首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twelve ruminally cannulated crossbred Angus steers were used to evaluate ruminal fermentation characteristics and diet digestibility when 30% (DM) corn dried distillers grains with solubles (DDGS) containing 0.42 or 0.65% (DM) of dietary S was incorporated into finishing diets based on steam-flaked corn (SFC) or dry-rolled corn (DRC). The study was a replicated, balanced randomized incomplete block design with a 2 × 2 factorial arrangement of treatments. Factors consisted of dietary S concentration (0.42 and 0.65% of DM; 0.42S and 0.65S, respectively) and grain processing method (SFC or DRC). The 0.65S concentration was achieved by adding H(2)SO(4) to DDGS before mixing rations. Steers were assigned randomly to diets and individual, slatted-floor pens, and fed once daily for ad libitum intake. Two 15-d experimental periods were used, each consisting of a 12-d diet adaptation phase and a 3-d sample collection phase. Samples were collected at 2-h intervals postfeeding during the collection phase. Ruminal pH was measured immediately after sampling, and concentrations of ruminal ammonia and VFA were determined. Fecal samples were composited by steer within period and used to determine apparent total tract digestibilities of DM, OM, NDF, CP, starch, and ether extract. Feeding 0.65S tended (P = 0.08) to decrease DMI but resulted in greater apparent total tract digestibilities of DM (P = 0.04) and ether extract (P = 0.03). Ruminal pH increased (P < 0.05) in steers fed 0.65S diets, which may be attributable, in part, to decreased (P = 0.05) VFA concentrations and greater (P < 0.01) ruminal ammonia concentrations when 0.65S was fed, compared with feeding 0.42S. These effects were more exaggerated in steers fed DRC (interaction, P < 0.01), compared with steers fed SFC. Steers fed DRC-0.65S had greater (P < 0.01) acetate concentration than steers fed DRC-0.42S, but acetate concentration was not affected by S concentration when SFC was fed. Propionate concentration was decreased (P < 0.01) in steers fed SFC-0.65S compared with steers fed SFC-0.42S, but dietary S concentration had no effect on propionate concentration when DRC was fed. Butyrate concentration was less (P < 0.01) in steers fed 0.65S diets than in steers fed 0.42S. Lactate concentrations tended (P = 0.06) to decrease in steers fed 0.65S diets. Feeding DDGS with increased S concentration may decrease feed intake and ruminal VFA concentration but increase ruminal ammonia concentration.  相似文献   

2.
One finishing trial and one digestibility trial were used to evaluate wet corn gluten feed (WCGF) and alfalfa hay (AH) combinations in steam-flaked corn (SFC) finishing diets. In Exp. 1, 631 crossbred heifers (initial BW = 284 +/- 7.9 kg) were fed SFC-based diets containing combinations of WCGF (25, 35, or 45% of diet DM) and AH (2 or 6% of dietary DM) in a 2 x 3 factorial arrangement of treatments. No interactions existed between WCGF and AH for heifer performance. Increasing dietary WCGF linearly decreased gain efficiency (P < 0.01), dietary NEg concentration (P < 0.05), and 12th-rib fat thickness (P = 0.10). Cattle fed 35% WCGF had the lowest occurrence of abscessed livers, resulting in a quadratic response (P < 0.05) as dietary WCGF increased. In Exp. 2, 12 ruminally cannulated Jersey steers (585 kg) were fed SFC-based diets containing combinations of WCGF (25 or 45% of diet DM) and AH (0, 2, or 6% of diet DM) in an incomplete Latin square design with a 2 x 3 factorial arrangement of treatments. Starch intake was lower (P < 0.05), but NDF intake was greater (P < 0.05) as AH and WCGF increased in the diet. Ruminal pH was increased by AH (linear, P < 0.05) and tended (P < 0.07) to increase with WCGF. Feeding 2% AH led to the greatest ruminal NH3 but the lowest total VFA and propionate (quadratic, P < 0.05). Addition of AH to diets containing 25% WCGF increased acetate to a greater extent than addition to diets containing 45% WCGF (AH x WCGF interaction, P < 0.05). Feeding 45% WCGF tended to increase passage rate (P = 0.17) and decrease (P < 0.05) total tract OM digestibility but increase (P < 0.05) in situ degradation of DM from AH and WCGF. Interactions between AH and WCGF existed (P < 0.05) for ruminal fluid volume (quadratic effect of AH x WCGF level), in situ SFC degradation (linear effect of AH x WCGF level), and in situ rate of WCGF DM disappearance (quadratic effect of AH x WCGF level). We conclude that AH levels may be decreased when WCGF is added to SFC diets as 25% or more of the dietary DM.  相似文献   

3.
