首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Fusarium oxysporum f. sp. lactucae, causal agent of Fusarium wilt of lettuce, is a serious pathogen recently reported in Arizona. Sequence analysis of the mitochondrial small subunit (mtSSU), translation elongation factor 1-alpha (EF-1alpha) gene, and the nuclear ribosomal DNA intergenic spacer (IGS) region was conducted to resolve relationships among f. sp. lactucae isolates, F. oxysporum isolates from other hosts, and local non-pathogenic isolates. Analysis of mtSSU sequences provided limited phylogenetic resolution and did not differentiate the lactucae isolates from 13 other F. oxysporum isolates. Analysis of EF-1alpha sequences resulted in moderate resolution, grouping seven formae speciales with the lactucae isolates. Analysis of the IGS region revealed numerous sequence polymorphisms among F. oxysporum formae speciales consisting of insertions, deletions, and single nucleotide transitions and substitutions. Repeat sequence analysis revealed several duplicated subrepeat units that were distributed across much of the region. Based on analysis of the IGS sequence data, lactucae race 1 isolates resolved as a monophyletic group with three other formae speciales of F. oxysporum. In all analyses, lactucae race 2 isolates composed a separate lineage that was phylo-genetically distinct and distantly related to the lactucae race 1 isolates.  相似文献   

2.
ABSTRACT Most of the 3,000 named species in the genus Cercospora have no known sexual stage, although a Mycosphaerella teleomorph has been identified for a few. Mycosphaerella is an extremely large and important genus of plant pathogens, with more than 1,800 named species and at least 43 associated anamorph genera. The goal of this research was to perform a large-scale phylogenetic analysis to test hypotheses about the past evolutionary history of Cercospora and Mycosphaerella. Based on the phylogenetic analysis of internal transcribed spacer (ITS) sequence data (ITS1, 5.8S rRNA gene, ITS2), the genus Mycosphaerella is monophyletic. In contrast, many anamorph genera within Mycosphaerella were polyphyletic and were not useful for grouping species. One exception was Cercospora, which formed a highly supported monophyletic group. Most Cercospora species from cereal crops formed a subgroup within the main Cercospora cluster. Only species within the Cercospora cluster produced the toxin cercosporin, suggesting that the ability to produce this compound had a single evolutionary origin. Intraspecific variation for 25 taxa in the Mycosphaerella clade averaged 1.7 nucleotides (nts) in the ITS region. Thus, isolates with ITS sequences that differ by two or more nucleotides may be distinct species. ITS sequences of groups I and II of the gray leaf spot pathogen Cercospora zeae-maydis differed by 7 nts and clearly represent different species. There were 6.5 nt differences on average between the ITS sequences of the sorghum pathogen Cercospora sorghi and the maize pathogen Cercospora sorghi var. maydis, indicating that the latter is a separate species and not simply a variety of Cercospora sorghi. The large monophyletic Mycosphaerella cluster contained a number of anamorph genera with no known teleomorph associations. Therefore, the number of anamorph genera related to Mycosphaerella may be much larger than suspected previously.  相似文献   

3.
Colletotrichum truncatum (syn. C. capsici) has been identified as the causal agent of anthracnose on various hosts, predominantly pepper (Capsicum spp.) plants. The aim of this study was to determine whether C. truncatum isolates infecting papaya, pepper and physic nut in southeastern Mexico are morphologically, genetically and pathogenically different, in order to improve disease management strategies. A total of 113 C. truncatum isolates collected from five producer states were subjected to phenotypic characterization and divided into six different morphological groups. These morphological traits and the location of the isolates were used to select a subset of 20 isolates for further studies. Differences in the pathogenicity of the isolates were tested with a cross‐inoculation assay using pepper, papaya and physic nut. The pathogenicity tests revealed that all isolates could infect the three hosts and produce typical anthracnose symptoms, indicating a lack of host specificity for this species and therefore its pathogenic potential on other plants. Phylogenetic analysis using internal transcribed spacer (ITS) and glyceraldehyde 3‐phosphate dehydrogenase (GAPDH) sequences of the C.   truncatum isolates from this study and reference strains was performed, grouping the isolates into a monophyletic clade. This study reports for the first time the characterization of C. truncatum causing anthracnose disease on three different hosts in Mexico.  相似文献   

