首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT We have developed conditions which promote the dimorphic transition of haploid cells of Ustilago maydis in vitro by controlling the pH of the media. At low pH (below 5.0) mycelial growth occurs, whereas at neutral pH yeastlike growth takes place. We screened for mutants unable to form mycelium at low pH and obtained 26 mutants. These mutants have been characterized by their cell and colony morphology in different media. Mutations in 18 strains were found to be recessive when these strains were crossed with the wild type. Other crosses indicated that they were affected in genes other than a and b. Crosses between mutants suggest that the mutations fall in at least two complementation groups. In addition, mutants were characterized by their pathogenicity to corn seedlings. Mutations which were recessive for pathogenicity were also recessive for morphogenesis in vitro.  相似文献   

2.
Triarimol (2 μg/ml) strongly inhibited multiplication of Ustilago maydis sporidia after one doubling, but growth continued and sporidia became abnormally large, branched and multicellular. Oxidation of glucose or acetate was not affected, and only slight limitations occurred in DNA, RNA and protein syntheses. The toxicant did not inhibit triglyceride synthesis but markedly increased the quantity and altered the quality of free fatty acids. Incorporation of [14C]acetate into ergosterol and an unidentified sterol was inhibited more than 90%, but incorporation into two other unidentified sterols was almost unaffected. Inhibition in the sterol biosynthetic pathway at a point preceeding ergosterol is regarded as a primary site of triarimol action in U. maydis.  相似文献   

3.
Fenpropimorph-resistant mutants of Ustilago maydis were obtained at high frequency (30 × 10−6) after UV-irradiation followed by selection on media containing fenpropimorph (50 μ g mL−1). Genetic analysis of 30 such mutants resulted in the identification of two unlinked chromosomal loci, the U/fpm -1 locus with two allelic genes ( U/fpm- 1A and U/fpm -1B) and the U/fpm -2 locus. The mutant genes U/fpm- 1A and U/fpm -2 are responsible for high resistance levels (Rf: 75–100 or 257–286 based on MICs or ED50s, respectively), while the U/fpm -1B mutation gives only a small reduction (approximately 7–10-fold) in fenpropimorph sensitivity. Cross-resistance studies with other SBIs showed that the major gene ( U/fpm- 1A and U/fpm -2) mutants were cross-resistant to the related compound fenpropidin (Rf: 15–20 or 53–66 based on MICs or ED50s values, respectively) and to tridemorph (Rf: 5 or 7.1–9.5 based on MICs or ED50s values, respectively), but not to the inhibitors of steps of ergosterol biosynthesis preceding the Δ14-reductase. The minor gene ( U/fpm -1B) mutants also had low-level resistance (approximately 5-fold) to tridemorph and to fenpropidin, but in contrast with the major gene mutants they were 2–10 times more sensitive to the triazoles studied (triadimefon, triadimenol, propiconazole and flusilazole) and to the pyridine, pyrifenox.
Studies of the fitness of U. maydis mutants showed that in major gene mutants, resistance was not associated with changes in growth rate in liquid culture or pathogenicity on young maize plants. The minor gene mutation reduced significantly the growth rate in liquid culture and the pathogenicity, either in homozygous or heterozygous condition in dikaryotic mycelium.  相似文献   

4.
Zambino P  Groth JV  Lukens L  Garton JR  May G 《Phytopathology》1997,87(12):1233-1239
ABSTRACT Population level diversity at the Ustilago maydis b mating type locus was determined in samples from four Minnesota locations using a combination of plate mating techniques and a polymerase chain reaction (PCR)-based assay. The PCR method allows rapid identification of b types from samples of natural populations and utilizes the hypervariable regions of the b locus that determine mating type specificity. Results demonstrated high levels of b diversity within populations, with one population yielding 17 of the total 18 b types found in the study. Pairwise G(ST) values were in the range of 0.02 to 0.05, and common b mating types were found across broad geographic distances. These data demonstrated that very low levels of differentiation among U. maydis populations occur with respect to b locus variation. Consistent with frequency-dependent selection models, b types were represented at approximately equal frequencies within the entire Minnesota population. However, neutral evolutionary models for patterns of geographic distribution and variation at b cannot be entirely excluded. The importance to agricultural practices of understanding population genetic processes is discussed.  相似文献   