Two trials were conducted to evaluate the effects of dietary NPN levels on animal performance, diet digestibility, ruminal characteristics, and microbial efficiency. Experiment 1 was conducted with 24 Holstein x Nellore crossbred steers (350 +/- 20 kg of BW) distributed in 6 blocks to evaluate intake and digestibility of nutrients and performance. The diets consisted of 70% corn silage and 30% concentrate (DM basis) and were formulated to contain 12.5% CP (DM basis). Treatments consisted of 0, 15.5, 31, and 46.5% of dietary N as NPN. There were no treatment differences in the daily intakes of DM (P = 0.47), OM (P = 0.60), CP (P = 0.24), nonfiber carbohydrates (NFC; P = 0.74), or TDN (P = 0.63); however, NDF intake decreased linearly as NPN increased (P = 0.02). Additionally, no effects of NPN were observed on apparent total tract digestibility of DM (P = 0.50), OM (P = 0.53), NDF (P = 0.63), or NFC (P = 0.44). The apparent total tract digestibility of CP increased linearly (P = 0.01), but ADG (1.14 kg/d) was not influenced (P = 0.96) as NPN increased. In Exp. 2, 4 ruminally and abomasally cannulated steers (300 +/- 55 kg of BW) were fed the same diet used in Exp. 1 to evaluate the effects of NPN levels on intake and digestibility of nutrients, ruminal characteristics, and microbial efficiency. There were no differences in the daily intakes of DM (P = 0.22), OM (P = 0.17), CP (P = 0.31), NDF (P = 0.29), or TDN (P = 0.49). However, NFC intake increased linearly (P = 0.02), and there was a quadratic effect (P = 0.01) on intake of ether extract as NPN increased. Ruminal digestibility of CP increased linearly (P = 0.01) with the increase of dietary NPN. There were no differences (P >or= 0.28) in microbial protein synthesis and microbial efficiency among the treatments. The results of these trials suggest that dietary NPN levels (up to 46.5% of total N) can be fed to crossbred steers receiving corn silage-based diets without affecting their growth performance or ruminal protein synthesis.  相似文献   

4.