4.
Pear leaf scorch, the only Xylella fastidiosa-induced disease reported from Taiwan, was found in area where the variety Hengshan (Pyrus pyrifolia) was grown. Strains of pear leaf scorch Xyl. fastidiosa (XF-PLS) shared similarities to strains of other host origins in the requirement of complex medium and the exhibition of rippled cell walls, however, recent serological and molecular biology studies showed difference among them. Five strains of XF-PLS were compared with 20 other strains originally isolated from almond, oleander, pecan, plum, peach, mulberry, grapes, citrus, coffee, and sycamore by sequence analyses of the 16S rRNA gene and 16S–23S rRNA internal transcribed spacer region (ITS). When sequences of 16S rRNA gene based on fragment size of 1,537–1,540 bp were compared, the similarity index among 5 XF-PLS strains was 99.3–99.8%, whereas it was 97.8–98.6% between XF-PLS strains and strains from other hosts. When sequences of 16S–23S rRNA ITS based on fragment size of 510–540 bp were compared, the similarity index among 5 XF-PLS strains was 99.0–100%, whereas it was 80.7–82% between XF-PLS strains and strains from other hosts. Multiple sequence alignments led to the identification of 5 polymorphic nucleotides in the 16S rRNA gene among the 25 Xyl. fastidiosa strains, and there were considerable variations in the nucleotide sequences of 16S–23S rRNA ITS between XF-PLS and the other 20 Xyl. fastidiosa strains. The phylogenetic trees revealed that XF-PLS strains were separated from strains of other hosts. Strains of other hosts were divided into four subgroups: strains from (1) oleander, (2) grape, almond M23 and mulberry, (3) citrus and coffee, and (4) pecan, peach, plum, sycamore and almond M12. Results indicate that XF-PLS strains were not closely related to the above-mentioned strains from other hosts and could possibly belong to a new subspecies of Xyl. fastidiosa.  相似文献   

5.
北京地区西洋参根腐病病原鉴定及其致病性   总被引:3,自引:0,他引:3  
毕武  陈娟  焦晓林  高微微 《植物保护》2011,37(5):135-138
根腐病是北京地区栽培西洋参的主要病害之一,为了明确引起该类病害的病原菌,对北京怀柔区罹病西洋参参根进行了病原菌的分离及鉴定。结合形态学以及rDNA ITS区、转录延伸因子TEF 1α区的分子序列特征,对分离菌株的鉴定结果显示,分离频率较高的11个菌株分属于茄镰孢(Fusarium solani)、尖镰孢(F.oxysporum)、三线镰孢(F. tricinctum)、多育镰孢(F. proliferatum)、毁灭柱孢(Cylindrocarpon destructans)。通过柯赫氏法则验证,F. solani和F. oxysporum是引起北京地区栽培西洋参根腐病的主要病原菌;致病性测定结果发现F. solani不同菌株的致病性及致病力表现出明显差异。  相似文献   

6.
Endothia gyrosa is a canker pathogen best known as the causal agent of pin oak blight in North America, and causes cankers on other woody hosts such as Castanea spp. and Liquidambar spp. In South Africa, Australia and Tasmania, a fungus identified as E. gyrosa has been recorded on Eucalyptus spp. Some morphological differences exist between the North American fungus and the isolates from Eucalyptus . Phylogenetic relationships between E. gyrosa from North America and E. gyrosa from South Africa and Australia, as well as that of the related fungi Cryphonectria parasitica and C. cubensis , were studied using PCR-based restriction fragment length polymorphism (RFLP) and sequences of the internal transcribed spacer (ITS) region of the rRNA operon. Endothia gyrosa isolates from South Africa produced the same RFLP banding patterns as those from Australia, which differed markedly from North American isolates of E. gyrosa . In a phylogram based on the DNA sequences, the Australian and South African isolates of E. gyrosa resided in a single, well resolved clade, distinct from North American isolates. Isolates of C. parasitica grouped in the same clade as the South African and Australian isolates of E. gyrosa , but C. cubensis was distantly related to them. The molecular data suggest that the E. gyrosa isolates from South Africa and Australia represent a distinct taxon, and probably belong to the genus Cryphonectria .  相似文献   

