and 31 carbendazim-resistant isolates of Fusarium graminearum were selected from three regions of China for vegetative compatibility group (VCG) analysis. A total of 213 and 224 nit mutants were recovered from the 33 sensitive and the 31 resistant isolates, respectively. Of all the nit mutants, the frequency of the different phenotypes was 44.6, 46.5, 5.7, and 3.2% for nit1, nit3, nitM, and nitA, respectively. VCG analysis identified 30 different VCGs among the 33 sensitive- and the 31 carbendazim-resistant isolates, with VCG diversity 0.91 and 0.97, respectively. Both, a carbendazim-sensitive and a -resistant isolate from the same field belonged to the same VCG. In all then, a total of 59 VCGs were identified among the 64 isolates with an overall VCG diversity 0.92. Direct hyphal fusion was observed in six pairs of vegetatively compatible complements, which is evidence of heterokaryon formation. It was hypothesized that carbendazim resistance could not be transferred by hyphal fusion or there is a small chance to be transferred between two compatible isolates. Three stable sexual recombinants of F. graminearum were randomly chosen from each of the three genetic crosses to study their biological properties. There were no significant differences in mycelial linear growth and pathogenicity between recombinants and their parents, but they differ in sporulation ability and capacity to produce perithecia. We concluded that sexual recombination presumably played a role in the development of carbendazim resistance under field conditions.  相似文献   

7.
The pathogenicity and vegetative compatibility of mainly Dutch isolates ofFusarium oxysporum collected from diseased gladioli and other Iridaceae were investigated. Based on their pathogenicity to two differential gladiolus cultivars, the isolates could tentatively be divided into two races. All self-compatible isolates ofFusarium oxysporum f.sp.gladioli belonged to one of three distinct vegetative compatibility groups, VCG 0340, 0341 or 0342, and were incompatible with isolates that were not pathogenic to gladiolus. Isolates of one of the two races were restricted to one VCG while isolates of the other race were present in all three VCGs.  相似文献   

8.
Seventy-nine single-spore isolates of Fusarium udum, the causal agent of wilt disease of pigeonpea, from Kenya, India and Malawi were characterized according to their cultural characteristics, pathogenicity and vegetative compatibility group (VCG). The isolates exhibited high variation in pathogenicity on a wilt-susceptible pigeonpea variety, and in mycelial growth and sporulation on potato dextrose agar medium. The 79 isolates were categorized into two virulence groups, two groups of radial mycelial growth and four groups of sporulation. Radial mycelial growth showed a moderate negative correlation (r = –0.40; P = 0.01) with sporulation. However, mycelial growth and sporulation had no correlation with virulence. Pairings between complementary nitrate non-utilizing (nit) mutants of F. udum generated on chlorate containing minimal medium revealed that all the isolates belonged to a single VCG (VCG 1) with two subgroups, VCG 1 I and VCG 1 II. Vegetative compatibility was independent of cultural characteristics and pathogenicity. This is the first report of vegetative compatibility in F. udum.  相似文献   

9.
镰刀菌对大蒜根系分泌物的敏感性与其致病力相关分析   总被引:2,自引:0,他引:2  
试验采用菌丝生长速率法测定了大蒜根系分泌物对3种供试植物病原镰刀菌的抑菌活性, 并进一步分析了18株从腐烂蒜瓣上分离的尖孢镰刀菌和12株从小麦赤霉病样分离的禾谷镰刀菌对大蒜根系分泌物的敏感性及致病力之间的关系。研究结果表明, 大蒜根系分泌物对供试镰刀菌均具有抑制活性, 但从腐烂蒜瓣上分离的尖孢镰刀菌对根系分泌物的敏感性低于其他菌株。致病力分析结果表明, 供试的18株尖孢镰刀菌均能使蒜瓣发病, 但致病力与其对根系分泌物的敏感性无明显相关性; 供试的禾谷镰刀菌中对根系分泌物不敏感的4株菌株能侵染蒜瓣, 但敏感性高的菌株不能侵染蒜瓣, 且根系分泌物对禾谷镰刀菌的抑制率与禾谷镰刀菌致病力之间呈显著的负相关。这表明大蒜根系分泌抑菌物质是根系抵御镰刀菌侵染的重要机制, 但一些菌株能对根系分泌物产生抗性, 从而侵染大蒜。综上所述, 大蒜根系分泌物对镰刀菌具有抑制活性, 可以利用大蒜和其他作物间作或轮作控制镰刀菌枯萎病的发生和蔓延, 但长期利用大蒜轮作或间作控制土传病害可能面临镰刀菌对大蒜根系分泌物产生抗性, 导致防效降低的风险。  相似文献   

