首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Measurements of local environmental conditions, intensity of Fusarium head blight (FHB) in wheat spikes, biomass of Fusarium graminearum, F. culmorum, and F. poae (pathogens causing FHB) and concentration of the mycotoxins deoxynivalenol (DON) and nivalenol (NIV) in harvested wheat grain were obtained in a total of 150 location-years, originating in three European countries (Hungary, Ireland, United Kingdom) from 2001 to 2004. Through window-pane methodology, the length and starting time of temporal windows where the environmental variables were significantly associated with the biological variables were identified. Window lengths of 5 to 30?days were evaluated, with starting times from 18?days before anthesis to harvest. Associations were quantified with nonparametric Spearman correlation coefficients. All biological variables were significantly associated with at least one evaluated environmental variable (P?≤?0.05). Moisture-related variables (e.g., average relative humidity, hours of relative humidity above 80%) had the highest positive correlations with the biological variables, but there also was a significant negative correlation between average temperature and several biological variables. When significant correlations were found, they were generally for all window lengths, but for a limited number of window start times (generally before anthesis for disease index and after anthesis for the toxins and late-season fungal biomasses). Semi-partial Spearman correlation coefficients were used to evaluate the relationship between the environmental variables and the concentration of DON and NIV after the effects of FHB intensity and fungal biomass on the mycotoxins were removed. Significant semi-partial correlations were found between relative humidity variables and DON, and between temperature and relative humidity variables and NIV for time windows that started after anthesis (and not for any earlier time windows). Results confirm that the environment influences disease, fungal biomass, and mycotoxin production, and help refine the time windows where the association is greatest. However, variability in the relationships was high, indicating that no single environmental variable is sufficient for prediction of disease or mycotoxin contamination.  相似文献   

2.
ABSTRACT Rain splash dispersal of Gibberella zeae, causal agent of Fusarium head blight of wheat, was investigated in field studies in Ohio between 2001 and 2003. Samplers placed at 0, 30, and 100 cm above the soil surface were used to collect rain splash in wheat fields with maize residue on the surface and fields with G. zeae-infested maize kernels. Rain splash was collected during separate rain episodes throughout the wheat-growing seasons. Aliquots of splashed rain were transferred to petri dishes containing Komada's selective medium, and G. zeae was identified based on colony and spore morphology. Dispersed spores were measured in CFU/ml. Intensity of splashed rain was highest at 100 cm and ranged from 0.2 to 10.2 mm h(-1), depending on incident rain intensity and sampler height. Spores were recovered from splash samples at all heights in both locations for all sampled rain events. Both macroconidia and ascospores were found based on microscopic examination of random samples of splashed rain. Spore density and spore flux density per rain episode ranged from 0.4 to 40.9 CFU cm(-2) and 0.4 to 84.8 CFU cm(-2) h(-1), respectively. Spore flux density was higher in fields with G. zeae-infested maize kernels than in fields with maize debris, and generally was higher at 0 and 30 cm than at 100 cm at both locations. However, on average, spore flux density was only 30% lower at 100 cm (height of wheat spikes) than at the other heights. The log of spore flux density was linearly related to the log of splashed rain intensity and the log of incident rain intensity. The regression slopes were not significantly affected by year, location, height, and their interactions, but the intercepts were significantly affected by both sampler height and location. Thus, our results show that spores of G. zeae were consistently splash dispersed to spike heights within wheat canopies, and splashed rain intensity and spore flux density could be predicted based on incident rain intensity in order to estimate inoculum dispersal within the wheat canopy.  相似文献   

3.
分析农业部西北旱作营养与施肥科学观测站27年的降雨量演变资料,探讨这种演变过程对冬小麦产量及其它相关性状的影响.结果表明:陇东地区降雨分布与小麦生长期需水错位,随着气候变化,这种错位持续加深.降雨量演变对冬小麦品种的性状产生了不同方向的影响,有效穗数与最高茎数趋于减少、株高降低;穗粒数、千粒重趋于增加;出苗期推迟,抽穗期提前,快速生长、发育阶段和全生育期明显缩短.同时,降雨对陇东旱塬小麦产量的关键限制时期逐步从小麦营养生长前期向生殖生长期推移.  相似文献   