7.
Fusarium oxysporum f. sp. ciceris (Foc), the causal agent of fusarium wilt of chickpea, consists of two pathotypes (yellowing and wilting) and eight races (races 0, 1B/C, 1A and 2–6) of diverse geographical distribution. Six Foc isolates, one each of races 0, 1B/C, 1A, 4, 5 and 6, representing the two pathotypes and the geographical range of the pathogen, showed identical sequences in introns of the genes for translation elongation factor 1α ( EF1 α), β-tubulin, histone 3, actin and calmodulin. Eleven additional Foc isolates representative of all races, pathotypes and geographical range, and three isolates of F. oxysporum (Fo) nonpathogenic to chickpea were further analysed for sequence variation in the EF1 α gene. All isolates pathogenic to chickpeas shared an identical EF1 α gene sequence, which differed from that shared by the three Fo isolates nonpathogenic to chickpea. EF1 α gene sequences from the 17 Foc isolates and the three Fo isolates were compared with 24 EF1 α gene sequences in GenBank from isolates of 11 formae speciales of F. oxysporum by parsimony analysis. Foc isolates formed a grouping distinct from other formae speciales and nonpathogenic isolates. These results indicate that F. oxysporum f. sp. ciceris is monophyletic.  相似文献   

8.
Genetic Diversity Within Colletotrichum acutatum sensu Simmonds   总被引:1,自引:0,他引:1  
ABSTRACT Isolates of Colletotrichum acutatum from several hosts were characterized by various molecular methods in comparison with morphological identification. Species-specific primer analysis was reliable for grouping C. acutatum isolates to their designated species. Arbitrarily primed polymerase chain reaction and A+T-rich DNA analyses identified four subgroups within C. acutatum. Subgroup I contained U.S. isolates from almond, apple, peach, and pecan, subgroup II contained isolates from anemone, olive, and strawberry, subgroup III contained isolates from almond (Israel) and strawberry (Spain), and subgroup IV contained a single isolate from anemone (the Netherlands). Likewise, sequence analysis of the internal transcribed spacer (ITS) 2 region alone or the complete ITS (ITS 1-5.8S-ITS 2) region grouped the isolates into the same four subgroups. Percent similarity of the complete ITS region within each cluster ranged from 99.6 to 100.0, 99.8 to 100.0, and 98.6% among subgroups I, II, and III, respectively. DNA sequence analysis of the ITS 2 region alone or the entire ITS 1-2 region was more informative than that of the ITS 1 region, which could only group the isolates into two main clusters. The molecular methods employed for studying genetic variation in populations of C. acutatum determined that this species is diverse, indicating that isolates within populations of each subgroup are not host specific.  相似文献   

9.
ABSTRACT Pythium irregulare is a plant-pathogenic oomycete that causes significant damage to a variety of crops, including ornamentals and vegetables. Morphological as well as molecular studies have reported high levels of genetic diversity within P. irregulare sensu lato which has raised the question as to whether it is a single species or is actually a complex of morphologically similar (cryptic) species. In this study, we used amplified fragment length polymorphism (AFLP) fingerprinting and DNA sequence analysis of the internal transcribed spacer (ITS) region of the ribosomal genes (ITS region) and a portion of the mitochondrial cytochrome oxidase II gene and the spacer region between coxI and coxII to characterize 68 isolates of P. irregulare from the United States. The ITS sequence of a P. irregulare neotype at the CBS collection as well as ITS and coxII sequences for P. irregulare, P. spinosum, and P. sylvaticum from previous studies were included in our analysis. Cluster analysis identified a 19-isolate group (IR-II) that separated itself from the rest of the sample (IR-I). Population structure and sequence analyses supported the distinction of IR-I and IR-II and identified IR-II as P. irregulare sensu stricto. IR-I was designated Pythium sp. clade IR-I. Two insertion/deletion mutations and nine nucleotide substitutions in the ITS region and three in the sequence of coxII and the adjacent spacer region separated the two species. Additionally, they differed significantly (P > 0.01) in the frequency of 182 (77%) AFLP alleles. Gene flow results suggested that P. irregulare sensu stricto and Pythium sp. clade IR-I are cryptic species capable of exchanging favorable alleles (Nm = 0.72).  相似文献   

