首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
ABSTRACT We applied DNA markers to determine whether parasexual recombination may contribute to the extreme genetic diversity and variability observed in Magnaporthe grisea, the causal agent of rice blast disease. Dispersed repetitive elements and mapped, low-copy restriction fragment length polymorphism (RFLP) probes were used to detect transfers of DNA between cultured isolates of M. grisea. Low-copy RFLP probes also were used to detect putative recombinants among isolates from well-characterized field populations of the pathogen. Microscopic examination of tufted mycelium between cocultured isolates revealed frequent hyphal fusions. Hyphal tips and conidia were recovered without selection from tufted zones in two separate vegetative pairings involving isolates with dissimilar haplotypes, based on the repetitive element MGR586. Haplotypic changes were observed at a higher frequency in tuft derivatives than in subcultures of each isolate alone. From 136 tuft derivatives analyzed, 5 putative recombinant haplotypes were identified. Introgression was demonstrated with two independent repetitive elements, fosbury and MGR586, as probes on DNA digested with several restriction enzymes. Introgressions were characterized by addition of 1 to 10 MGR586 bands, and 1 to 3 fosbury bands from one parent into the background of the other. Polymorphic single-copy probes were used to analyze putative recombinants. One probe detected an introgression event as predicted by analysis with MGR586. To assess the possible role of parasexual recombination in field populations of the pathogen, isolates in the Philippines previously grouped based on DNA fingerprinting were analyzed with low-copy RFLP markers. Polymorphism in single-copy loci typically was seen between, but not within, putative pathogen lineages. One lineage (designated lineage 4), however, was polymorphic for several probes. For some isolates, alleles at these loci comigrated with alleles characteristic of other lineages, suggesting the transfer of DNA fragments between lineages. One isolate was apparently a merodiploid, carrying an allele typical of lineage 4 plus another allele characteristic of a different lineage. In a survey of isolates from the Indian Himalayas, a merodiploid also was found with single- or low-copy probes. Examination of MGR586 profiles of the putative recombinant and its putative donor strains showed the expected introgression of MGR586 bands. The detection of parasexual DNA exchanges in wild-type strains under unselected conditions and the existence of merodiploids in nature suggest that parasexual recombination occurs in field populations of M. grisea. This raises questions concerning exclusive clonality in the blast fungus.  相似文献   

2.
Cai G  Schneider RW 《Phytopathology》2005,95(3):257-261
ABSTRACT Nitrogen nonutilizing (Nit) mutants were used to assess vegetative compatibility of 58 isolates of Cercospora kikuchii, 55 of which were isolated from soybean plants in Louisiana. Two isolates were vegetatively self-incompatible. Of 56 self-compatible isolates, 16 were assigned to six multimember vegetative compatibility groups (VCGs), 01 to 06, with 2 or 3 isolates in each VCG. The other 40 isolates each belonged to a distinct VCG. All six multimember VCGs contained isolates from different soy bean cultivars, and three included isolates from different locations. Only one of six multimember VCGs included isolates both from soybean leaves and seed, while the other five included isolates from only leaves or seed. The likelihood of tissue specificity or preference was discussed. All isolates and tested Nit mutants produced cercosporin on potato dextrose agar under light. Significantly different amounts of cercosporin were produced among wild-type isolates, and two Nit mutants produced significantly more cercosporin than their wild-type counterparts. All isolates produced typical Cercospora leaf blight symptoms on soybean plants in greenhouse pathogenicity tests.  相似文献   

