首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In 1995, conidia of Ulocladium atrum were applied to a canopy of green lily (Lillium spp.) leaves in order to investigate its survival, colonisation of artificially induced necrotic leaf tissues and competitive ability against Botrytis spp. and naturally occurring saprophytes. U. atrum conidia density cm-2 at the top and middle canopy levels was not significantly different following application of the antagonist with a propane powered backpack sprayer. In repeat experiments, conidia density on leaves at the lower canopy level was 18% to 20% of that deposited onto leaves at the top of the lily canopy. There was a significant (P < 0.001) linear decline of U. atrum conidia over time and after 21 days conidia density had declined by up to 73%. Germination of U. atrum on green leaves in the field reached a maximum of 81%, seven days after antagonist application. Conidial viability, measured as germination potential, declined slightly (100% to 88%) after seven days exposure to field conditions but there were no further changes in the germination potential even after 21 days of field exposure. The germination potential was not affected by canopy level. The ability of surviving U. atrum conidia to colonise necrotic tissues, artificially induced with paraquat, was measured. U. atrum colonisation was consistently highest on necrotic leaves at the top level of the canopy and consistently lower on leaves from the bottom canopy level. Necrotic leaf colonisation by U. atrum decreased over time from 51% (necrosis induced immediately after antagonist application) to 21% when necrosis was induced 21 days after antagonist application. A significant (P < 0.001) linear relationship (R2 = 0.713) between colonisation of necrotic tissues and conidia density prior to induction of necrosis was detected. When necrosis was induced immediately after antagonist application, U. atrum outcompeted commonly occurring saprophytic Alternaria spp. and Cladosporium spp. The ability of U. atrum to significantly reduce colonisation by Alternaria spp. was maintained for up to 21 days. Botrytis spp. did not occur in these field experiments. It was concluded that U. atrum had the ability to survive and persist in the phyllosphere for up to 21 days in the field and provided further evidence that U. atrum has the necessary survival characteristics to be a successful biological control agent of Botrytis spp.  相似文献   

2.
ABSTRACT The effect of treatments with conidial suspensions of Ulocladium atrum and Gliocladium roseum on leaf rot of cyclamen caused by Botrytis cinerea was investigated under commercial greenhouse conditions. Spraying U. atrum (1 x 10(6) conidia per ml) or G. roseum (2 x 10(6) conidia per ml and 1 x 10(7) conidia per ml) at intervals of 2 to 3 weeks during the production period and spraying U. atrum (1 x 10(6) conidia per ml) at intervals of 4 to 6 weeks resulted in a significant reduction of natural infections of petioles by B. cinerea. U. atrum or G. roseum (1 x 10(7)conidia per ml) was as effective as the standard fungicide program. B. cinerea colonized senesced leaves within the plant canopy and infected adjacent petioles and leaves later. The antagonists colonized senesced leaves and reduced B. cinerea development on these leaves. Thus, the inoculum potential on petioles adjacent to necrotic leaf tissues was reduced. The fate of U. atrum conidia on surfaces of green cyclamen leaves during a 70-day period after application was studied. The number of conidia per square centimeter of leaf surface remained relatively constant during the entire experiment. Sixty percent of the conidia sampled during the experiments retained the ability to germinate. When green leaves were removed from the plants to induce senescence and subsequently were incubated in a moist chamber, U. atrum colonized the dead leaves. Senesced leaves also were colonized by other naturally occurring fungi including B. cinerea. On leaves treated with U. atrum from all sampling dates, sporulation of B. cinerea was significantly less as compared with the untreated control. Our results indicate that early applications of U. atrum before canopy closure may be sufficient to achieve commercially satisfactory control of Botrytis leaf rot in cyclamen.  相似文献   