Two metabolism (4 x 4 Latin square design) experiments were conducted to evaluate the effects of corn condensed distillers solubles (CCDS) supplementation on intake, ruminal fermentation, site of digestion, and the in situ disappearance rate of forage in beef steers fed low-quality switchgrass hay (Panicum virgatum L.). Experimental periods for both trials consisted of a 9-d diet adaptation and 5 d of collection. In Exp. 1, 4 ruminally and duodenally cannulated steers (561 +/- 53 kg of initial BW) were fed low-quality switchgrass hay (5.1% CP, 40.3% ADF, 7.5% ash; DM basis) and supplemented with CCDS (15.4% CP, 4.2% fat; DM basis). Treatments included 1) no CCDS; 2) 5% CCDS; 3) 10% CCDS; and 4) 15% CCDS (DM basis), which was offered separately from the hay. In Exp. 2, 4 ruminally and duodenally cannulated steers (266.7 +/- 9.5 kg of initial BW) were assigned to treatments similar to Exp. 1, except forage (Panicum virgatum L.; 3.3% CP, 42.5% ADF, 5.9% ash; DM basis) and CCDS (21.6% CP, 17.4% fat; DM basis) were fed as a mixed ration, using a forage mixer to blend the CCDS with the hay. In Exp. 1, ruminal, postruminal, and total tract OM digestibilities were not affected (P = 0.21 to 0.59) by treatment. Crude protein intake and total tract CP digestibility increased linearly with increasing CCDS (P = 0.001 and 0.009, respectively). Microbial CP synthesis tended (P = 0.11) to increase linearly with increasing CCDS, whereas microbial efficiency was not different (P = 0.38). Supplementation of CCDS to low-quality hay-based diets tended to increase total DM and OM intakes (P = 0.11 and 0.13, respectively) without affecting hay DMI (P = 0.70). In Exp. 2, ruminal OM digestion increased linearly (P = 0.003) with increasing CCDS, whereas postruminal and total tract OM digestibilities were not affected (P > or = 0.37) by treatment. Crude protein intake, total tract CP digestibility, and microbial CP synthesis increased (P < or = 0.06) with increasing level of CCDS supplementation, whereas microbial efficiency did not change (P = 0.43). Ruminal digestion of ADF and NDF increased (P = 0.02 and 0.008, respectively) with CCDS supplementation. Based on this data, CCDS used in Exp. 2 was 86.7% rumen degradable protein. The results indicate that CCDS supplementation improves nutrient availability and use of low-quality forages.  相似文献   

5.
Objectives of this research were to evaluate effects of increasing level of barley supplementation on forage intake, digestibility, and ruminal fermentation in beef steers fed medium-quality forage. Four crossbred ruminally cannulated steers (average initial BW = 200 +/- 10 kg) were used in a 4 x 4 Latin square design. Chopped (5 cm) grass hay (10% CP) was offered ad libitum with one of four supplements. Supplements included 0, 0.8, 1.6, or 2.4 kg of barley (DM basis) and were fed in two equal portions at 0700 and 1600. Supplements were fed at levels to provide for equal intake of supplemental protein with the addition of soybean meal. Forage intake (kg and g/kg BW) decreased linearly (P < 0.01), and total intake increased linearly (P < 0.03) with increasing level of barley supplementation. Digestible OM intake (g/kg BW) increased linearly (P < 0.01) with increasing level of barley supplementation; however, the majority of this response was observed with 0.8 kg of barley supplementation. Treatments had only minor effects on ruminal pH, with decreases occurring at 15 h after feeding in steers receiving 2.4 kg of barley supplementation. Total-tract digestibility of DM, OM, NDF, and CP were increased (P < 0.04) with barley supplementation; however, ADF digestibility was decreased by 1.6 and 2.4 kg of barley supplementation compared with controls. Ruminal ammonia concentrations decreased linearly (P < 0.01) at 1 through 15 h after feeding. Total ruminal VFA concentrations were not altered by dietary treatments. Ruminal proportions of acetate and butyrate decreased (P < 0.10) in response to supplementation. Rate, lag, and extent (72 h) of in situ forage degradability were unaffected by treatment. Generally, these data are interpreted to indicate that increasing levels of barley supplementation decrease forage intake, increase DM, OM, and NDF digestibility, and indicate alteration of the ruminal environment and fermentation patterns.  相似文献   

6.