10.
Fusarium wilt and crown rot of sweet basil, caused by Fusarium oxysporum f.sp. basilici (F.o.ba.), is widespread in Israel. Affected plants show a variety of symptoms, including vascular wilt as well as crown rot, and masses of macroconidia on stem surfaces. We used vegetative compatibility to determine whether F.o.ba. isolates associated with various symptoms and sources are genetically related. All 119 isolates previously described as F.o.ba., and 42 additional F. oxysporum isolates which had not been tested for pathogenicity, belonged to a single vegetative compatibility group (VCG). The various symptoms are therefore induced by a single pathogenic form which appears to be a specific clone of F. oxysporum. The isolates of F.o.ba. from Israel were vegetatively compatible with eight isolates of F.o.ba. from Italy and the USA, but not with nonpathogenic isolates of F. oxysporum from basil, or with F.o. lycopersici or F.o. radicis-lycopersici from tomato. We conclude that the population of F.o.ba. in Israel belongs to the common VCG of this pathogen described in the USA, and which includes American and Italian isolates.  相似文献   

11.
PIRA-PCR ( p rimer- i ntroduced r estriction a nalysis PCR) was developed to detect isolates of Fusarium graminearum with moderate resistance to carbendazim, a methyl benzimidazole carbamate (MBC)-group fungicide. Two primer pairs were designed and synthesized according to the nucleotide sequence of the β 2-tubulin gene from F. graminearum. Fragments of 164 bp were amplified by nested PCR from isolates differing in carbendazim sensitivity. A Hin dIII restriction enzyme recognition site was introduced artificially by inner primers to detect a mutation at codon 167, and Taa I ( Tsp 4CI) restriction enzyme was used to detect a mutation at codon 200. The sensitivity of isolates to carbendazim was determined by analyzing electrophoresis patterns of the resulting PCR products after simultaneous digestion with both Hin dIII and Taa I. Results from PIRA-PCR and a conventional method (mycelial growth on agar) were identical but PIRA-PCR required only 7–8 h while the conventional method required 5–7 days. This study demonstrates that PIRA-PCR not only monitors the appearance of moderately resistant isolates, but can be useful for detecting genotypes of F. graminearum with moderate resistance to carbendazim.  相似文献   

12.
为明确不同发育阶段小麦赤霉病菌对甾醇生物合成抑制剂类(SBIs)杀菌剂的敏感性差异及杀菌剂的作用方式,对4种SBIs类杀菌剂进行了室内毒力测定及田间药效试验。室内毒力测定结果表明:不同发育阶段小麦赤霉病菌对4种SBIs类药剂的敏感性存在较大差异,其敏感性由高到低依次为菌丝生长阶段和产孢阶段芽管伸长阶段孢子萌发阶段;其中,戊唑醇对菌丝生长、产孢、芽管伸长和孢子萌发阶段的EC50值分别为0.686、0.191、3.532和3.825μg/m L,咪鲜胺分别为0.063、0.305、0.827和36.581μg/m L,苯醚甲环唑分别为0.873、3.659、5.687和79.465μg/m L,烯唑醇分别为1.961、33.658、41.881和54.986μg/m L。显微观察4种SBIs类杀菌剂对小麦赤霉病菌菌丝生长和孢子萌发形态的影响,发现杀菌剂处理后菌丝末端分枝增多,新生菌丝伸长受阻,菌丝体局部膨大,有时可见菌丝及芽管的消解。田间试验结果表明:用量为有效成分100 g/hm2的戊唑醇、200 g/hm2的咪鲜胺和200 g/hm2的苯醚甲环唑对小麦赤霉病的保护效果为77.15%~79.26%,治疗效果为70.64%~72.77%,于发病前后使用均可有效防治该病害。  相似文献   