3.
Berto P  Jijakli MH  Lepoivre P 《Phytopathology》2001,91(11):1030-1036
ABSTRACT Ulocladium atrum (strain 385) consistently reduced Botrytis cinerea sporulation on necrotic fragments of strawberry leaves. On these tissues, two strains of U. atrum (isolates 18558 and 18559) showed lower antagonistic activities than the reference strain 385. Colonization of strawberry leaflets by the three U. atrum strains appeared similar in the absence of B. cinerea, whether quantified by chitin or immunological assays. The second method (based on anti-U. atrum antibodies) revealed that strawberry leaflet colonization by U. atrum 385 was better than by the other U. atrum strains in the presence of B. cinerea. An immunoassay using anti-B. cinerea antibodies revealed that the colonization of B. cinerea in tissues was lower in the presence of U. atrum 385 than with the two other U. atrum strains. The enzymatic activities produced by U. atrum 385 during the colonization phases of necrotic tissues were compared to B. cinerea and U. atrum strains 18558 and 18559. U. atrum 385 had the highest lipase, pectate lyase, and cellobiase activities while B. cinerea had the highest endo-beta-1,4-glucanase activity. The study of lytic activities hydrolyzing the fungal cell wall revealed higher beta-1,3-glucanase activity with U. atrum 385, which was stimulated by B. cinerea on necrotic strawberry leaflets. These results suggest that plant and fungal cell wall-degrading enzymes produced by U. atrum 385 may play a complementary role in the competitive colonization of dead strawberry leaves against B. cinerea.  相似文献   

4.
ABSTRACT A spatially explicit model describing saprophytic colonization of dead cyclamen leaf tissue by the plant-pathogenic fungus Botrytis cinerea and the saprophytic fungal antagonist Ulocladium atrum was constructed. Both fungi explore the leaf and utilize the resources it provides. Leaf tissue is represented by a two-dimensional grid of square grid cells. Fungal competition within grid cells is modeled using Lotka-Volterra equations. Spatial expansion into neighboring grid cells is assumed proportional to the mycelial density gradient between donor and receptor cell. Established fungal biomass is immobile. Radial growth rates of B. cinerea and U. atrum in dead cyclamen leaf tissue were measured to determine parameters describing the spatial dynamics of the fungi. At temperatures from 5 to 25 degrees C, B. cinerea colonies expanded twice as rapidly as U. atrum colonies. In practical biological control, the slower colonization of space by U. atrum thus needs to be compensated by a sufficiently dense and even distribution of conidia on the leaf. Simulation results confirm the importance of spatial expansion to the outcome of the competitive interaction between B. cinerea and U. atrum at leaf scale. A sensitivity analysis further emphasized the importance of a uniform high density cover of vital U. atrum conidia on target leaves.  相似文献   

5.
ABSTRACT The colonization of dead onion leaves by Botrytis aclada and the fungal antagonists Aureobasidium pullulans, Chaetomium globosum, Glio-cladium catenulatum, and Ulocladium atrum and the interactions between B. aclada and each of the four antagonists were studied at the microscopic and ultrastructural level. This approach was used in an attempt to understand the colonization pattern of these fungi and the nature of the biocontrol activity of the antagonists that have shown a potential to suppress spore production of Botrytis spp. on necrotic plant tissues. When applied alone, B. aclada and U. atrum were found throughout the leaf tissues in high densities after an incubation period of 6 days at 18 degrees C in a moist chamber. C. globosum and G. catenulatum colonized only the outer portions of the leaf, whereas A. pullulans appeared to be concentrated in the leaf stomata. When pathogen and antagonists were applied together, ultrastructural observations revealed that cells of B. aclada were plasmolyzed in the presence of G. catenulatum, suggesting a reaction to antifungal molecules. Antibiosis also seemed to be involved, albeit to a lesser extent, in the antagonistic interactions between B. aclada and A. pullulans or C. globosum. No evidence of direct parasitism was recorded. On the other hand, U. atrum appeared to completely exclude B. aclada from dead onion tissues when both fungi competed for the substrate. Ultrastructural observations of the in vitro interaction between the two fungi did not reveal parasitism or antibiosis by either fungus. Based on previous records of its biocontrol potential and observations of its colonizing properties, it appears that U. atrum can compete for and utilize necrotic tissues rapidly and extensively, thus, excluding competitors without any other antagonistic action.  相似文献   