4.
Summary. Spikes oi Agropyron repens (L.) Beauv. were collected from field crops (mostly spring barley and winter wheat) in England and Wales near the time of crop harvest. Seeds per spike were counted and their germination tested in soil in the glasshouse.
About 95% of the samples contained viable seeds; about one third of the samples had fewer than 5 viable seeds/spike, a third between 6 and 15 and a third more than 15. The average number of viable seeds/spike for all samples was 13. Spikes from spring barley (152 samples) had an average of 11 and a maximum of 51 viable seeds and those from winter wheat (42 samples), 20 and 48 respectively. Samples collected within 3 weeks after mid-July had fewer viable seeds/spike than those collected later. Samples containing morphologically-different spikes had more viable seeds/spike than apparently uniform samples, and spikes from dense field populations more seeds than those from sparse populations.  相似文献   

5.
Fusarium head blight (FHB) of wheat, caused by several Fusarium species, is a damaging disease, resulting not only in yield reduction but also accumulation of mycotoxins in grain. Epidemiology and management of FHB has been extensively studied worldwide. Data on FHB development and accumulation of mycotoxins were obtained in four European countries during 2001–2004 to study the effect of FHB development and environmental conditions on accumulation of deoxynivalenol (DON). The occurrence of DON was highly correlated with presence of one or more toxigenic Fusarium species. Hourly weather data recorded at each sampling site were summarised over several periods of different lengths (5–30 days) during the anthesis and pre-harvest period. All-subsets regression was used to determine the extent to which the probability of DON occurrence is related to weather variables and also the consistency of such a toxin-weather relationship. Combined with a re-sampling technique, all-subsets regression analysis showed the difficulties in identifying a single ‘best’ model of relating the probability of toxin ≥90 μg kg?1 to weather predictors. A wide range of inter-related weather predictors based on time windows around anthesis and pre-harvest were selected in different models. There were many alternative models based on weather predictors only with similar predictive power because of high correlation among weather predictors. The performance of these alternative models was generally poor, particularly in terms of the high proportion of false positive predictions (specificity was only around 0.60–0.65). Inclusion of the number of toxigenic Fusarium species at harvest into models did not improve the model sensitivity (ca. 0.75–0.80) but appreciably improved the specificity (ca. 0.70–0.75). On balance, weather summarised over a 15-day window frame led to models with better predictions than other three window frames (5, 10 and 30 days).  相似文献   

6.
Climatic variation in the U.S. Pacific Northwest (PNW) affects epidemics of wheat stripe rust caused by Puccinia striiformis f. sp. tritici. Previous models only estimated disease severity at the flowering stage, which may not predict the actual yield loss. To identify weather factors correlated to stripe rust epidemics and develop models for predicting potential yield loss, correlation and regression analyses were conducted using weather parameters and historical yield loss data from 1993 to 2007 for winter wheat and 1995 to 2007 for spring wheat. Among 1,376 weather variables, 54 were correlated to yield loss of winter wheat and 18 to yield loss of spring wheat. Among the seasons, winter temperature variables were more highly correlated to wheat yield loss than the other seasons. The sum of daily temperatures and accumulated negative degree days of February were more highly correlated to winter wheat yield loss than the other monthly winter variables. In addition, the number of winter rainfall days was found correlated with yield loss. Six yield loss models were selected for each of winter and spring wheats based on their better correlation coefficients, time of weather data availability during the crop season, and better performance in validation tests. Compared with previous models, the new system of using a series of the selected models has advantages that should make it more suitable for forecasting and managing stripe rust in the major wheat growing areas in the U.S. PNW, where the weather conditions have become more favorable to stripe rust.  相似文献   