5.
Pyrifenox, a new pyridine derivative, proved to be an inhibitor of ergosterol biosynthesis, blocking the pathway at the C-14 demethylation step in Ustilago maydis (CD.) Cor da. In treated sporidia the incorporation of [1-14C]acetic acid into ergosterol and squalene was reduced and the incorporation into sterols which retain the C-14 methyl group, mainly 24-methylenedihydrolanosterol and obtusifoliol, was increased. In addition, treatment with pyrifenox markedly reduced the incorporation into sterol esters. It is possible that the methylated sterols may be unsuitable substrates for the esterification enzyme.  相似文献   

6.
A small percentage of mutants of Ustilago maydis, selected on medium containing 40 μM carboxin, are distinctly more resistant than the mutants previously described, with an ED50 at least 100 times higher than that of wild type strains. Nine mutants of this category were studied. Crosses involving any one of these mutants gave Mendelian ratios in all cases and no transgressive segregation for level of tolerance was observed. All nine mutants were found to carry a mutation at the locus previously designated as oxr-1. In all cases carboxin resistance in vivo could be related to the resistance of the succinic dehydrogenase system in mitochondrial preparations and no other mechanism of resistance has been recognized. It appears that two allelic mutant genes at the oxr-1 locus code for two altered types of the succinic dehydrogenase complex distinguished by the level of carboxin tolerance.  相似文献   

7.
The formation of diploids of Ustilago maydis on agar medium   总被引:4,自引:0,他引:4  
J E Puhalla 《Phytopathology》1969,59(11):1771-1772
  相似文献   

8.
9.
 本文根据玉蜀黍黑粉菌(Ustilago maydis )的UmPep1、UmPit2和UmSee1基因各设计4套环介导等温扩增(LAMP)引物,从中筛选出1套引物对LAMP反应体系进行3因素(Bst DNA聚合酶浓度、Mg2+浓度、内外引物浓度比)3水平的优化试验。并对优化的U. maydis LAMP反应体系进行特异性、灵敏度及田间检测可行性试验。特异性试验表明,该方法能特异性检测U. maydis,而与其他病原菌的DNA没有交叉反应;灵敏度试验表明,该反应体系的最低检出限为44 fg·μL-1 pEasy-Pep质粒DNA,制作的标准曲线可对U. maydis进行定量分析。该方法也适用于在U. maydis侵染前或侵染早期对田间样品进行检测,对现场采集的172份田间样品进行检测,其中140个样品显示为阳性。本研究所建立的LAMP体系具有特异性好、灵敏度高、重复性好的特点,并能在45 min内完成对田间样品的检测,是快速、定量检测U. maydis的有效手段。  相似文献   