6.
ABSTRACT The effect of preliminary nutrient activation on the ability of conidia of the antagonist Trichoderma harzianum (atroviride) P1 to suppress Botrytis cinerea was investigated in laboratory, greenhouse, and field trials. Preliminary nutrient activation at 21 degrees C accelerated subsequent germination of the antagonist at temperatures from 9 to 21 degrees C; at >/=18 degrees C, the germination time of preactivated T. harzianum P1 conidia did not differ significantly from that of B. cinerea. When coinoculated with B. cinerea, concentrated inocula of preactivated but ungerminated T. harzianum P1 conidia reduced in vitro germination of the pathogen by >/=87% at 12 to 25 degrees C; initially quiescent conidia achieved this level of suppression only at 25 degrees C. Application of quiescent T. harzianum P1 conidia to detached strawberry flowers in moist chambers reduced infection by B. cinerea by >/=85% at 24 degrees C, but only by 35% at 12 degrees C. Preactivated conidia reduced infection by >/=60% at 12 degrees C. Both quiescent and preactivated conidia significantly reduced latent infection in greenhouse-grown strawberries at a mean temperature of 19 degrees C, whereas only preactivated conidia were effective in the field at a mean temperature of 14 degrees C on the day of treatment application. An antagonistic mechanism based on initiation of germination in sufficiently concentrated inocula suggests that at suboptimal temperatures the efficacy of Trichoderma antagonists might be improved by conidia activation prior to application.  相似文献   

7.
ABSTRACT A technique was developed to localize and quantify the internal mycelial colonization of necrotic leaf tissue of cyclamen (Cyclamen persicum) or lily (Lilium) by pathogenic Botrytis spp. and the antagonist Ulocladium atrum. This technique allows investigation of competitive substrate colonization by both fungi, which is a key process for biological control of Botrytis spp. by U. atrum. A combination of differential fluorescent labeling and image analysis was applied on cryostat sections of necrotic leaf tissue. Botrytis mycelium was labeled specifically by indirect immunofluorescence using a monoclonal antibody specific for Botrytis spp. And an antimouse fluorescein conjugate. Wheat germ agglutinin conjugated to the fluorochrome TRITC was used to label mycelium of both fungi. Image analysis was used to measure the relative surface area of the cryostat section covered by fluorescing hyphae of Botrytis spp. and by fluorescing hyphae of both fungi. A mathematical conversion was derived and used to calculate the relative mycelial volume of each fungal species in the necrotic tissue based on the measured relative surface areas. Temporal aspects of substrate colonization were studied in a short time series. An analysis of components of variance provided insight into spatial colonization patterns for the fungal species involved and allowed the design of efficient sampling strategies for future experiments.  相似文献   

8.
Hjeljord LG  Tronsmo A 《Phytopathology》2003,93(12):1593-1598
ABSTRACT Trichoderma biocontrol isolates are most effective as highly concentrated inocula. Their antagonism to other fungi may be a result of pregermination respiration. In a nutrient-rich medium, almost all Trichoderma atroviride P1 (P1) conidia initiated germination processes and increased respiration, even in dense suspensions. When 1 x 10(7) P1 conidia/ml were coinoculated with 1 x 10(5) Botrytis cinerea conidia/ml, dissolved oxygen fell to <1% within 2 h and the pathogen failed to germinate. More dilute P1 suspensions consumed oxygen slowly enough to allow coinoculated B. cinerea to germinate. On nutrient-poor media, fewer P1 conidia initiated germination. Oxygen consumption by the inoculum and inhibition of B. cinerea were enhanced when P1 conidia were nutrient activated before inoculation. Pregermination respiration also affected competitive capacity of the antagonist on solid substrates, where respiratory CO(2) stimulated germination rate and initial colony growth. These parameters were directly correlated with inoculum concentration (R(2) >/= 0.97, P < 0.01). After initiating germination, Trichoderma conidia became more sensitive to desiccation and were killed by drying after only 2 h of incubation on a nutrient-rich substrate at 23 degrees C. These results indicate that nutrient-induced changes preceding germination in Trichoderma conidia can either enhance or decrease their biological control potential, depending on environmental conditions in the microhabitat.  相似文献   