13.
Malformation is a destructive disease of mango, Mangifera indica . Its causal agent possesses the morphological features of Fusarium subglutinans , a species whose taxonomy and nomenclature has recently been in a state of flux. Genetic diversity was examined among 74 F. subglutinans -like isolates from malformed mango in Brazil, Egypt, Florida (USA), India, Israel and South Africa. With nitrate-nonutilizing ( nit ) auxotrophic mutants, seven vegetative compatibility groups (VCGs) were identified. Three of the VCGs were found in a single country, and VCG diversity was greatest in Egypt and the USA where, respectively, four and three different VCGs were found. RAPD profiles generated with arbitrary decamer primers were variable among isolates in different VCGs, but were generally uniform for isolates within a VCG. In PCR assays, a 20-mer primer pair that was developed previously to identify F. subglutinans from maize (mating population [MP]-E of the Gibberella fujikuroi complex) also amplified a specific 448 bp fragment for isolates of F. sacchari from sugarcane (MP-B) and what was probably F. circinatum (pine, MP-H). With the exception of three isolates from Brazil, it did not amplify the fragment from F. subglutinans -like isolates from mango. A second pair of 20-mer primers was developed from a unique fragment in the RAPD assays. It amplified a specific 608 bp fragment for 51 of 54 isolates from mango (all but the three Brazilian isolates). It also amplified a smaller, 550 bp fragment from isolates of F. nygamai (MP-G), but did not amplify DNA of isolates of any other taxon of Fusarium that was tested.  相似文献   

14.
Cai G  Schneider RW 《Phytopathology》2005,95(3):257-261
ABSTRACT Nitrogen nonutilizing (Nit) mutants were used to assess vegetative compatibility of 58 isolates of Cercospora kikuchii, 55 of which were isolated from soybean plants in Louisiana. Two isolates were vegetatively self-incompatible. Of 56 self-compatible isolates, 16 were assigned to six multimember vegetative compatibility groups (VCGs), 01 to 06, with 2 or 3 isolates in each VCG. The other 40 isolates each belonged to a distinct VCG. All six multimember VCGs contained isolates from different soy bean cultivars, and three included isolates from different locations. Only one of six multimember VCGs included isolates both from soybean leaves and seed, while the other five included isolates from only leaves or seed. The likelihood of tissue specificity or preference was discussed. All isolates and tested Nit mutants produced cercosporin on potato dextrose agar under light. Significantly different amounts of cercosporin were produced among wild-type isolates, and two Nit mutants produced significantly more cercosporin than their wild-type counterparts. All isolates produced typical Cercospora leaf blight symptoms on soybean plants in greenhouse pathogenicity tests.  相似文献   