10.
Mutants of Ustilago maydis resistant to the piperidine fungicide piperalin were isolated in a mutation frequency of 2.4 × 10–5 after UV-irradiation and selection on media containing 50gml–1 piperalin. Genetic analysis with 15 such mutant isolates resulted in the identifications of two unlinked chromosomal loci, the U/ppl-1 locus with two allelic genes (U/ppl-1A and U/ppl-1B) and the U/ppl-2 locus. The U/ppl-2 and U/ppl-1A mutations are responsible for two levels of moderate and high resistance to piperalin (resistance factor, Rf: 54 and 135, respectively, based on effective concentration causing a 50% reduction in the growth rate, EC50), while the U/ppl-1B mutation gives only a small reduction (approximately 8-fold) in piperalin sensitivity. Cross-resistance studies with other SBIs shows that the major gene (U/ppl-2 and U/ppl-1A) mutants are resistant to fenpropidin (Rf: 43 and 68), fenpropimorph (Rf: 261 and 283) and tridemorph (Rf: 9 and 10), but not to the inhibitors of C-14 demethylase (DMIs) and squalene epoxidase. The minor gene mutation U/ppl-1B codes a low-level of resistance (approximately 5—12-fold) to the above morpholine-type fungicides, but in contrast with the major gene mutations it increases 2–10 times the sensitivity to triazoles: triadimefon, triadimenol, propiconazole and flusilazole. Crosses between mutants carrying the U/ppl-genes with compatible isolates carrying the U/fpd, U/fpm or U/tdm mutations, which have been identified in previous genetic works for resistance to morpholine-type fungicides, yielded, with the exception of U/ppl-2 ×U/fpm-2 cross, a large number of recombinants with wild-type sensitivity, indicating that the mutant genes involved in these crosses, were not allelic. An additive gene effect was observed only between nonallelic minor genes U/ppl-1B and U/fpm-1B or U/tdm-1,2. Studies of the fitness of piperalin-resistant isolates showed that the reduced sensitivity of major gene mutants was not associated with changes on the phytopathogenic fitness determining characteristics, such as growth in liquid culture and pathogenicity on young corn plants. Conversely, the minor gene mutation U/ppl-1B appeared to be pleiotropic, having significantly adverse effects on the phytopathogenic fitness.  相似文献   

11.
Resistance to azole fungicides in Ustilago maydis (DC) Corda has been examined using the mutant erg 40, a newly isolated mutant TriR-1 and erg 40 revertants. Azole-induced growth arrest of the wild type did not support an obvious role for 3,6-diol in the mode of action has is clear for Saccharomyces cerevisiae Meyer ex Hansen. The level of microsomal P450 of erg 40 was identical to that of the parent, and reversion analysis showed no evidence of mutation in the sterol Δ5(6) desaturase, as would be expected for a S. cerevisiae mutant accumulating 14α-methylfecosterol. Resistance appeared to be due to a single mutation in P450 14αdm. It is proposed that the orthologous forms of fungal sterol Δ5(6) desaturases have varied responses when attempting to utilise 14α-methylated substrates.  相似文献   

12.
Mutants of Ustilago maydis (DC) Corda with high resistance to azoxystrobin (RF 164 to 4714, based on EC50 values), an inhibitor of mitochondrial electron transport at the cytochrome bc1 complex, were isolated in a mutation frequency of 2.3 x 10(-7) after nitrosoguanidine mutagenesis and selection on media containing 1 microgram ml-1 azoxystrobin in addition to 0.5 mM salicylhydroxamate (SHAM), a specific inhibitor of cyanide-resistant (alternative) respiration. Oxygen uptake in whole cells was strongly inhibited in the wild-type strains by azoxystrobin (1.5 micrograms ml-1) in addition to SHAM (1 mM), but not in the mutant isolates. Genetic analysis with nine such mutant isolates resulted in progeny phenotypes which did not follow Mendelian segregation, but satisfied the criteria of non-Mendelian (cytoplasmic) heredity. In crosses between three mutant isolates with the compatible wild-type strains, the sensitivity was inherited by progeny maternally from the wild-type parent strain (criterion of uniparental inheritance). In crosses between wild-type strains and remaining mutant isolates, a continuous distribution of sensitivity in the progeny was found (criterion of vegetative segregation). The third criterion of cytoplasmic resistance (criterion of intracellular selection) was fulfilled by experiments on the stability of resistance phenotypes. With two exceptions, a reduction of resistance was observed in the mutant strains when they were grown on inhibitor-free medium. Recovery of the high resistance level was observed after they were returned to the selection medium. Cross-resistance studies with other fungicides, which also inhibit electron transport through complex III of respiratory chain, showed that mutations for resistance to azoxystrobin were also responsible for reduced sensitivity to kresoxim-methyl (RF 18 to 1199) and to antimycin-A (RF 20 to 305), which act at the Qo and Qi sites of the cytochrome bc1 complex, respectively. Studies of the fitness of azoxystrobin-resistant isolates showed that these mutations appeared to be pleiotropic, having significant adverse effects on growth in liquid culture and pathogenicity on young corn plants.  相似文献   