Six ruminally and duodenally cannulated yearling steers (523 kg) were used in a replicated 3 x 3 Latin square design experiment to study the effects of corn processing on nutrient digestion, bacterial CP production, and ruminal fermentation. Dietary treatments consisted of 90% concentrate diets that were based on dry-rolled (DRC), high-moisture (HMC), or steam-flaked (SFC) corn. Each diet contained 2.0% urea (DM basis) as the sole source of supplemental nitrogen. Each period lasted 17 d, with d 1 through 14 for diet adaptation and d 15 through 17 for fecal, duodenal, and ruminal sampling. Dry matter and OM intakes were similar for DRC and SFC but were approximately 15% higher (P < 0.05) for HMC. True ruminal OM digestibilities were 18 and 10% greater (P < 0.05) for HMC than for DRC or SFC, respectively. Ruminal starch digestibilities were similar between HMC and SFC and were approximately 19% greater (P < 0.05) than DRC. Postruminal OM digestibility was similar among treatments; however, postruminal starch digestibility was 15% greater (P < 0.05) for SFC than for DRC or HMC, which were similar. Total-tract DM and OM digestibilities were similar between HMC and SFC and were 4% greater (P < 0.05) than DRC. Likewise, total-tract starch digestibilities were similar between HMC and SFC and were 3% greater (P < 0.05) than DRC. Bacterial CP flow to the duodenum was 29% greater (P < 0.05) for HMC than for DRC or SFC, which were similar. Bacterial N efficiencies were similar among treatments. Based on bacterial CP flow from the rumen, we estimate that dietary DIP requirements are approximately 12% higher for HMC-based diets than for DRC or SFC-based diets, which were similar.  相似文献   

7.
Nine Angus x Gelbvieh heifers (average BW = 347 +/- 2.8 kg) with ruminal and duodenal cannulas were used in a split-plot designed experiment to determine the effects of soybean oil or corn supplementation on intake, OM, NDF, and N digestibility. Beginning June 8, 1998, heifers continually grazed a 6.5-ha predominantly bromegrass pasture and received one of three treatments: no supplementation (Control); daily supplementation of cracked corn (Corn) at 0.345% of BW; or daily supplementation (0.3% of BW) of a supplement containing cracked corn, corn gluten meal, and soybean oil (12.5% of supplemental DM; Oil). Soybean oil replaced corn on a TDN basis and corn gluten meal was included to provide equal quantities of supplemental TDN and N. Three 23-d periods consisted of 14 d of adaptation followed by 9 d of sample collections. Treatment and sampling period effects were evaluated using orthogonal contrasts. Other than crude fat being greater (P = 0.01) for supplemented heifers, chemical and nutrient composition of masticate samples collected via ruminal evacuation did not differ (P = 0.23 to 0.56) among treatments. Masticate NDF and ADF increased quadratically (P < or = 0.003) and N decreased linearly (P = 0.0001) as the grazing season progressed. Supplementation did not influence (P = 0.37 to 0.83) forage OM intake, total and lower tract OM digestibility, ruminal and total tract NDF digestibility, or total ruminal VFA; however, supplemented heifers had lower ruminal molar proportions of acetate (P = 0.01), higher ruminal molar proportions of butyrate (P = 0.007), and greater quantities of OM digested in the rumen (P = 0.10) and total tract (P = 0.02). As the grazing season progressed, total tract OM and N and ruminal NH3 concentrations and NDF digestibility decreased quadratically (P < or = 0.04). Microbial N flow (P = 0.09) and efficiency (P = 0.04) and postruminal N disappearance (P = 0.02) were greater for Control heifers and declined linearly (P < or = 0.02) as the grazing season advanced. Depressed microbial N flow seemed to be more pronounced for Oil than for the Corn treatment. Although total digestible OM intake increased with supplementation, metabolizable protein supply was reduced in supplemented heifers. Therefore, feeding low levels of supplemental grain with or without soybean oil is an effective strategy to increase dietary energy for cattle grazing high-quality forages, but consideration should be given to reduced supply of metabolizable protein.  相似文献   

8.