9.
Pretreatment of detached tomato leaves with o -hydroxyethylorutin reduced the percentage leaf area affected, and delayed the appearance of necrosis, following inoculation with conidial suspensions in droplets of the grey mould fungus Botrytis cinerea . o -Hydroxyethylorutin delayed, but did not inhibit, in vitro germination of conidia, although overall percentage germination was reduced compared with water controls. Both the reactive oxygen species (ROS) – superoxide anions and hydrogen peroxide – increased twice as much in o -hydroxyethylorutin-treated leaf tissue 2 and 6 h postinoculation with B. cinerea conidia in tissues under inoculation drops, as well as in surrounding tissues, whereas in plants not pretreated with the compound ROS generation was noticed later, and only in tissues under inoculation drops. Compared with these compounds, changes in the levels of hydroxyl radicals, lipid peroxidation and the activity of the enzymes superoxide dismutase, guaiacol peroxidase, ascorbate peroxidase and catalase were largely unchanged. In stimulating ROS in inoculated tomato tissue, B. cinerea appeared to be affected directly pre- and postinfection, but indirect effects increasing host resistance cannot be excluded.  相似文献   

10.
两种季铵盐阳离子表面活性剂对番茄灰霉病菌的毒理效应   总被引:2,自引:1,他引:1  
为探讨季铵盐阳离子表面活性剂1227和C8-10对番茄灰霉病菌Botrytis cinerea的毒理效应,运用电子显微镜、氧电极、紫外-可见分光光度计等测定了1227、C8-10对番茄灰霉病菌分生孢子萌发、细胞壁结构、呼吸作用和三种细胞壁降解酶的影响,并在番茄叶片活体上接种经药剂处理的番茄灰霉病菌,观察药剂对其侵染活性的影响.结果显示,两种季铵盐阳离子表面活性剂5μg/mL处理可使分生孢子芽管变短变粗、基部明显膨大,显著抑制聚甲基半乳糖醛酸酶、多聚半乳糖醛酸酶和羧甲基纤维素酶的活性,并可显著影响番茄灰霉病菌在番茄活体叶片上的侵染活性;40μg/mL处理可导致菌体细胞壁表面出现多处破损、细胞内含物聚集等现象;100μg/mL处理显著抑制分生孢子的呼吸作用;250μg/mL和1 000μg/mL处理对病原菌菌丝呼吸产生破坏作用.说明两种季铵盐杀菌剂高剂量能够破坏菌体细胞壁结构,导致番茄灰霉病菌呼吸完全停止和死亡,而低剂量可以抑制细胞胞壁降解酶的活性,降低其致病力.  相似文献   

11.
Keller M  Viret O  Cole FM 《Phytopathology》2003,93(3):316-322
ABSTRACT Inflorescences of field-grown grapevines (Vitis vinifera L. cv. Gamay) were inoculated with a Botrytis cinerea conidia suspension or dried conidia at different stages during bloom in moist weather. Approximately 10% of the conidia germinated within 72 h, resulting in two to three times more latent infections than uninoculated controls in pea-size (7 mm in diameter) berries. In surface-sterilized pea-size berries, latent B. cinerea was present predominantly in the receptacle area. After veraison, latent B. cinerea also was found in the style and, in mature berries, latent colonies were distributed throughout the pulp. Inoculation at full bloom led to the highest disease severity (66%) at harvest, compared with 38% in controls. Stilbene stress metabolites in the flowers were measured by high-performance liquid chromatography. Resveratrol accumulated mainly after pre-bloom and full-bloom inoculation, but did not prevent infection. Piceid levels did not change following inoculation, while epsilon-viniferin was found in necrotic tissues only, and pterostilbene and alphaviniferin were not detected at all. B. cinerea conidia suspensions also were applied to various locations on flowers of pot-grown cvs. Pinot Noir and Chardonnay. Inoculation of the receptacle area, but not that of the stigma and ovary, resulted in latent infections. Stilbene synthesis was similar to the field results, with resveratrol accumulating mainly in the calyptra and receptacle area. Constitutive soluble phenolic compounds (mainly derivatives of quercetin and hydroxy-cinnamic acid) were present at high concentrations in the calyptra but at low levels in the receptacle area. These experiments confirmed bloom as a critical time for B. cinerea infection in grapes and suggest that the most likely site of infection is the receptacle area or cap scar exposed at anthesis. Stilbenes may have a limited role in inhibition of flower infection and latency in susceptible grape cultivars, and epsilon-viniferin may be a by-product rather than a deterrent of infection.  相似文献   