10.
ABSTRACT Eighty-six isolates of Botryosphaeria dothidea, the causal agent of Botryosphaeria panicle and shoot blight of pistachio, were collected from pistachio and other plant hosts in California. The isolates were characterized by microsatellite-primed polymerase chain reaction (MP-PCR), sequences of the nuclear ribosomal DNA internal transcribed spacer region (ITS1, 5.8S gene, and ITS2), morphological and cultural characters, osmotic and fungicide sensitivity, and pathogenicity on pistachio. Three groups of these isolates were identified based upon analysis of MP-PCR data and ITS sequences. Group I contained 43 pycnidiospore-derived isolates collected from pistachio and other hosts. Group II consisted of 20 ascosporic isolates obtained from a single sequoia plant. Group III consisted of 20 ascosporic isolates from three shoots on a single blackberry plant, two pycnidiospore-derived isolates from incense cedar, and one from pistachio. Group I predominated over the other two groups in California pistachio orchards. B. dothidea isolates of group III grew faster on acidified potato dextrose agar (APDA) than the isolates of groups I and II. Isolates of group III produced pycnidia on both APDA and autoclaved pistachio shoots, but the isolates of the other two groups produced pycnidia on only autoclaved pistachio shoots. Additionally, significant differences in osmotic and fungicide sensitivities were observed among these three groups. Results from lathhouse inoculations demonstrated that the representative isolates for each of the three groups were all capable of infecting pistachio and producing characteristic disease symptoms of Botryosphaeria blight. The virulence of group II isolates on pistachio was, however, significantly lower than that of group I isolates.  相似文献   

11.
ABSTRACT The evolutionary relationships of fungi in the Fusarium redolens-F. hostae clade were investigated by constructing nuclear and mitochondrial gene genealogies for 37 isolates representing the known genetic and pathogenic diversity of this lineage, together with 15 isolates from putative sister groups that include the Gibberella fujikuroi and F. oxysporum species complexes and related species. Included in the analyses were 29 isolates of F. redolens from Asparagus, Convallaria, Dianthus, Fritillaria, Hebe, Helleborus, Hordeum, Linum, Pisum, Pseudotsuga, and Zea spp., and from soil. Isolates of F. hostae analyzed included two reference isolates from Hosta spp. and six isolates from Hyacinthus spp. that originally were classified as F. oxysporum f. sp. hyacinthi. DNA sequences from a portion of the nuclear translation elongation factor 1alpha (EF-1alpha) gene and the mitochondrial small subunit (mtSSU) ribosomal RNA (rRNA) were analyzed individually and as a combined data set based on results of the nonparametric Wilcoxon signed ranks Templeton combinability test. Maximum parsimony analysis of the combined data set identified the F. redolens-F. hostae clade as a sister group to a phylogenetically diverse clade in which the G. fujikuroi species complex formed the most basal lineage. Also included in this latter clade were two unnamed Fusarium spp. that are morphologically similar to F. oxysporum and putative sister taxa comprising the F. oxysporum complex and a F. nisikadoi-F. miscanthi clade. Phylogenetic diversity in F. redolens was small; all isolates were represented by only three EF-1alpha and two mtSSU rDNA haplotypes. Both the isolates of F. redolens f. sp. asparagi and those of F. redolens f. sp. dianthi were nearly evenly distributed in the combined molecular phylogeny between the two major subclades within F. redolens.  相似文献   

12.
The 5.8S ribosomal gene and the flanking internal transcribed spacers (ITS) 1 and 2 from Colletotrichum graminicola isolates causing anthracnose disease of Agrostis palustris and Poa species were sequenced. Although bootstrap support was not high, two major groups were observed with both UPGMA and parsimony algorithms, one containing isolates from A. palustris and another with isolates from Poa spp. The ITS sequences were also compared with those of isolates of C. graminicola and C. sublineolum from Sorghum spp., Zea mays and Rottboellia cochinchinesis as well as other Colletotrichum species. Except for one isolate from P. annua in Texas, the ITS1 and ITS2 sequences of turfgrass isolates always grouped separately from C. graminicola or C. sublineolum from non-turfgrass hosts with high bootstrap support. ITS sequences of the turfgrass isolates were more similar to those of other species of Colletotrichum, such as C. coccodes and C. dematium, than they were to C. graminicola isolates from other hosts. Turfgrass isolates have ITS sequences which are not identical to those of isolates from Zea mays and Sorghum species demonstrating diversity among fungi conventionally classified as C. graminicola.  相似文献   