The effect of supplementation with different levels of cracked corn on the sites of OM, total dietary fiber (TDF), ADF, and starch digestion in steers fed fresh alfalfa indoors was determined. Six Angus steers (338 +/- 19 kg) fitted with cannulas in the rumen, duodenum, and ileum consumed 1) alfalfa (20.4% CP, 41.6% NDF) ad libitum (AALF); 2), 3), and 4) AALF supplemented (S) with .4, .8, or 1.2%, respectively, of BW of corn; or 5) alfalfa restricted at the average level of forage intake of S steers (RALF), in a 5 x 5 Latin square design. Total OM intake was lower (P < .01) in steers fed RALF than in those fed AALF but level of forage intake did not affect sites of OM, TDF, or starch digestion (P > .05). Forage OM intake decreased (P < .01) linearly (8,496 to 5,840 g/d) but total OM intake increased (P = .03) linearly (8,496 to 9,344 g/d) as corn increased from .4 to 1.2% BW. Ruminal apparent and true OM disappearance was not affected, but OM disappearing in the small intestine increased (P < .01) linearly with increasing levels of corn. Total tract OM digestibility (71.2 to 76.2%) and the proportion of OM intake that was digested in the small intestine (15.4 to 24.5%) increased (P < .01) linearly as corn increased. The TDF and ADF intakes decreased (P < .01) linearly as level of corn increased. Total tract TDF and ADF digestibilities were not different among treatments (average 62.9 and 57.8%, respectively). Starch intake and starch digested in the rumen and small and large intestine increased (P < .01) linearly with increasing corn level. Ruminal pH and VFA concentrations decreased and increased (P < .01), respectively, with increasing corn. Supplementation with corn increased OM intake, decreased forage OM intake, and increased the proportion of OM that was digested in the small intestine, but fiber digestion was not affected.  相似文献   

9.
Two studies were conducted to evaluate effects of wet distillers grains with solubles (WDG) and dietary concentration of alfalfa hay (AH) on performance of finishing beef cattle and in vitro fermentation. In both studies, 7 treatments were arranged in a 2 × 3 + 1 factorial; factors were dietary concentrations (DM basis) of WDG (15 or 30%) and AH (7.5, 10, or 12.5%) plus a non-WDG control diet that contained 10% AH. In Exp. 1, 224 beef steers were used in a randomized complete block (initial BW 342 kg ± 9.03) finishing trial. No WDG × AH interactions were observed (P > 0.12). There were no differences among treatments in final shrunk BW or ADG (P > 0.15), and DMI did not differ with WDG concentration for the overall feeding period (P = 0.38). Increasing dietary AH concentration tended (P < 0.079) to linearly increase DMI, and linearly decreased (P < 0.05) G:F and calculated dietary NE(m) and NE(g) concentrations. Carcasses from cattle fed 15% WDG had greater yield grades (P = 0.014), with tendencies for greater 12th-rib fat (P = 0.054) and marbling score (P = 0.053) than those from cattle fed 30% WDG. There were no differences among treatments (P > 0.15) in HCW, dressing percent, LM area, KPH, proportions of cattle grading USDA Choice, and incidence of liver abscesses. In Exp. 2, ruminal fluid was collected from 2 ruminally cannulated Jersey steers adapted to a 60% concentrate diet to evaluate in vitro gas production kinetics, H(2)S production, IVDMD, and VFA. Relative to the control substrate, including WDG in substrates increased (P < 0.01) H(2)S production and decreased total gas production (P = 0.01) and rate of gas production (P = 0.03). Increasing substrate WDG from 15 to 30% increased (P < 0.05) H(2)S production and decreased (P < 0.001) total gas production, with a tendency (P = 0.073) to decrease IVDMD and fractional rate of gas production (P = 0.063). Treatments did not significantly affect (P > 0.09) molar proportions or total concentration of VFA. Results indicate that including 15 or 30% WDG in steam-flaked corn-based diets did not result in major changes in feedlot performance or carcass characteristics, but increasing AH concentration from 7.5 to 12.5% in diets containing WDG decreased G:F. Including WDG in substrates decreased rate and extent of gas production and increased H(2)S production. Changes in various measures of in vitro fermentation associated with AH concentrations were not large.  相似文献   

10.