12.
ABSTRACT Two biocontrol agents, a yeast (Pichia guilermondii) and a bacterium (Bacillus mycoides), were tested separately and together for suppression of Botrytis cinerea on strawberry leaves and plants. Scanning electron microscopy revealed significant inhibition of Botrytis cinerea conidial germination in the presence of Pichia guilermondii, whereas Bacillus mycoides caused breakage and destruction of conidia. When both biocontrol agents were applied in a mixture, conidial destruction was more severe. The modes of action of each of the biocontrol agents were elucidated and the relative quantitative contribution of each mechanism to suppression of Botrytis cinerea was estimated using multiple regression with dummy variables. The improvement in control efficacy achieved by introducing one or more mechanisms at a time was calculated. Pichia guilermondii competed with Botrytis cinerea for glucose, sucrose, adenine, histidine, and folic acid. Viability of the yeast cells played a crucial role in suppression of Botrytis cinerea and they secreted an inhibitory compound that had an acropetal effect and was not volatile. Bacillus mycoides did not compete for any of the sugars, amino acids, or vitamins examined at a level that would affect Botrytis cinerea development. Viable cells and the compounds secreted by them contributed similarly to Botrytis cinerea suppression. The bacteria secreted volatile and non-volatile inhibitory compounds and activated the defense systems of the host. The nonvolatile compounds had both acropetal and basipetal effects. Mixture of Pichia guilermondii and Bacillus mycoides resulted in additive activity compared with their separate application. The combined activity was due to the summation of biocontrol mechanisms of both agents. This work provides a theoretical explanation for our previous findings of reduced disease control variability with a mixture of Pichia guilermondii and Bacillus mycoides.  相似文献   

13.
The rate of conidiogenic germination of Botrytis squamosa was highest at 16°C and the greatest numbers of conidia per sclerotium (up to 5 × 104) were produced at temperatures of 5–10°C. At temperatures above 20°C, the percentage of sclerotia producing conidia declined rapidly. Decreasing water potential reduced the rate at which conidia were produced and also resulted in fewer conidia produced per sclerotium. However, conidia were produced at water potentials as low as −2 MPa, at which sclerotial germination was at least 60%. A simulation model that included effects of both temperature and water potential was developed from laboratory and field data obtained for conidial production in sclerotia exposed for periods of 1, 2, 3 or 4 weeks during an entire year. There was good agreement between conidiogenic germination predicted by the model and conidial production observed in onion plots artificially inoculated with sclerotia. Temperature and water potential were therefore considered to be the principal microclimatic factors affecting conidial production by B. squamosa. The role of sclerotia in the context of UK onion production is discussed.  相似文献   

14.
测定了致病杆菌CB43菌株代谢物对灰葡萄病菌菌丝生长和孢子萌发的影响。结果表明:CB43代谢物对灰葡萄孢菌丝生长有较强的抑制作用,500、250、125ml/L代谢物能完全抑制菌丝的生长,并具有杀死作用。62.5ml/L的发酵液处理灰葡萄病菌菌丝72h的抑制率仍达83.35%。20ml/L的发酵液处理灰葡萄孢菌丝能引起菌丝畸形,异常分支、粗短。CB43代谢物能杀死灰葡萄孢分生孢子或抑制其萌发,500~62.5ml/L的发酵液处理16h后,孢子萌发抑制率达88.1%~97.91%。温室试验表明,CB43代谢物对黄瓜灰霉病的控制效果达84.09%,化学农药40%施佳乐的效果为72.94%。  相似文献   