3.
The feasibility of identifying races of Fusarium oxysporum f.sp. dianthi by tests for vegetative compatibility type was investigated. Nitrate non-utilizing nitl and NitM mutants were generated from 51 isolates of F. oxysporum f.sp. dianthi , 18 isolates of f. oxysporum from Dianthus spp. not belonging to f.sp. dianthi and, for comparison, 11 isolates of F. proliferatum from Dianthus spp. Vegetative compatibility groups (VCGs) among the isolates were identified by pairing all nitl with all NitM mutants.
Vegetative compatibility was found between isolates of F. oxysporum f.sp. dianthi races 1 and 8 (VCG 0022), races 2, 5 and 6 (VCG 0021) and race 4 (VCG 0020), and wilt-causing isolates previously classified as F. redolens from D. caryophyllus (VCG 0023) and D. barbatus (VCG 0024), Three self-compatible wilt-causing isolates were vegetatively incompatible with all other isolates (VCGs 0025,0026 and 0027), Two VCGs were found among isolates of F. oxysporum from D. caryophyllus not belonging to f.sp. dianthi ; six non-pathogenic isolates were self-compatible but vegetatively incompatible with all other isolates. The foot-rot-associated isolates of F. proliferatum from D. caryophyllus constituted a separate VCG.
Virulence analyses revealed at least four new races among VCGs 0023 to 0027, New Isolates could be categorized as races as a result of VCG analysis and VCG classification correctly indicated that the race identities previously ascribed to two old isolates had been incorrect. Vegetative compatibility tests offer the prospect for rapid identification of races, although inoculation tests continue to be necessary to differentiate races that belong to a single VCG.  相似文献   

4.
During the last years, Fusarium strains have been isolated from shoots and inflorescences of mango trees affected with floral and vegetative malformation in different orchards from the Axarquía region (south of Spain), highlighting the identification of Fusarium mangiferae. With the aim of elucidate epidemiological aspects and design more efficient control strategies, population diversity among the strains of F. mangiferae associated with MMD in Spain was determined by ap-PCR, RAPD-PCR, vegetative compatibility groups (VCGs) and mating type analyses. Three different VCGs were found among the Fusarium mangiferae Spanish isolates, two of them showing similar ap–PCR and RAPD profiles. PCR with primers specific for the mating type (MAT) alleles resulted in amplification of the MAT-2 allele fragment among the majority of the isolates, there being only two isolates MAT-1. This population diversity suggests at least three possible independent introductions of the pathogen into the Axarquía region.  相似文献   

5.
ABSTRACT A total of 106 isolates of Fusarium oxysporum obtained from diseased cucumber plants showing typical root and stem rot or Fusarium wilt symptoms were characterized by pathogenicity, vegetative compatibility, and random amplified polymorphic DNA (RAPD). Twelve isolates of other formae speciales and races of F. oxysporum from cucurbit hosts, three avirulent isolates of F. oxysporum, and four isolates of Fusarium spp. obtained from cucumber were included for comparison. Of the 106 isolates of F. oxysporum from cucumber, 68 were identified by pathogenicity as F. oxysporum f. sp. radicis-cucumerinum, 32 as F. oxysporum f. sp. cucumerinum, and 6 were avirulent on cucumber. Isolates of F. oxysporum f. sp. radicis-cucumerinum were vegetatively incompatible with F. oxysporum f. sp. cucumerinum and the other Fusarium isolates tested. A total of 60 isolates of F. oxysporum f. sp. radicis-cucumerinum was assigned to vegetative compatibility group (VCG) 0260 and 5 to VCG 0261, while 3 were vegetatively compatible with isolates in both VCGs 0260 and 0261 (bridging isolates). All 68 isolates of F. oxysporum f. sp. radicis-cucumerinum belonged to a single RAPD group. A total of 32 isolates of F. oxysporum f. sp. cucumerinum was assigned to eight different VCGs and two different RAPD groups, while 2 isolates were vegetatively self-incompatible. Pathogenicity, vegetative compatibility, and RAPD were effective in distinguishing isolates of F. oxysporum f. sp. radicis-cucumerinum from those of F. oxysporum f. sp. cucumerinum. Parsimony and bootstrap analysis of the RAPD data placed each of the two formae speciales into a different phylogenetic branch.  相似文献   