15.
Twenty-one strains of Botrytis cinerea isolated from six plant species on ten sites throughout Israel, as well as a strain from France, were tested for vegetative and mycelial incompatibility, pathogenicity, resistance to the fungicides carbendazim and iprodione, and colony morphology. Selenate-resistant mutants were isolated from the strains as spontaneous, fast-growing sectors arising from restricted colonies on medium amended with sodium selenate with a mean frequency of 0.04 sectors/colony; 81% of the sectors were sulphate non-utilizing (sul) mutants. One hundred and four sul mutants were divided into two complementary groups: resistant (66 mutants) and sensitive to chromate. Based on compatibility reactions between chromate-resistant and chromate-sensitive sul mutants, 12 strains were compatible only with themselves and were each classified as belonging to different vegetative compatibility groups (VCGs). Nine strains were each compatible with one to three other strains, and were assembled into three multi-member VCGs. Mycelial incompatibility between wild-type strains (barrage), in the form of a zone of dark pigmentation or sparse mycelium with or without dark pigmentation of the agar along the line of confrontation, was observed for 70% of the inter-strain pairings. There was no correspondence in compatibility between strains revealed by two approaches: strains in different VCGs did not necessarily produce a barrage. However, self-compatibility was observed both as heterokaryon formation between complementary sul mutants and as an absence of barrages between mycelia of wild-type strains; wild-type strains belonging to the same VCG did not exhibit strong barrages, although weak antagonistic reactions were observed. Strains in two multi-member VCGs showed the same patterns of resistance to carbendazim and iprodione; the third multi-member VCG contained isolates with different patterns of resistance. Four morphological types were revealed among wild-type strains: conidial (five strains), sclerotial (six strains), intermediate (ten strains), and mycelial (one strain). On bean leaves, conidial strains were more aggressive than sclerotial strains.  相似文献   

16.
Isolates of Fusarium oxysporum f.sp. gladioli were collected from widely different geographic areas. These isolates were characterized by pathogenicity to two differential gladiolus cultivars, vegetative compatibility, and total genomic DNA restriction fragment length polymorphisms (RFLPs). RFLPs were used to estimate the genetic divergence and relationship among isolates of F. oxysporum. RFLPs were detected by Southern blot hybridization of total genomic DNA with a 3-4 kb DNA probe generated from total DNA off. oxysporum f.sp. dianthi. Cluster analysis allowed the division of pathogenic strains into three main RFLP groups, each group containing strains with similarity coefficients ranging from 78 to 100%. RFLP groups correlated with vegetative compatibility groups, not with races. Two single pathogenic isolates which could not be assigned to any of the three main vegetative compatibility groups also had distinctive RFLP patterns. Little genetic polymorphism was observed within vegetative compatibility groups, whereas the majority of RFLPs occurred between vegetative compatibility groups, suggesting a common ancestry for strains within a specific vegetative compatibility group and a polyphyletic origin for the present special form gladioli.  相似文献   

17.
Isolates of Fusarium oxysporum from lily were screened for pathogenicity, vegetative compatibility and DNA restriction fragment length polymorphisms, and compared to reference isolates of F. oxysporum f.sp. gladioli and F. oxysporum f.sp. tulipae to justify the distinction of F. oxysporum f.sp. lilii. Twenty-four isolates from different locations in The Netherlands (18 isolates), Italy (4 isolates), Poland and the United States (1 isolate each) shared unique RFLP patterns with probes D4 and pFOM7, while hybridization did not occur with a third probe (F9). Except for a self-incompatible isolate, these 24 isolates all belonged to a single vegetative compatibility group (VCG 0190). Isolates belonging to VCG 0190 were highly pathogenic to lily, but not to gladiolus or tulip, except for a single nonpathogenic isolate. Six saprophytic isolates of F. oxysporum from lily were nonpathogenic or only slightly aggressive to lily, gladiolus and tulip, belonged to unique VCGs and had distinct RFLP patterns. Three pathogenic isolates previously considered to belong to F. oxysporum f.sp. lilii were identified as F. proliferatum var. minus; all three belonged to the same VCG and shared unique RFLP patterns. These three isolates were moderately pathogenic to lily and nonpathogenic to gladiolus and tulip. The reference isolates of F. oxysporum f.sp. tulipae were pathogenic to tulip, but not to lily and gladiolus; they shared a distinct RFLP pattern, different from those encountered among pathogenic and saprophytic isolates from lily, and formed a separate new VCG (VCG 0230). Reference isolates of F. oxysporum f.sp. gladioli belonging to VCG 0340 proved pathogenic to both gladiolus and lily, but not to tulip. These isolates, as well as isolates belonging to VCGs 0341, 0342 and 0343 of F. oxysporum f.sp. gladioli, had RFLP patterns different from those encountered among the isolates from lily or tulip. These findings identify F. oxysporum f.sp. lilii as a single clonal lineage, distinct from F. oxysporum f.sp. gladioli and f.sp. tulipae.  相似文献   