Nine ruminally and duodenally cannulated (172 +/- 23 kg of initial BW; Exp. 1) and 16 intact (153 +/- 28 kg of initial BW; Exp. 2) crossbred nursing steer calves were used to evaluate the effects of creep feed supplementation and advancing season on intake, digestion, microbial efficiency, ruminal fermentation, and performance while grazing native rangeland. Treatments in both experiments were no supplement or supplement fed at 0.45% of BW (DM basis) daily. Supplement consisted of 55% wheat middlings, 38.67% soyhulls, 5% molasses, and 1.33% limestone. Three 15-d collection periods occurred in June, July, and August. In Exp. 1, ruminal evacuations were performed and masticate samples were collected for diet quality analysis on d 1. Duodenal and fecal samples were collected from cannulated calves on d 7 to 12 at 0, 4, 8, and 12 h after supplementation. Ruminal fluid was drawn on d 9 and used as the inoculate for in vitro digestibility. On d 11, ruminal fluid was collected, and the pH was recorded at -1, 1, 2, 4, 8, 12, and 24 h postsupplementation. In Exp. 1 and 2, milk intake was estimated using weigh-suckle-weigh on d 15. Steers in Exp. 2 were fitted with fecal bags on d 6 to 11 to estimate forage intake. In Exp. 1, supplementation had no effect (P = 0.22 to 0.99) on grazed diet or milk composition. Apparent total tract OM disappearance increased (P = 0.03), and apparent total tract N disappearance tended (P = 0.11) to increase in supplemented calves. Microbial efficiency was not affected (P = 0.50) by supplementation. There were no differences in ruminal pH (P = 0.40) or total VFA concentration (P = 0.21) between treatments, whereas ruminal NH3 concentration increased (P = 0.03) in supplemented compared with control calves. In Exp. 2, supplementation decreased (P = 0.02) forage OM intake (OMI; % of BW) and increased (P = 0.06) total OMI (% of BW). Supplementation had no effect on ADG (P = 0.94) or G:F (P = 0.35). Supplementation with a wheat middlings and soybean hull-based creep feed reduced forage OMI but improved total tract OM and N digestion and had minimal effects on ruminal fermentation or performance. Supplementation with a wheat middlings and soybean hulls-based creep feed might improve OM and N digestion, but might not produce significantly greater BW gains compared with no supplementation.  相似文献   

11.
Crossbred yearling steers (n=80; 406 ± 2.7 kg of BW) were used to evaluate the effects of S concentration in dried distillers grains with solubles (DDGS) on growth performance, carcass characteristics, and ruminal concentrations of CH(4) and H(2)S in finishing steers fed diets based on steam-flaked corn (SFC) or dry-rolled corn (DRC) and containing 30% DDGS (DM basis) with moderate S (0.42% S, MS) or high S (0.65% S, HS). Treatments consisted of SFC diets containing MS (SFC-MS), SFC diets containing HS (SFC-HS), DRC diets containing MS (DRC-MS), or DRC diets containing HS (DRC-HS). High S was achieved by adding H(2)SO(4) to DDGS. Ruminal gas samples were analyzed for concentrations of H(2)S and CH(4). Steers were fed once daily in quantities that resulted in traces of residual feed in the bunk the following day for 140 d. No interactions (P ≥ 0.15) between dietary S concentration and grain processing were observed with respect to growth performance or carcass characteristics. Steers fed HS diets had 8.9% less DMI (P < 0.001) and 12.9% less ADG (P=0.006) than steers fed diets with MS, but S concentration had no effect on G:F (P=0.25). Cattle fed HS yielded 4.3% lighter HCW (P = 0.006) and had 16.2% less KPH (P=0.009) than steers fed MS. Steers fed HS had decreased (P=0.04) yield grades compared with steers fed MS. No differences were observed among treatments with respect to dressing percentage, liver abscesses, 12th-rib fat thickness, LM area, or USDA quality grades (P ≥ 0.18). Steers fed SFC had less DMI (P < 0.001) than steers fed DRC. Grain processing had no effect (P > 0.05) on G:F or carcass characteristics. Cattle fed HS had greater (P < 0.001) ruminal concentrations of H(2)S than cattle fed MS. Hydrogen sulfide concentration was inversely related (P ≤ 0.01) to ADG (r=-0.58) and DMI (r=-0.67) in cattle fed SFC, and to DMI (r=-0.40) in cattle fed DRC. Feeding DDGS that are high in dietary S may decrease the DMI of beef steers and compromise the growth performance and carcass characteristics of feedlot cattle.  相似文献   

12.