7.
ABSTRACT To determine the relationship between incidence (I; proportion of diseased spikes) and severity (S; mean proportion of diseased spikelets per spike) for Fusarium head blight of wheat and to determine if severity could be predicted reliably from incidence data, disease assessments were made visually at multiple sample sites in artificially and naturally inoculated research and production fields between 1999 and 2002. Ten distinct data sets were collected. Mean disease intensity ranged from 0.023 to 0.975 for incidence and from 0.0003 to 0.808 for severity. A model based on complementary log-log transformation of incidence and severity performed well for all data sets, based on calculated coefficients of determination and random residual plots. The I-S relationship was consistent among years and locations, with similar slopes for all data sets. For 7 of the 10 data sets and for the pooled data from all locations and years, the estimated slope from the fit of the model ranged from 1.03 to 1.26. Time of disease assessment affected the relationship between incidence and severity; however, the estimated slopes from each assessment time were also close to 1. Based on the width of the 95% prediction interval, severity was estimated more precisely at lower incidence values than at higher values. The number of sampling units and the index of dispersion of disease incidence had only minor effects on the precision with which S was predicted from I. The estimation of mean S from I would substantially reduce the time required to assess Fusarium head blight in field surveys and treatment comparisons, and the observed relationship between I and S could be used to identify genotypes with some types of disease resistance.  相似文献   

8.
Kriss AB  Paul PA  Madden LV 《Phytopathology》2012,102(9):867-877
A multilevel analysis of heterogeneity of disease incidence was conducted based on observations of Fusarium head blight (caused by Fusarium graminearum) in Ohio during the 2002-11 growing seasons. Sampling consisted of counting the number of diseased and healthy wheat spikes per 0.3 m of row at 10 sites (about 30 m apart) in a total of 67 to 159 sampled fields in 12 to 32 sampled counties per year. Incidence was then determined as the proportion of diseased spikes at each site. Spatial heterogeneity of incidence among counties, fields within counties, and sites within fields and counties was characterized by fitting a generalized linear mixed model to the data, using a complementary log-log link function, with the assumption that the disease status of spikes was binomially distributed conditional on the effects of county, field, and site. Based on the estimated variance terms, there was highly significant spatial heterogeneity among counties and among fields within counties each year; magnitude of the estimated variances was similar for counties and fields. The lowest level of heterogeneity was among sites within fields, and the site variance was either 0 or not significantly greater than 0 in 3 of the 10 years. Based on the variances, the intracluster correlation of disease status of spikes within sites indicated that spikes from the same site were somewhat more likely to share the same disease status relative to spikes from other sites, fields, or counties. The estimated best linear unbiased predictor (EBLUP) for each county was determined, showing large differences across the state in disease incidence (as represented by the link function of the estimated probability that a spike was diseased) but no consistency between years for the different counties. The effects of geographical location, corn and wheat acreage per county, and environmental conditions on the EBLUP for each county were not significant in the majority of years.  相似文献   

9.
A series of experiments was conducted to determine whether type I resistance (resistance to initial infection) to fusarium head blight (FHB) in wheat could be assessed using fungal species/isolates that do not produce deoxynivalenol (DON), a mycotoxin critical to the spread of Fusarium graminearum in the wheat spike. It was shown that, while the non-toxin-producing species Microdochium nivale and M. majus could infect following spray inoculation of wheat spikes, they were unable to spread within the spike following point inoculation. However, although these species might reveal type I resistance, they are not highly pathogenic towards wheat. A nivalenol (NIV)-producing isolate of F. graminearum caused high levels of disease following spray inoculation, but spread only very slowly within the spike and rarely induced bleaching above the point of inoculation. It is proposed that spray inoculation with an appropriate, aggressive, non-DON-producing FHB pathogen may be used to characterize type I resistance to complement point inoculation with a DON-producing isolate to assess type II resistance (resistance to spread within the spike).  相似文献   