6.
Forty-three isolates ofVerticillium lecanii from insects, phytopathogenic fungi and other substrates were tested for vegetative compatibility by observing heterokaryon formation among complementary nitrate-nonutilizing (nit) mutants.nit mutants were isolated from 42/43 strains examined. Twenty-one isolates were self-incompatible, and the remaining 21 isolates were divided into 14 vegetative compatibility groups (VCGs): ten containing only a single strain each, and the remaining four containing two to four isolates each. Members of isolates in each of these VCGs all shared the same IGS haplotype. Further, the isolates within a VCG were correlated with one another in part by fragment patterns of mt-LrDNA, -SrDNA, Bt-2 and H4 region, by PCR-RFLP and -SSCP, but not by dsRNA. Two isolates belonging to VL-J2 have high virulence to aphids, whereas strains from VL-J1 lack this character. These findings indicate that two VCGs (VL-J1 and -J2) may originate from two distinct clonal lineages. Alternatively, high VCG diversity and HSI frequency ofV. lecanii might be associated with an array of distinct lineages. These data not only suggest relationships among DNA polymorphisms, virulence, and VCG, but also demonstrate genetic heterogeneity ofV. lecanii. http://www.phytoparasitica.org posting Sept. 30, 2003.  相似文献   

7.
ABSTRACT Genetic variation within a worldwide collection of 208 isolates of Fu-sarium oxysporum f. sp. cubense, representing physiological races 1, 2, 3, and 4 and the 20 reported vegetative compatibility groups (VCGs), was analyzed using modified DNA amplification fingerprinting. Also characterized were 133 isolates that did not belong to any of the reported VCGs of F. oxysporum f. sp. cubense including race 3 isolates from a Heliconia species and isolates from a symptomatic wild banana species growing in the jungle in peninsular Malaysia. The DNA fingerprint patterns were generally VCG specific, irrespective of geographic or host origin. A total of 33 different genotypes were identified within F. oxysporum f. sp. cu-bense; 19 genotypes were distinguished among the isolates that belonged to the 20 reported VCGs, and 14 new genotypes were identified among the isolates that did not belong to any of the existing VCGs. DNA fingerprinting analysis also allowed differentiation of nine clonal lineages within F. oxysporum f. sp. cubense. Five of these lineages each contained numerous closely related VCGs and genotypes, and the remaining four lineages each contained a single genotype. The genetic diversity and geographic distribution of several of these lineages of F. oxysporum f. sp. cubense suggests that they have coevolved with edible bananas and their wild diploid progenitors in Asia. DNA fingerprinting analysis of isolates from the wild pathosystem provides further evidence for the coevolution hypothesis. The genetic isolation and limited geographic distribution of four of the lineages of F. oxysporum f. sp. cubense suggests that the pathogen has also arisen independently, both within and outside of the center of origin of the host.  相似文献   

8.
A population of 84?V. dahliae isolates mainly originating from Crete, Greece, was characterized in terms of pathogenicity and virulence on different hosts, in parallel with morphological/physiological characterization, vegetative compatibility grouping and mating type determination. Tomato race 2 was found to have supplanted race 1 and was more virulent on a tomato-susceptible cultivar than race 1. Using a differential host classification system which tests pathogenicity to tomato, eggplant, sweet pepper and turnip, 59 isolates were assigned to tomato, 19 to eggplant, one to sweet pepper and five to tomato-sweet pepper pathogenicity groups. All isolates from Crete fell into VCG subgroups 2A, 2B and 4B, while a remarkably high incidence of bridging isolates (compatible with two or more VCGs) was recorded. The tomato-sweet pepper pathogenicity group was morphologically quite distinct from the others, while conidial length and pigment intensity were discriminatory parameters among VCGs 2A, 2B and 4B. PCR-based molecular marker Tr1/Tr2 was reliable in race prediction among tomato-pathogenic isolates, except for members of VCG 4B, while the application of markers Tm5/Tm7 and 35-1/35-2 was highly successful for tomato-pathogenic isolates. E10 marker was related to VCG 2B, rather than to pathogenicity groups. A single nucleotide polymorphism in the ITS2 region, and two novel molecular markers, M1 and M2, proved useful for the fast and accurate determination of major VCGs 2A, 2B and 4B, and can be used for high-throughput population analyses in future studies. The mating type was unrelated to VCG classification and probably does not control heterokaryon incompatibility in V. dahliae.  相似文献   