13.
14.
Phytohormones derived from fungi play a key role in regulating plant–pathogen interactions; however, deciphering the separate contributions of pathogen and plant during infection has been difficult. Here, the Ustilago maydis–Zea mays pathosystem was used to investigate this chemical exchange. Ustilago maydis, the causative agent of maize smut, produces cytokinins (CK), which are a group of phytohormones responsible for directing plant development. The characteristic symptom of smut disease is the formation of tumours composed of plant and fungal tissue. Isopentenyltransferase (IPT) catalyses the rate‐limiting step in CK biosynthesis, and U. maydis strains in which the sole tRNA‐ipt gene was deleted no longer produced CKs. These deletion strains elicited fewer, smaller tumours than the pathogenic strain SG200. High performance liquid chromatography‐electrospray ionization tandem mass spectrometry (HPLC‐ESI MS/MS) was used to detect and quantify phytohormone levels in infected tissue. This revealed that key hormone changes in SG200 infections were not present in infections by deletion strains, suggesting that CK production by U. maydis is required for the altered phytohormone profile in infected tissue relative to uninfected tissue. Separate analyses indicated that U. maydis tRNA‐ipt mutants might be altered in their ability to metabolize CKs taken up from the environment. Mining the U. maydis genome identified genes encoding putative CK signalling and biosynthesis proteins.  相似文献   

15.
Resistance to a number of inhibitors of sterol C-14 demethylation, (clotrimazole, imazalil, miconazole, fenarimol, nuarimol and triadimefon), as well as resistance to inhibitors of sterol C-14(15) double bond reduction, (tridemorph and fenpropi-morph), was readily induced in Ustilago maydis. Resistant mutants were obtained after mutagenic treatment by ultraviolet irradiation, or by treatment with 1-methyl-3-nitro-1-nitrosoguanidine, of sporidia of the wild-type strain, followed by selection in the presence of the toxicant. The level of resistance of these mutants varied appreciably. Although not always reciprocal, cross-resistance to fungicides which inhibit ergosterol biosynthesis (EBIs) appeared to be present in most cases. Several of the U. maydis mutants which were resistant to inhibitors of sterol C-14 demethylation lacked cross-resistance to tridemorph and fenpropimorph, or displayed increased sensitivity to fenpropimorph (negatively correlated cross-resistance). Cross-resistance between EBIs and the antimicrobial agents climbazole and lombazole was also established. It is suggested that fungal mutants that possess a resistance mechanism based on a deficiency in sterol C-14 demethylation or sterol C-14(15) double bond reduction, have a greatly reduced chance of survival.  相似文献   

16.
The systemic fungicide, carboxin (5,6-dihydro-2-methyl-1,4-oxathiin-3-carboxanilide) and a variety of carboxamide compounds exhibit a marked specificity for Basidiomycete fungi. This unique specificity resides in the mitochondrial succinic dehydrogenase complex (SDC) of sensitive Basidiomycetes such as Ustilago maydis, the corn smut fungus. The present study examines in detail the structure-activity relationships of 93 carboxamide compounds and the SDC of two carboxin-sensitive organisms, U. maydis and a Basidiomycetous yeast, Cryptococcus laurentii. It has been possible to elucidate substantially the requirement in molecular structure needed for inhibition of the mitochondrial SDC. With few exceptions, a good correlation exists between the inhibitory activity of carboxamides towards the SDC of U. maydis and C. laurentii and the inhibition of growth of carboxamide-sensitive fungi, both in vitro and in vivo on the diseased plant. The structure-activity results were used as a basis for the synthesis of new, fungicidally-active carboxamides. The compounds found to be most active against the mycelial growth of Rhizoctonia solani were also tested on spore germination or mycelial growth of non-Basidiomycete fungi. Three carboxanilides (3-methyl-thiophene-2-carboxanilide, 3′-methyl-2-methylbenzanilide and 3′-methyl-2-ethylbenzanilide) had a fungitoxic spectrum which extended beyond Basidiomycetes. The spectrum of fungicidal activity of carboxanilides appears to be altered not only by substitution in the aniline ring, but by the nature of the ring attached to the carbonyl. No correlation was found between the inhibitory activity of oxathiins and benzanilides and their calculated partition coefficients.  相似文献   