10.
11.
Two antisera raised against acidic β-1,3-glucanase and acidic chitinase from tobacco were used to investigate the subcellular localization of the two enzymes in Fusarium culmorum -infected wheat spike by means of the immunogold labelling technique. The studies demonstrated that the distribution of β-1, 3-glucanase and chitinase were very similar in the uninoculated healthy and infected wheat spikes. The enzymes were localized mainly in the cell walls of different tissues including the lemma, ovary and rachis of the wheat spike, while the cytoplasm and organelles of cells in these tissues showed almost no labelling. However, the accumulation of β-1,3-glucanase and chitinase in the infected wheat spikes differed distinctly between resistant and susceptible wheat cultivars. The labelling densities for the two enzymes in the infected lemma, ovary and rachis of the susceptible cultivar Agent increased only slightly as compared to the corresponding uninoculated healthy tissues, whereas higher labelling densities of β-1,3-glucanase and chitinase were found in the infected tissues of wheat spikes from the resistant cultivar Arina compared to the corresponding uninoculated healthy tissues. Furthermore, the labelling of β-1,3-glucanase and chitinase also occurred over the cell walls of the hyphae in the infected wheat spike, but not over the hyphal cytoplasm. In addition, labelling for the two enzymes was often detected over the cell wall appositions and the electron-dense material located between the host cell and the hyphal cell in the infected tissues of the resistant wheat cultivar. The findings reported in the present study indicate that β-1,3-glucanase and chitinase accumulation in the F. culmorum -infected wheat spike may be involved in resistance to pathogen spread in the host tissue.  相似文献   

12.
ABSTRACT We first show how to estimate the exponential epidemic growth rate, r, for different combinations of three weather variables. Then we derive a method to quantify the sensitivity of r to a weather variable as a function of the pathogen life cycle variables of latent period, basic reproductive number, and the mean and standard deviation of the sporulation curve. The method can be used to identify the most important weather variable and pathogen life cycle component in terms of epidemic progress. The method is applied to yellow rust, caused by Puccinia striiformis, on winter wheat. We conclude that the most important weather variable for the progress of yellow rust is temperature, followed by dew period and light quantity. By far, the most important pathogen life cycle component is the basic reproductive number, especially at low and high temperatures. This disagrees with the general view that latent period is the most important variable at low temperatures. We discuss explanations of this.  相似文献   

13.
Blast disease, caused by the Magnaporthe oryzae Triticum pathotype (MoT), is a major concern for wheat production in tropical and subtropical regions. The most destructive symptoms occur in wheat spikes. Infected spikes become bleached due to partial or total sterility, producing small and wrinkled grains. High disease pressure of the disease results in significant yield losses. This study aimed to identify wheat quantitative trait loci (QTLs) conferring resistance to blast disease at the heading stage. A doubled-haploid population was developed from the cross between BRS 209 (susceptible) and CBFusarium ENT014 (resistant, carrying the 2NS translocation). A linkage map was constructed containing 5,381 molecular markers and the inclusive composite interval mapping method was employed for QTL detection. Four QTLs were mapped in response to two MoT isolates. The major QTL identified on the 2AS chromosome explained an average of 84.0% of the phenotypic variation for spike bleaching at 9 days postinoculation and reinforces the potency of the 2NS translocation. Recombination between the distal region of chromosome 2AS and the 2NS marker was found. These results could explain why some lines carrying the VENTRIUP/LN2 marker have a variable reaction to the disease. QTLs on 5B and 7B chromosomes were also identified. Two mechanisms of resistance were hypothesized: the hypersensitive response and resistance to colonization of host tissues. The KASP markers thus developed and simple sequence repeats (SSRs) allocated in QTL regions can be used in the future for the development of wheat blast-resistant cultivars.  相似文献   