13.
Genetic diversity among 51 isolates of Rhizoctonia solani AG-3, representing potato and tobacco populations, was inferred from the sequences of the internal transcribed spacer (ITS) and 5.8S ribosomal RNA (rRNA) gene. The 5.8S rDNA sequence was completely conserved not only in AG-3, but across all the AG isolates examined, whereas the rDNA-ITS sequence was found to be variable among the isolates. The nucleotide sequence similarity in the ITS 1 region was high (96-100%) for isolates within each of the two populations, but was 91-92% for isolates from different populations. The AG-3 isolates had 56 to 91% sequence similarities in the ITS 1 region with R. solani isolates of the other AGs. Phylogenetic analysis based on the ITS-5.8S rDNA sequence data indicated that the different populations in AG-3 are distantly related to each other. Genetic divergence between the two populations was also supported by the results of DNA-DNA hybridization studies. This study suggests that AG-3 consists of two genetically isolated groups corresponding to separate subgroups: AG-3 PT (potato type) and AG-3 TB (tobacco type). Specific primer sets for the detection of the two AG-3 subgroups were developed from the aligned rDNA-ITS sequences. Received 22 April 1999/ Accepted in revised form 2 July 1999  相似文献   

14.
Li S  Tam YK  Hartman GL 《Phytopathology》2000,90(5):491-497
Fusarium solani is a soilborne plant pathogen that infects many different hosts. Within the species, there is some specialization, and a number of forma specialis have been described based on host affiliation. One of these, F. solani f. sp. glycines, infects soybean and causes sudden death syndrome. To differentiate between F. solani f. sp. glycines and other F. solani isolates, a partial sequence of the mitochondrial small subunit (mtSSU) rRNA gene was amplified by polymerase chain reaction and sequenced from 14 F. solani f. sp. glycines and 24 F. solani isolates from various plant hosts. All F. solani f. sp. glycines isolates had identical sequences. A single, unique insertion of cytosine occurred in all F. solaniisolates but not in any of the F. solani f. sp. glycines isolates. Two major lineages, distinguished by sequence divergence and the presence or absence of multiple insertions, occurred in F. solani isolates. Cladistic analysis produced a single most-parsimonious tree with three major clades. The first clade contained all F. solani f. sp. glycines isolates. A second clade grouped together all of the F. solani isolates that had only a single nucleotide insertion difference from the first clade. Genetic distance between these two clades was 0.016. A third clade was formed by five F. solaniisolates that had multiple insertions. Isolates in the third clade had a genetic distance of 0.040 from the first and second clades. Based on the sequence data, it is likely that F. solani f. sp. glycineshas a shorter evolutionary history than other F. solaniisolates that have either single or multiple nucleotide insertions. The differences in nucleotide insertions in part of the mtSSU rRNA gene between F. solani f. sp. glycinesand other F. solani isolates provide a direct and reliable way to distinguish isolates of F. solani.  相似文献   

15.
Rahman M  Punja ZK 《Phytopathology》2005,95(12):1381-1390
ABSTRACT The fungus Cylindrocarpon destructans (Zins) Scholten is the cause of root rot (disappearing root rot) in many ginseng production areas in Canada. A total of 80 isolates of C. destructans were recovered from diseased roots in a survey of ginseng gardens in British Columbia from 2002-2004. Among these isolates, 49% were classified as highly virulent (causing lesions on unwounded mature roots) and 51% were weakly virulent (causing lesions only on previously wounded roots). Pectinase and polyphenoloxidase enzymes were produced in vitro by C. destructans isolates when they were grown on pectin and phenol as a substrate, respectively. However, highly virulent isolates produced significantly (P < 0.001) higher enzyme levels compared with weakly virulent isolates. Histopathological studies of ginseng roots inoculated with a highly virulent isolate revealed direct hyphal penetration through the epidermis, followed by intracellular hyphal growth in the cortex. Subsequent cell disintegration and accumulation of phenolic compounds was observed. Radial growth of highly and weakly virulent isolates on potato dextrose agar was highest at 18 and 21 degrees C, respectively and there was no growth at 35 degrees C. Mycelial mass production was significantly (P 相似文献   