17.
Imazalil and fenpropimorph caused morphological changes in sporidia of Ustilago maydis and in germinating conidia of Penicillium italicum, as observed by fluorescence microscopy using an optical brightener. Sporidia of U. maydis appeared swollen, distorted, multicellular and, sometimes, branched; conidia of P. italicum swelled in size, and extension of the germ tubes was strongly inhibited. Mycelium of P. italicum, treated with fenpropimorph, showed much enlarged hyphal diameters and relatively short distances between septa. Imazalil and fenpropimorph also caused an irregular deposition of β–1,3 and β-1,4 polysaccharides, probably chitin, in U. maydis and P. italicum. The latter phenomenon is discussed in relation to the following observed effects of fungicides that inhibit ergosterol biosynthesis: differences in effect on the morphology of budding and filamentous fungi; preferential inhibition of yeast-hypha conversion in dimorphic fungi; disorganisation of septum formation in budding fungi; and inhibition of spheroplast formation from budding fungi.  相似文献   

18.
A procedure for the isolation of microsomes containing cytochrome-P450 isozymes from Ustilago maydis is described. Yields of P450 amount to approximately 19(±+ 6) pmol mg?1 of microsomal protein. The wavelength of maximum absorbance of the reduced carbon monoxide difference spectrum is 448-449 nm. The azole fungicides prochloraz, etaconazole, imazalil, triadimefon and 3-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl)-4(3H)-quinazoline, which differ markedly in toxicity to U. maydis, all induce type II binding difference spectra at extremely low concentrations (10?9-10?8 M). The DMI concentrations which cause half saturation of type II binding difference spectra (IC50) do not correlate with the fungicidal activities of the azoles. Binding of carbon monoxide to ferrous cytochrome-P450 was only slightly inhibited to different degrees by the DMIs tested. However, the inhibition of carbon monoxide binding also does not correlate with fungitoxicity of the DMIs. The results in this paper suggest that the spectrophotometric studies with this preparation are not useful for evaluating selective toxicity of DMIs to intact sporidia of U. maydis.  相似文献   

19.
The strains of Botrytis cinerea or Ustilago maydis selected on fenarimol, triarimol, or triadimefon were also resistant to the other inhibitors of sterol C-14 demethylation; the sterol composition of the strains was normal. Among the isolates of U. maydis resistant to dodemorph, fenpropidin, fenpropimorph and tridemorph, some were resistant to the 15-azasteroid A 25822B and did not contain ergosterol. The other strains remained sensitive to A 25822B and had a normal sterol composition. All the resistant isolates and the wild-type were inhibited to the same extent by nystatin and pimaricin.  相似文献   

20.
Two spontaneous triadimefon-resistant mutants of Ustilago maydis, 151ar/1 and 151ar/3, were investigated with regard to their extent of cross-resistance and their sterol composition to elicit indications about the specificity of the present resistance mechanisms. Testing resistance to various sterol biosynthesis inhibitors and toxicants with different modes of action, it could be demonstrated that, in the mutant 151ar/1, cross-resistance was limited to the sterol demethylation inhibitors (DMIs), whereas, in strain 151ar/3, resistance included most sterol biosynthesis inhibitors studied (DMIs, morpholines, piperidines, allylamines) as well as the unrelated compounds vinclozolin and cycloheximide. Sterol analyses showed that both mutants contained ergosterol as the main sterol component. In comparison with the sensitive reference strain, the mutant 151ar/1 had a slightly elevated content of C-14 methyl sterols, whereas in strain 151ar/3 the amount of ergosterol was increased. Triadimefon caused an accumulation of C-14 methyl sterols and a decrease in ergosterol content in the sensitive strain and the mutant 151ar/1, whereas the other strain 151ar/3 remained unaffected. The results indicate that several resistance mechanisms are probably operating in the two mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号