14.
Fusarium head blight in wheat spikes is associated with production of mycotoxins by the fungi. Although flowering is recognized as the most favourable host stage for infection, a better understanding of infection timing on disease development and toxin accumulation is needed. This study monitored the development of eight characterized isolates of F. graminearum, F. culmorum and F. poae in a greenhouse experiment. The fungi were inoculated on winter wheat spikes before or at anther extrusion, or at 8, 18 and 28 days later. Disease levels were estimated by the AUDPC and thousand‐kernel weight (TKW). The fungal biomass (estimated by qPCR) and toxin concentration (deoxynivalenol and nivalenol, estimated by UPLC‐UV‐MS/MS) were measured in each inoculated spike, providing a robust estimation of these variables and allowing correlations based on single‐individual measurements to be established. The toxin content correlated well with fungal biomass in kernels, independently of inoculation date. The AUDPC was correlated with fungal DNA, but not for early and late infection dates. The highest disease and toxin levels were for inoculations around anthesis, but early or late infections led to detectable levels of fungus and toxin for the most aggressive isolates. Fungal development appeared higher in kernels than in the chaff for inoculations at anthesis, but the opposite was found for later inoculations. These results show that anthesis is the most susceptible stage for FHB, but also clearly shows that early and late infections can produce significant disease development and toxin accumulation with symptoms difficult to estimate visually.  相似文献   

15.
田间空气中小麦白粉菌分生孢子的动态监测研究   总被引:3,自引:0,他引:3  
2012和2013两年度采用Burkard定容式孢子捕捉器,对田间空气中小麦白粉病菌分生孢子的监测结果表明,小麦冠层内、外白粉菌分生孢子浓度存在显著的正相关性,冠层内的白粉菌分生孢子浓度明显高于冠层外;田间空气中分生孢子的浓度逐渐升高,到小麦灌浆期达到最大值之后逐渐降低。时间序列分析结果表明,两年度田间空气中白粉菌分生孢子浓度均符合ARIMA(1,1,0)模型且与温度有显著的相关性,建立了基于温度的白粉菌分生孢子浓度预测模型,模型回归效果均达到了显著水平。研究结果发现,田间白粉病病情与空气中病菌分生孢子和关键气象因子具有显著相关性,并在此基础上分别建立了基于空气中分生孢子浓度,以及基于分生孢子浓度和气象因子的田间白粉病病情预测模型,其中基于分生孢子浓度的预测模型普适性要优于基于分生孢子浓度和气象因子的预测模型,可以用来预测田间小麦白粉病的发生流行程度。  相似文献   

16.
ABSTRACT Over 4 years, the environmental conditions and the causal agents of Fusarium head blight (FHB) disease of wheat were determined in field sites in four European countries: Hungary, Ireland, Italy, and the United Kingdom. Polymerase chain reaction-based methods were used to detect each species causing FHB and quantify its DNA (as a measurement of fungal abundance) in the samples. Canonical correspondence analysis (CCA) was used to determine the relationship of the incidence and abundance of each species with weather variables. CCA indicated that little variability in the species prevalence data was explained by the weather variables. In contrast, a greater proportion of variability in abundance data was accounted for by the weather variables. Most samples contained two or more species and statistical analysis suggested that these species tended to coexist at field sites. CCA also indicated that there were differences in the relationships of the prevalence and abundance of the six FHB species with environmental variables. Fusarium poae was associated with relatively drier and warmer conditions, whereas F. graminearum was associated with warmer/humid conditions. F. avenaceum and F. culmorum were both associated with niches of cooler/wet/humid conditions. Two Microdochium species were associated with regions of relatively cool/moderate temperatures and frequent rainfalls of short duration. The results also suggested that environmental conditions differentially affect the infection and colonization processes, and the comparative abundance of the six species.  相似文献   

17.
ABSTRACT An increased understanding of the epidemiology of Gibberella zeae will contribute to a rational and informed approach to the management of Fusarium head blight (FHB). An integral phase of the FHB cycle is the deposition of airborne spores, yet there is no information available on the spatial pattern of spore deposition of G. zeae above wheat canopies. We examined spatial patterns of viable spore deposition of G. zeae over rotational (lacking cereal debris) wheat fields in New York in 2002 and 2004. Viable, airborne spores (ascospores and macroconidia) of G. zeae were collected above wheat spikes on petri plates containing a selective medium and the resulting colonies were counted. Spores of G. zeae were collected over a total of 68 field environments (three wheat fields during 54 day and night sample periods over 2 years) from spike emergence to kernel milk stages of local wheat. Spatial patterns of spore deposition were visualized by contour plots of spore counts over entire fields. The spatial pattern of spore deposition was unique for each field environment during each day and night sample period. Spore deposition patterns during individual sample periods were classified by spatial analysis by distance indices (SADIE) statistics and Mantel tests. Both analyses indicated that the majority (93%) of the spore deposition events were random, with the remainder being aggregated. All of the aggregated patterns were observed during the night. Observed patterns of spore deposition were independent of the mean number of viable spores deposited during individual sample periods. The spatial pattern for cumulative spore deposition during anthesis in both years became aggregated over time. Contour maps of daily and cumulative spore deposition could be compared with contour maps of FHB incidence to gain insights into inoculum thresholds and the timing of effective inoculum for infection.  相似文献   