16.
The plant pathogenic fungus Corynespora cassiicola causes a severe leaf spot disease on more than 70 host plant species including Hevea brasiliensis . Genetic variability in 32 isolates of C. cassiicola collected from diverse hosts and locations in Sri Lanka and Australia was assessed using restriction fragment length polymorphism (RFLP) analysis of the internal transcribed spacer (ITS) region of ribosomal DNA and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) analysis of total fungal DNA. Amplified ITS fragments from all 32 C. cassiicola isolates exhibited an identical size, and restriction analysis with seven different restriction endonucleases revealed identity in all of the detected DNA fragments. This finding of high genetic relatedness was further supported by the cloning and DNA sequencing of the ITS2 region from one Sri Lankan and one Australian isolate. However, RAPD-PCR profiles generated by 15 oligonucleotide decamer primers revealed significant polymorphism between groups of organisms. Genetic relationships among the isolates were determined by cluster analysis of the RAPD-PCR data and seven different RAPD groups were identified. Isolates showed strong correlations between the assigned RAPD group and the location and host plant genotype from which the isolate was collected. Correlations were also observed between the RAPD group, growth of the isolate and pathogenicity on different plant hosts.  相似文献   

17.
ABSTRACT Phytophthora capsici is a diverse species causing disease on a broad range of both temperate and tropical plants. In this study, we used cultural characteristics, amplified fragment length polymorphism (AFLP), and DNA sequence analyses of the ribosomal internal transcribed spacer (ITS) region and mitochondrial cytochrome oxidase II (cox II) genes to characterize temperate and tropical isolates from a wide range of host species. All but one temperate isolate grew at 35 degrees C, while all tropical isolates did not. All but two tropical isolates formed chlamydospores, while temperate isolates did not. There was strong bootstrap support for separation of temperate and tropical isolates using AFLP analysis; however, the temperate isolates appeared as a subgroup within the observed variation of the tropical isolates. The majority of temperate isolates clustered within a single clade with low variation regardless of host or geographical origin, while the tropical isolates were more variable and grouped into three distinct clades. Two clades of tropical isolates grouped together and were affiliated closely with the temperate isolates, while the third tropical clade was more distantly related. Phylogenetic analysis of the ITS regions resulted in similar groupings and variation within and between the temperate and tropical isolates as with the AFLP results. Sequence divergence among isolates and clades was low, with more variation within the tropical isolates than within the temperate isolates. Analysis of other species revealed shorter branch lengths separating temperate and tropical isolates than were observed in comparisons among other phylogenetically closely related species in the genus. Analysis of cox II sequence data was less clear. Although the temperate and tropical isolates grouped together apart from other species, there was no bootstrap support for separating these isolates. Restriction fragment length polymorphism (RFLP) analysis of the ITS regions separated the temperate and tropical isolates, as in the AFLP and ITS phylogenetic analyses. However, RFLP analysis of the cox I and II gene cluster did not distinguish between temperate and tropical isolates. The differences in grouping of isolates in these two RFLP studies should be helpful in identifying isolate subgroups. Our data do not fully clarify whether or not temperate and tropical isolates should be separated into different species. The available worldwide data are incomplete and the full range of variation in the species is not yet known. We suggest refraining from using the epithet P. tropicalis until more data are available.  相似文献   

18.
One of the most serious diseases of banana is fusarium wilt, caused by Fusarium oxysporum f.sp. cubense ( Foc ). The objectives of this study were to isolate and identify nonpathogenic F. oxysporum strains from soils suppressive to banana wilt, and to determine the diversity of these isolates. More than 100 Fusarium strains were isolated from the rhizosphere of banana plants and identified to species level. Pathogenicity testing was carried out to confirm that these isolates were nonpathogens of banana. A PCR-based RFLP analysis of the intergenic spacer region of the ribosomal RNA operon was used to characterize the nonpathogens. The isolates were also compared with isolates of Foc from South Africa and the known biological control isolate of F. oxysporum , Fo47. The species-specific primers FOF1 and FOR1, in addition to morphological features, were used to confirm the identity of F. oxysporum isolates included in the PCR-RFLP analysis. Twelve different genotypes could be distinguished, identified by a six-letter code allocated to each isolate following digestion with the restriction enzymes Hae III, Hha I, Hin fI, Msp I, Rsa I and Scrf I. Eleven of these included nonpathogenic F. oxysporum isolates, and these groups could all be distinguished from the genotype that included Foc . Fo47 was included in one of the genotype groups consisting of nonpathogenic F. oxysporum isolates from South Africa.  相似文献   