9.
Aspergillus flavus is considered a generalist-opportunistic pathogen, but studies are beginning to show that A. flavus populations have strains specific to various hosts. The research objective was to determine whether A. flavus soil populations consist of solely saprophytic strains and strains which can be facultatively parasitic on corn. A. flavus was isolated from both corn kernels and soil within 11 Louisiana fields. Sixteen vegetative compatibility groups (VCGs) were identified among 255 soil isolates. Only 6 of the 16 VCGs were identified in the 612 corn isolates and 88% of corn isolates were in two VCGs, whereas only 5% of soil isolates belonged to the same two VCGs. Isolates were characterized for aflatoxin B1 production and sclerotial size. A random subset of the isolates (99 from corn and 91 from soil) were further characterized for simple-sequence repeat (SSR) haplotype and mating type. SSR polymorphisms revealed 26 haplotypes in the corn isolates and 78 in the soil isolates, and only 1 haplotype was shared between soil and corn isolates. Corn and soil populations were highly significantly different for all variables. Differences between corn and soil populations indicate that some soil isolates are not found in corn and some isolates have become specialized to infect corn. Further understanding of A. flavus virulence is important for development of resistant hybrids and for better biological control against toxigenic A. flavus.  相似文献   

10.
Chestnut blight, caused by Cryphonectria parasitica, was identified in Devon, UK, in December 2016. Intensive surveys detected the disease at further sites in Devon (seven), Berkshire (one), Dorset (one), Derbyshire (four) and a cluster of eight sites in southeast London. Over 570 survey samples were tested, and 227 were positive for C. parasitica by isolation and real-time PCR. A total of 227 isolates were tested for mating type, and 197 screened for vegetative compatibility group (VCG) and compared with VCGs known from mainland Europe. The same isolates were also screened for the presence of Cryphonectria hypovirus 1 (CHV-1). Eleven VCGs were identified within the UK population. Five corresponded to already known European VCGs but six were unique. The European VCGs mainly came from the Devon, Dorset, Berkshire and Derbyshire disease outbreaks, whilst unique VCGs were almost exclusively from the southeast London cluster. Both mating types were detected, but only one mating type was present at each site, with the exception of a single Devon site. Perithecia of C. parasitica were never observed at any site. CHV-1 was found in seven isolates from three different locations and was always subtype-I, which has limited hypovirulence. Therefore, although CHV-1 is associated with C. parasitica at some outbreaks, it probably has limited impact on virulence. The diversity of VCGs and their distribution at outbreak sites, together with findings of CHV-1, suggests C. parasitica has been introduced to the UK multiple times over at least two decades through international plant trade.  相似文献   

11.
Farman ML 《Phytopathology》2002,92(3):245-254
ABSTRACT Gray leaf spot of perennial ryegrass (prg) (Lolium perenne), caused by the fungus Pyricularia grisea (teleomorph = Magnaporthe grisea), has rapidly become the most destructive of all turf grass diseases in the United States. Fungal isolates from infected prg were analyzed with several molecular markers to investigate their relationship to P. grisea strains found on other hosts. All of the molecular markers used in this study revealed that isolates from prg are very distantly related to those found on crabgrass. Fingerprinting with MGR586 (Pot3) revealed zero to three copies of this transposon in the prg pathogens, distinguishing them from isolates pathogenic to rice, which typically have more than 50 copies of this element. RETRO5, a newly identified retroelement in P. grisea, was present at a copy number of >50 in isolates from rice and Setaria spp. but only six to eight copies were found in the isolates from prg. The MAGGY retrotransposon was unevenly distributed in the prg pathogens, with some isolates lacking this element, some possessing six to eight copies, and others having 10 to 30 copies. These results indicated that the P. grisea isolates causing gray leaf spot are distinct from those found on crabgrass, rice, or Setaria spp. This conclusion was supported by an unweighted pair-group method with arithmetic average cluster analysis of single-copy restriction fragment length polymorphism haplo-types. Fingerprints obtained with probes from the Pot2 and MGR583 transposons revealed that the prg pathogens are very closely related to isolates from tall fescue, and that they share similarity with isolates from wheat. However, the wheat pathogens had fewer copies of these elements than those found on prg. Therefore, I conclude that P. grisea isolates commonly found on other host plant species did not cause gray leaf spot epidemics on prg. Instead, the disease appears to be caused by a P. grisea population that is specific to prg and tall fescue.  相似文献   