To determine the effects of blends of high-moisture harvested sorghum grain (HMS) and dry-rolled corn (DRC) on site and extent of digestion, high-grain diets were fed to Angus-Hereford heifers (315 kg) in a 5 x 5 latin square. The grain portion consisted of ratios (HMS:DRC) of 0:100, 25:75, 50:50, 75:25 and 100:0. Heifers were equipped with ruminal, duodenal and ileal T-type cannulas. Digestibilities of OM (P less than .05) and non-ammonia nitrogen (NAN; P less than .01) in the total tract declined linearly as HMS replaced DRC. Chyme flow (liters/d) through the duodenum increased linearly (P less than .01), and true ruminal OM disappearance tended to decline linearly (P less than .10) as HMS replaced DRC. A quadratic response (P less than .05) in extent of starch disappearance (g/d) in the rumen was noted; blends were lower than either individual grain. Ruminal escape of feed N tended to be quadratic (P less than .10); values for individual grain types were greater than blends. Microbial efficiency increased linearly (P less than .05) as HMS replaced DRC. Extent of starch digestion in the rumen averaged 82.7% compared to only 2.9% in the small intestine and 5.7% in the large intestine. Altering the ratio of HMS to DRC appeared to have more effect on ruminal fermentation than on digestion in the small intestine; most starch and nitrogen responses were quadratic. Increases in ruminal pH and chyme flow, potentially caused by increased salivary flow, may cause non-linear changes in the solubility of proteins in HMS and DRC, when fed as blends, altering the digestibility of protein and starch from values predicted from the individual grains.  相似文献   

13.
Performance and digestibility experiments were conducted to determine the influence of moisture and flake density (FD) on the feeding value of steam-flaked corn (SFC). Dietary treatments consisted of finishing diets that contained 78% (DM basis) SFC that was tempered using 0, 6, or 12% moisture and processed to either 360 (SF28) or 310 (SF24) g/L. A 3 x 2 factorial arrangement of treatments was used. In Exp. 1, 78 steers were individually fed the respective treatments for 106 d. Moisture added during tempering tended (linear; P < 0.10) to increase starch availability but linearly decreased (P < 0.01) particle size. Decreasing flake density increased (P < 0.001) starch availability and also decreased (P < 0.001) particle size. Starch availability (P < 0.001), moisture (P < 0.001), and particle size (P = 0.05) were all greater for SFC that was collected the day of processing compared with SFC that had been processed the previous day. Steers fed diets containing SF24 consumed less DM as the moisture level increased, whereas steers fed diets containing SF28 had increased DMI as moisture level increased (moisture x FD interaction; P < 0.01). Nonetheless, ADG, G:F, and most carcass characteristics did not differ among treatments. In Exp. 2, 6 multicannulated Jersey steers were used in a 6 x 6 Latin square using the same treatments as in Exp. 1. Increasing moisture intake linearly decreased (P < 0.05) starch intakes. Organic matter and N intakes followed similar trends but were not different. Decreasing FD tended to increase (P < 0.10) microbial N flow to the duodenum and increased microbial efficiency (P < 0.05). Ruminal starch digestibility was 90.5%, and total tract starch digestibility was 99.5% without adding moisture or processing beyond SF28. Moisture additions to corn before steam flaking resulted in few differences in performance or digestibility, despite increases in starch availability that occurred as moisture increased. Processing corn more extensively than SF28 may be unnecessary and cost-prohibitive.  相似文献   

14.