18.
ABSTRACT A total of 126 field studies reporting deoxynivalenol (DON; ppm) content of harvested wheat grain and Fusarium head blight index (IND; field or plot-level disease severity) were analyzed to determine the overall mean regression slope and intercept for the relationship between DON and IND, and the influence of study-specific variables on the slope and intercept. A separate linear regression analysis was performed to determine the slope and intercept for each study followed by a meta-analysis of the regression coefficients from all studies. Between-study variances were significantly (P < 0.05) greater than 0, indicating substantial variation in the relationship between the variables. Regression slopes and intercepts were between -0.27 and 1.48 ppm per unit IND and -10.55 to 32.75 ppm, respectively. The overall mean regression slope and intercept, 0.22 ppm per unit IND and 2.94 ppm, respectively, were significantly different from zero (P < 0.001), and the width of the 95% confidence interval was 0.07 ppm per unit IND for slope and 1.44 ppm for intercept. Both slope and intercept were significantly affected by wheat type (P < 0.05); the overall mean intercept was significantly higher in studies conducted using winter wheat cultivars than in studies conducted using spring wheat cultivars, whereas the overall mean slope was significantly higher in studies conducted using spring wheat cultivars than in winter wheat cultivars. Study location had a significant effect on the intercept (P < 0.05), with studies from U.S. winter wheat-growing region having the highest overall mean intercept followed by studies from Canadian wheat-growing regions and U.S. spring wheat-growing regions. The study-wide magnitude of DON and IND had significant effects on one or both of the regression coefficients, resulting in considerable reduction in between-study variances. This indicates that, at least indirectly, environment affected the relationship between DON and IND.  相似文献   

19.
In Europe and North America, deoxynivalenol (DON) is the most prevalent mycotoxin associated with wheat head blight caused by Fusarium graminearum and Fusarium culmorum. Because DON is toxic to plants and enhances the ability of the pathogen to spread within a spike, wheat lines with resistance to DON should be more resistant to head blight. Resistance to DON has been associated with resistance gene Fhb1 that confers resistance to spread within a spike. The objectives of this study were to determine if wheat lines resistant to head blight were also resistant to DON, if genes other than Fhb1 confer resistance to DON, and to identify lines able to fill grain in the presence of DON. Susceptible controls and diverse North American and European winter wheat lines with resistance to head blight were screened for molecular markers linked to known head blight resistance genes, and evaluated in a greenhouse for resistance to DON and relative yield after application of DON to spikes at flowering. Fhb1 appeared to have the unique ability to confer resistance to DON, as measured by the number of DON‐bleached primary florets. However, this resistance did not protect plants from the phytotoxic effects of DON on kernel formation as measured by the relative yield of treated spikes. Furthermore, measuring the relative yield loss following DON application may be useful for identifying lines with tolerance to head blight.  相似文献   

20.
气候变化对宁夏春小麦发育历期影响模拟   总被引:3,自引:1,他引:2  
本文利用田间试验资料,建立了雨季和灌溉农业条件下春小麦各主要发育期间发育速率与气象条件的关系模式,进而讨论了春小麦发育进程对温度和水分变化的反应。分析表明全球气温上升、降水分布变化将对春小麦发育进程产生重要影响。温度上升将加快春小麦的生理发育速度,发育历期缩短,进而影响干物质的积累。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号