18.
One hundred and sixteen isolates of Fusarium oxysporum f. sp. lactucae obtained from 85 fields in three crisphead lettuce-producing areas in Nagano Prefecture, Japan were typed for races using differential cultivars Patriot, Banchu Red Fire and Costa Rica No. 4. They were also grouped into vegetative compatibility groups (VCGs) using complementation tests with nitrate non-utilizing (nit) mutants. Two California strains reported as F. oxysporum f. sp. lactucum, a type culture of F. oxysporum f. sp. lactucae, and 28 avirulent isolates of F. oxysporum obtained from crisphead lettuce were included for comparison. Among Nagano isolates, 66 isolates were identified as race 1, and 50 as race 2. Race 1 strains derived from Shiojiri and Komoro cities and race 2 from Kawakami village and Komoro city. All isolates of race 2 were biotin auxotrophs, and the race could be distinguished based on its requirement for biotin on minimal nitrate agar medium (MM). Pathogenic isolates were classified into two VCGs and three heterokaryon self-incompatible isolates. Strong correlations were found between race and VCG. All the race 1 strains were assigned to VCG 1 except self-incompatible isolates, and all the race 2 strains to VCG 2. The 28 avirulent isolates of F. oxysporum were incompatible with VCG 1 and VCG 2. California strains was vegetatively compatible with VCG 1, and they were assigned to race 1. Based on vegetative compatibility, these two races of F. oxysporum f. sp. lactucae may be genetically distinct, and F. oxysporum f. sp. lactucae race 1 is identical to F. oxysporum f. sp. lactucum. Received 7 May 2002/ Accepted in revised form 6 September 2002  相似文献   

19.
A large number of Fusarium graminearum and F. asiaticum isolates were collected from wheat spikes from all regions in China with a history of fusarium head blight (FHB) epidemics. Isolates were analysed to investigate their genetic diversity and geographic distribution. Sequence characterized amplified region (SCAR) analyses of 437 isolates resolved both species, with 21% being F. graminearum (SCAR type 1) and 79% being F. asiaticum (SCAR type 5). AFLP profiles clearly resolved two groups, A and B, that were completely congruent with both species. However, more diversity was detected by AFLP, revealing several subgroups within each group. In many cases, even for isolates from the same district, AFLP haplotypes differed markedly. Phylogenetic analyses of multilocus DNA sequence data indicated that all isolates of SCAR type 1, AFLP group A were F. graminearum , whilst isolates of SCAR type 5, AFLP group B were F. asiaticum , demonstrating that it is an efficient method for differentiating these two species. Both species seem to have different geographic distributions within China. Fusarium graminearum was mainly obtained from wheat growing in the cooler regions where the annual average temperature was 15°C or lower. In contrast, the vast majority of F. asiaticum isolates were collected from wheat growing in the warmer regions where the annual average temperature is above 15°C and where FHB epidemics occur most frequently. This is the first report of the distribution of, and genetic diversity within, F. graminearum and F. asiaticum on wheat spikes throughout China.  相似文献   

20.
Vegetative compatibility of strains of Diaporthe ambigua has not previously been examined. Single ascospore and single ascus strains, originating from individual apple, pear and plum rootstocks, were paired on freshly prepared oatmeal agar to determine if vegetative incompatibility could be detected in D. ambigua . Barrage reactions were evident as black lines along the zone of mycelial contact between expanding colonies (vegetative incompatibility reaction). Strains from cankers within an area were of numerous vegetative compatibility groups (VCGs). Strains from adjacent rootstocks usually differed in VCG. D. ambigua has the ability to outcross, and does so, despite its apparent homothallic nature. DsRNA-containing strains of D. ambigua developed a broad, clear zone when paired with a dsRNA-containing strain from a different VCG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号