15.
Buck JW 《Phytopathology》2004,94(2):196-202
ABSTRACT Control of Botrytis cinerea on geranium seedlings was evaluated in treatments with phylloplane yeasts in combination with 10 fungicides used to manage Botrytis blight of ornamental plants. Rhodotorula glutinis PM4 significantly reduced the development of lesions caused by B. cinerea on geranium cotyledons; however, yeast biocontrol efficacy was highly variable between trials. Treatment with the yeast in combination with azoxystrobin or trifloxystrobin at one tenth the labeled rate (7.5 mug a.i. ml(-1)) or the full labeled rate (7.5 mug a.i. ml(-1)) reduced lesion development, compared to treatment with the yeast or the fungicide alone. Vinclozolin at half the labeled rate or the full labeled rate (250 or 500 mug a.i. ml(-1)), in combination with R. glutinis PM4, significantly reduced the development of lesions caused by an isolate of B. cinerea resistant to vinclozolin. Copper hydroxide and iprodione at one-tenth the labeled rates, with or without yeast, were highly effective in limiting lesion development. Mancozeb did not increase the biocontrol efficacy of the yeast, and thiophanate-methyl negatively affected the yeast efficacy. Improved disease control was observed in treatments with vinclozolin at the labeled rate and R. glutinis PM4 at cell densities of 5 x 10(5) and 1 x 10(6) cells ml(-1), but not 1 x 10(5) cells ml(-1), on seedlings co-inoculated with B. cinerea in a suspension containing 1 x 10(5) conidia ml(-1). Disease control improved in treatments with combinations of vinclozolin and eight other isolates of R. glutinis, two isolates of R. graminis, and two isolates of R. mucilaginosa. Biocontrol was not observed in treatments with two isolates of R. minuta. The combination of yeast and vinclozolin significantly reduced the germination of conidia of B. cinerea and the growth of R. glutinis PM4 in vitro. All combinations of R. glutinis PM4 with azoxystrobin, trifloxystrobin, or vinclozolin provided highly effective and consistent disease control not observed in treatments with the fungicides alone or the yeast alone.  相似文献   

16.
An isolate of Gliocladium roseum proved highly antagonistic to Botrytis cinerea . Sporulation of B. cinerea on chickpea seed naturally infected or inoculated with B. cinerea was suppressed by seed treatment with conidial suspensions of G. roseum at 107 and 108 conidia/mL, respectively. Establishment of healthy seedlings in punnets (small trays) 5 weeks after sowing with inoculated seed was increased from 29.2% to 59.7% by treatment with G. roseum at 3×107 conidia/mL, and from 1.4% to 69.4% with G. roseum at 3×108 conidia/mL, the latter being equivalent to disease control by Thiram. There was no significant effect of Rhizobium on disease suppression by G. roseum , and treatment with G. roseum at 108 conidia/mL did not reduce nodulation. Amendment with culture filtrates of G. roseum did not affect the growth rate of B. cinerea on potato dextrose agar, indicating that constitutive production of an antibiotic is not involved in biocontrol. A selective medium was developed to enumerate propagules of G. roseum on seed recovered from soil. There was no significant change in the population of G. roseum on seed after incubation for 4 weeks in soil to which the isolate of G. roseum was indigenous.  相似文献   

17.
灰葡萄孢是引起作物灰霉病的病原菌,分生孢子是其传播的主要载体.本文采用代谢技术分析了灰葡萄孢对Biolog FF板碳源的利用及其产孢情况,并测定了在多菌灵、丙环唑、嘧霉胺、异菌脲和咪鲜胺5种杀菌剂胁迫下灰葡萄孢产孢所需碳源种类.结果表明:糖类、氨基酸类等92种碳源均能被灰葡萄孢代谢,其中,杏仁苷、L-阿拉伯糖等35种碳...  相似文献   