12.
ABSTRACT Since 1991, dramatic changes have occurred in the genetic composition of populations of Phytophthora infestans in the United States. Clonal lineages recently introduced into the United States (US-7 and US-8) are more common now than the previously dominant lineage (US-1). To help determine why these changes occurred, four clonal lineages of P. in-festans common during the early 1990s in the United States and Canada were evaluated for sensitivity to the protectant fungicides mancozeb and chlorothalonil using amended agar assays for isolates collected from 1990 to 1994. No isolate or lineage was resistant to either mancozeb or chlorothalonil. There were significant differences among isolates for degree of sensitivity to one fungicide individually, but there were no significant (P = 0.05) differences among the US-1, US-6, US-7, and US-8 clonal lineages for degree of sensitivity to both fungicides. Therefore, resistance to protectant fungicides cannot explain the rapid increase in frequency of the US-7 and US-8 clonal lineages. Three components of pathogenic fitness (latent period, lesion area, and sporulation after 96 h) were tested for the three clonal lineages that were detected most commonly during 1994 (US-1, US-7, and US-8). All but one of the isolates in this analysis were collected during 1994 and evaluated within 10 months of collection by inoculating detached leaflets of the susceptible potato cultivar Norchip. There were significant differences between the US-1 and US-8 clonal lineages for lesion area and sporulation, and between US-1 and US-7 for latent period. The US-6 clonal lineage was excluded from the pathogenic fitness experiments, because no isolates of this lineage were collected during 1994. Compared with US-7 and US-8, US-1 had the longest latent period and the smallest lesions with the least sporulation. Incorporation of the differences between US-1 and US-8 in computer simulation experiments revealed that significantly more protectant fungicide (e.g., 25%) would be required to suppress epidemics caused by the US-8 clonal lineage compared with US-1. These differences in pathogenic fitness components probably contribute to the general predominance of the "new" clonal lineages (especially US-8) relative to the "old" US-1 lineage.  相似文献   

13.
Eighty isolates ofVerticillium dahliae from the southeastern Anatolia region and 20 isolates from the east Mediterranean region from wilted cotton plants were used for vegetative compatibility analysis employing nitrate non-utilizing mutants and reference tester strains of vegetative compatibility groups (VCGs) 1A, 2A, 2B, 3, 4A and 4B. Of the 100V. dahliae isolates, 49 were assigned to VCG1A, 39 to VCG2B, nine to VCG2A and three to VCG4B. Pathogenicity assays were conducted on susceptible cotton cv. Çukurova 1518 in the greenhouse. All VCG1A isolates induced defoliation and all VCG2B isolates caused partial defoliation symptoms. Isolates of VCG2A and VCG4B caused typical symptoms of leaf chlorosis without defoliation. This is the first report on VCGs ofV. dahliae in the southeastern Anatolia region of Turkey, which demonstrates that VCG1A of the cotton-defoliating type and VCG2B of the partially defoliating type are prevalent in this region.  相似文献   

14.
Isolates ofF. oxysporum collected from symptomless carnation cuttings from Australian carnation growers properties, together with isolates from national collections, were screened for pathogenicity and grouped according to vegetative compatibility and random amplified polymorphic DNA (RAPD) patterns. The collection of 82 Australian isolates sorted into 23 different vegetative compatibility groups (VCGs). Of 69 isolates tested for pathogenicity, 24 were pathogenic to carnations, while the remaining 45 were non-pathogenic. All pathogenic isolates were within two VCGs, one of which was also compatible with an isolate obtained from an international culture collection, and which is known to represent VCG 0021 and race 2. Race status of the two pathogenic VCGs remains unknown. The RAPD assay revealed distinct DNA banding patterns which could distinguish pathogenic from non-pathogenic isolates as well as differentiate between isolates from the two pathogenic VCGs.  相似文献   