19.
ABSTRACT Alternaria isolates were obtained from various pistachio tissues collected in five orchards in California. For all isolates, morphological characteristics of the colony and sporulation apparatus were determined and compared with those of representative isolates of A. alternata, A. tenuissima, A. arborescens, and A. infectoria. A selection of the pistachio isolates and the representative Alternaria isolates were evaluated for pathogenicity to pistachio. Molecular characteristics of these isolates were determined using random amplified polymorphism DNA (RAPD) analysis, polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) analysis of nuclear intergenic spacer rDNA, and sequence analysis of nuclear internal transcribed spacer (ITS) rDNA. Based on morphological characteristics, the pistachio isolates were grouped as identical or very similar to either A. alternata, A. tenuissima, A. arborescens, or A. infectoria. Isolates from the alternata, tenuissima, and arborescens species-groups were pathogenic to pistachio and no significant differences in pathogenicity were observed. Isolates from the infectoria species-group were only weakly pathogenic to pistachio. Based on cluster analysis of RAPD and PCR-RFLP data, three distinct clusters were evident; the infectoria cluster, the arborescens cluster, and a combined alternata/tenuissima cluster. Based on analysis of ITS sequence data, the infectoria species-group was phylogenetically distinct from the other species-groups. Isolates of the alternata, tenuissima, and arborescens species-groups comprised a monophyletic clade in which the three species-groups could not be further resolved.  相似文献   

20.
Colletotrichum acutatum causes two diseases of citrus, postbloom fruit drop (PFD) and Key lime anthracnose (KLA). PFD is a disease restricted to flowers of sweet orange and most other citrus, and symptoms include petal necrosis, abscission of developing fruit, and the formation of persistent calyces. KLA is a disease of foliage, flowers, and fruits of Key lime only, and symptoms include necrotic lesions on leaves, fruits, twigs, flowers, and blight of entire shoots. The internal transcribed spacers 1 and 2 and the gene encoding the 5.8S ribosomal RNA subunit within the nuclear ribosomal cluster (ITS) and intron 2 of the glyceraldehyde-3-phosphate dehydrogenase gene (G3PD) were sequenced for isolates from PFD-affected sweet orange and KLA-affected Key limes collected in the United States (Florida), Brazil (S?o Paulo), Mexico, Belize, Costa Rica, and the Dominican Republic to determine if there are consistent genetic differences between PFD and KLA isolates over the geographic area where these diseases occur. Based on the sequence data, isolates clustered into two well-supported clades with little or no sequence variation among isolates within clades. One clade (PFD clade) contained PFD isolates from all countries sampled plus a few isolates from flowers of Key lime in Brazil. The other clade (KLA clade) contained KLA isolates from Key lime foliage from all countries sampled and one isolate from flowers of sweet orange in Mexico. In greenhouse inoculations with PFD and KLA isolates from Florida, isolates from both clades produced PFD symptoms on Orlando tangelo flowers, but KLA-clade isolates produced significantly less severe symptoms. PFD-clade isolates were not pathogenic to Key lime foliage, confirming previous studies. The differentiation of PFD and KLA isolates into two well-supported clades and the pathogenicity data indicate that PFD and KLA are caused by distinct phylogenetic lineages of C. acutatum that are also biologically distinct. PFD is a recently described disease (first reported in 1979) relative to KLA (first reported in 1912) and it had been proposed that strains causing PFD evolved from strains causing KLA eventually losing pathogenicity to Key lime foliage. We reject the hypothesis that PFD strains have diverged from KLA strains recently based on estimated divergence times of haplotypes and it appears that PFD and KLA strains have been dispersed throughout the Americas independently in association with each host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号