18.
Cook DW 《Phytopathology》2002,92(12):1293-1299
ABSTRACT A mechanism that could contribute to the suppression of Botrytis cinerea during pathogen sporulation was examined in this study. Yeasts capable of binding to B. cinerea were formulated with a cellulose carrier and applied to sporulating colonies of the pathogen. The particles from this yeast/cellulose product attached to B. cinerea conidia in the sporulating colony. Inoculum from treated colonies was harvested and applied to tomato stem tissue to test for subsequent pathogenicity. Disease development from inoculum obtained from cultures that had been treated with Trichosporon pullulans was significantly retarded (P = 0.0001) compared with cellulose-only controls. However, between 5 and 11% of conidia applied were attached to yeast cells. The removal of conidia not attached to yeast resulted in inoculum composed of >90% of conidia attached to yeast, and from this inoculum, disease development was significantly retarded (P < 0.05). When inoculum from treated B. cinerea colonies was applied to nutrient limiting agar and then incubated, the B. cinerea conidia germinated, and yeast cells infested the new hyphal growth. Constraints of the formulation of the yeast used in this study, and the implications of this vectoring approach for the suppression of B. cinerea during pathogen sporulation are discussed.  相似文献   

19.
ABSTRACT Specific floral organs including the calyptra, stigma, and receptacle area of glasshouse-grown grapevines (Vitis vinifera cv. Cabernet Sauvignon) were inoculated with aqueous suspensions of Botrytis cinerea conidia, and the initial steps involved in colonization and infection of the host tissues were studied for several days postinoculation using light microscopy as well as scanning and transmission electron microscopy. Conidia germinated on all floral organs examined and became attached to the host surface within 48 h after inoculation. However, in all cases the vast majority of conidia accumulated in a channel-like gap between the ovary and the calyx that extended in a narrowing fashion into the flower interior where the ovary joined the receptacle. Very few conidial germ tubes were detected in the style following inoculation of the stigma, and no evidence for their growth toward the ovaries could be found. In contrast, hyphae were more abundant in the receptacle area, regardless of the site of inoculation. Tips of the calyx became necrotic and mycelium formed in the gap between ovary and calyx within 72 h following inoculation, providing a major point of colonization and infection. B. cinerea colonized dehiscent calyptras within 72 h of inoculation, providing a potential source of inoculum from calyptras that remained stuck in the cluster. The results suggest that the grape flower's receptacle area is the predominant site of infection for B. cinerea, although a minor portion of infections may also occur through the stigma and style.  相似文献   

20.
枯草芽孢杆菌BS-208和BS-209菌株防治番茄灰霉病研究   总被引:8,自引:1,他引:8       下载免费PDF全文
为开发防治番茄灰霉病Botrytis cinerea的生防细菌,进行了枯草芽孢杆菌Bacillus subtilis BS-208和BS-209菌株对番茄灰霉病的温室和田间防治试验,并测定了两菌株对番茄灰霉病菌的抑制作用。结果表明:BS-208菌株分泌物对番茄灰霉病菌菌丝生长的抑制率为44%以上;BS-208和BS-209菌株的发酵液在经稀释10倍后,对番茄灰霉病菌分生孢子萌发的抑制率可达90%以上。经温室盆栽试验测定,以BS-208和BS-209菌株发酵液和菌体处理后24和48 h接种病菌,防效均达75%以上,好于0 h接种的防效,但分泌物滤液防治效果较差。两年的田间试验结果表明,BS-208和BS-209制剂对番茄灰霉病均具有良好的防治效果,其防效随浓度加大而提高,以800倍液的防效最好,两菌株制剂800倍液连续3次施药后防效均达到74%以上,并且BS-208菌株的防效略高于BS-209菌株。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号