15.
ABSTRACT The Cryphonectria parasitica populations in two 6-year-old European chestnut (Castanea sativa) coppices were investigated in southern Switzerland over a period of 4 years. Occurrence of white isolates indicating an infection with Cryphonectria hypovirus, vegetative compatibility groups (VCGs), hypovirulence conversion capacity, and mating types were used to characterize the populations. Sampling of randomly chosen cankers in the first year yielded 59% white isolates in one and 40% in the other population. The distribution of the VCGs and mating types was similar among white and orange isolates, indicating a homogeneous infection of the two populations by the hypovirus. Fourteen VCGs were found in the first population, 16 VCGs in the second. Altogether, 21 VCGs were determined. The same three VCGs dominated in both populations, comprising more than 60% of all isolates. Several VCGs were represented only by white isolates. Five of the six most common VCGs were clustered in two hypovirulence conversion groups, with almost 100% hypovirus transmission within each cluster. Repeated sampling of the same cankers in 1990, 1992, and 1994 did not reveal an increase of white isolates. The portion of blighted stems rose from 37% to about 60% in both plots within 4 years. In this time, chestnut blight killed 15% and competition an additional 21% of the sprouts. Predominantly, sprouts with low diameters at breast height were killed. The growth rate of new cankers was high in their first year and decreased gradually in the following years. A role of hypovirulence in the decline of disease severity was evident since (i) cankers yielding white isolates grew slower and killed considerably fewer sprouts than cankers with orange isolates; and (ii) the majority of the cankers yielded white isolates at least once during the 4-year observation period.  相似文献   

16.
 从荸荠、棉花、西瓜、黄瓜、胡瓜、大豆、花生等12种寄主作物上获得尖孢镰孢(F-usarium oxysporum)菌株20个,已知15个菌株分属于6个专化型。所有20个菌株在含有氯酸盐的培养基上产生抗氯酸盐的突变体,其突变体在以硝酸盐作为氮源的培养基上表现为无气生菌丝生长,即不能利用硝酸盐的突变株(nit),共获得nit突变株181个。同一专化型的nit突变株之间在以硝酸盐为氮源的培养基上配对时,在菌丝接触处可产生互补作用,即营养体亲和性,表现为旺盛气生菌丝生长。不同专化型的nit突变株之间则不能互补产生异核体而表现为非亲和性仍为突变型生长。每个菌株均获得能产生互补作用的nit突变株。根据营养体亲和性反应,20个菌株归入13个营养体亲和群(VCG),并显示出VCGs与菌株专化型之间的相关性。nit突变株在一般条件下是稳定的,而且某些nit株的亲和能力特强。  相似文献   

17.

A survey was conducted in 1998 to determine the status and impact of mango malformation in Egypt. In the El Giza, Ismailîa and Sharkaia Governerates, disease incidence and severity ranged from 20 to 100% and from 5 to 60%, respectively. In contrast, 75 km to the south in the El Faiyûm Governerate, incidence and severity were lower, 3-5 and 0.1 to <1%, respectively. Based on these figures and recent production statistics, it is estimated that malformation causes losses in Egypt of at least E35 million/year. When malformation was managed in El Giza, Ismailîa and Sharkaia by removing affected vegetative and floral terminals, the mean disease incidence and severity were lower than in non-managed orchards (69 versus 29% and 29 versus 6%, respectively). Thirty-nine isolates of the pathogen, Fusarium mangiferae, recovered during the survey were sexually incompatible with the B, C and D mating populations of the Gibberella fujikuroi complex; 10 of these were also incompatible among themselves. Four vegetative compatibility groups (VCGs) were detected among 43 of the isolates from this and a previous survey. VCG was generally not correlated with farm, governerate or host cultivar, and in three instances, isolates from two different VCGs were recovered from the same tree. RAPD analyses divided isolates into two genetically distinct clusters: Group I contained isolates in VCGs 1, 2 and 4; Group II contained isolates in VCG 3. The VCG and RAPD data support the conclusion that isolates of the pathogen from the Nile Delta were probably responsible for the recent appearance of the disease in El Faiyûm.  相似文献   

18.
Thirty-nine isolates of Fusarium verticillioides from maize seeds from three regions of Costa Rica were classified on fertility, fumonisin production, vegetative compatibility and pathogenicity. The identity of the isolates was verified by sexual crosses with standard tester strains and by isozyme analysis. Twenty-three isolates (59%) were mating type A and 16 (41%) were A+; 29 (74%) were female fertile. The isolates produced high amounts of fumonisin B1 when grown on sterilized maize grits, 32 isolates producing more than 1000 μg g−1, as determined by TLC, and 7 less than 1000 μg g−1. Vegetative compatibility tests by pairing nit mutants identified 34 vegetative compatibility groups (VCGs), of which 29 had one member and 5 had two members. Isolates belonging to the same VCG were obtained from the same seed sample. Two pathogenicity tests with different inoculation methods were performed: on toothpick inoculation of 7-week-old maize stalks, 71% of the isolates were pathogenic according to the length of the necrosis formed in the stalk, and on sand inoculation of maize seedlings all the isolates were pathogenic, according to shoot length and dry weight production. Differences in aggressiveness between some of the isolates were recorded. It is concluded that natural populations of F. verticillioides in Costa Rica consist of genetically diverse, highly fertile and pathogenic isolates that represent a potential risk for disease development and fumonisin accumulation in maize crops.  相似文献   

19.
Three evolutionary lineages of the tomato wilt pathogen Fusarium oxysporum f. sp. lycopersici were found among a worldwide sample of isolates based on phylogenetic analysis of the ribosomal DNA intergenic spacer region. Each lineage consisted of isolates mainly belonging to a single or closely related vegetative compatibility group (VCG) and a single mating type (MAT). The first lineage (A1) was composed of isolates VCG 0031 and MAT1-1; the second (A2) included VCG 0030 and/or 0032 and MAT1-1; and the third (A3) included VCG 0033 and MAT1-2. Race 1 and race 2 isolates belonged to the A1 or A2 lineages, and race 3 belonged to A2 or A3 lineages, suggesting that there is no correlation between race and lineage. However, for the isolates from Japan, race 1 (with one exception), race 2, and race 3 isolates belonged to A2, A1, and A3 lineages, respectively. These results suggest that the races could have evolved independently in each lineage; and in Japan the present races were likely to have been introduced independently after they had evolved in other locations.  相似文献   

20.
Host Range Specificity in Verticillium dahliae   总被引:1,自引:0,他引:1  
Bhat RG  Subbarao KV 《Phytopathology》1999,89(12):1218-1225
ABSTRACT Verticillium dahliae isolates from artichoke, bell pepper, cabbage, cauliflower, chili pepper, cotton, eggplant, lettuce, mint, potato, strawberry, tomato, and watermelon and V. albo-atrum from alfalfa were evaluated for their pathogenicity on all 14 hosts. One-month-old seedlings were inoculated with a spore suspension of about 10(7) conidia per ml using a root-dip technique and incubated in the greenhouse. Disease incidence and severity, plant height, and root and shoot dry weights were recorded 6 weeks after inoculation. Bell pepper, cabbage, cauliflower, cotton, eggplant, and mint isolates exhibited host specificity and differential pathogenicity on other hosts, whereas isolates from artichoke, lettuce, potato, strawberry, tomato, and watermelon did not. Bell pepper was resistant to all Verticillium isolates except isolates from bell pepper and eggplant. Thus, host specificity exists in some isolates of V. dahliae. The same isolates were characterized for vegetative compatibility groups (VCGs) through complementation of nitrate nonutilizing (nit) mutants. Cabbage and cauliflower isolates did not produce nit mutants. The isolate from cotton belonged to VCG 1; isolates from bell pepper, eggplant, potato, and tomato, to VCG 4; and the remaining isolates, to VCG 2. These isolates were also analyzed using the random amplified polymorphic DNA (RAPD) method. Forty random primers were screened, and eighteen of them amplified DNA from Verticillium. Based on RAPD banding patterns, cabbage and cauliflower isolates formed a unique group, distinct from other V. dahliae and V. albo-atrum groups. Minor genetic variations were observed among V. dahliae isolates from other hosts, regardless of whether they were host specific or not. There was no correlation among pathogenicity, VCGs, and RAPD banding patterns. Even though the isolates belonged to different VCGs, they shared similar RAPD profiles. These results suggest that management of Verticillium wilt in some crops through crop rotation is a distinct possibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号