In Exp. 1, 4 ruminally and duodenally cannulated beef steers (444.0 +/- 9.8 kg) were used in a 4 x 4 Latin square with a 2 x 2 factorial treatment arrangement to evaluate the effects of forage type (alfalfa or corn stover) and concentrated separator byproduct (CSB) supplementation (0 or 10% of dietary DM) on intake, site of digestion, and microbial efficiency. In Exp. 2, 5 wethers (44 +/- 1.5 kg) were used in a 5 x 5 Latin square to evaluate the effects of CSB on intake, digestion, and N balance. Treatments were 0, 10, and 20% CSB (DM basis) mixed with forage; 10% CSB offered separately from the forage; and a urea control, in which urea was added to the forage at equal N compared with the 10% CSB treatment. In Exp. 1, intakes of OM and N (g/kg of BW) were greater (P < 0.01) for steers fed alfalfa compared with corn stover. Steers fed 10% CSB had greater (P < 0.08) OM and N intakes (g/kg of BW) compared with 0% CSB-fed steers. Total duodenal, microbial, and nonmicrobial flows of OM and N were greater (P < 0.01) for steers fed alfalfa compared with corn stover. Steers fed 10% CSB had increased (P = 0.02) duodenal microbial flow (N and OM) compared with 0% CSB-fed steers. Forage x CSB interactions (P < 0.01) existed for total tract N digestibility; alfalfa with or without CSB was similar (67.4 vs. 69.5), whereas corn stover with CSB was greater than corn stover without CSB (31.9 vs. -23.9%). True ruminal OM digestion was greater (P < 0.09) in steers fed alfalfa vs. corn stover (73.0 vs. 63.1%) and in steers fed 10 vs. 0% CSB (70.3 vs. 65.8%). Microbial efficiency was unaffected (P > 0.25) by forage type or CSB supplementation. In Exp. 2, forage and total intake increased (linear; P < 0.01) as CSB increased and were greater (P < 0.04) in 10% CSB mixed with forage compared with 10% CSB fed separately. Feeding 10% CSB separately resulted in similar DM and OM apparent total tract digestibility compared with 10% CSB fed mixed. Increasing CSB led to an increase (linear; P < 0.02) in DM, OM, apparent N digestion, and water intake. Nitrogen balance (g and percentage of N intake) increased (linear; P < 0.08) with CSB addition. Feeding 10% CSB separately resulted in greater (P < 0.01) N balance compared with 10% CSB fed mixed. Using urea resulted in similar (P = 0.30) N balance compared with 10% CSB fed mixed. Inclusion of CSB improves intake, digestion, and increases microbial N production in ruminants fed forage-based diets.  相似文献   

15.
Supplemental corn grain for steers grazing native rangeland during summer   总被引:1,自引:0,他引:1  
Effects of supplemental corn grain on forage OM intake (FOMI), digesta kinetics, ruminal fermentation patterns, in vitro OM digestibility (IVOMD), and in situ OM digestion were examined in steers grazing summer blue grama rangeland in northeastern New Mexico during July and August 1988. Sixteen ruminally cannulated steers (average BW 507 kg) were allotted to four treatments and individually fed whole-shelled corn at 0, .2, .4, and .6% of BW in a complete random design with repeated measurements over time. Forage OMI decreased linearly (P = .02) with increasing levels of supplemental corn; however, a tendency toward greater FOMI, as well as faster particulate and fluid passage, was observed when corn was fed at .2% of BW compared with 0, .4, or .6% of BW. Molar proportions of butyrate increased (P less than .10) but molar proportions of acetate and propionate, ruminal pH, and total VFA concentration did not change (P greater than .10) with added corn. Added corn linearly decreased (P less than .10) ruminal ammonia N concentrations in July, but patterns were inconsistent in August. A cubic response (P less than .05) for in situ OM disappearance with added corn was noted after 24, 72, and 96 h of incubation. Supplemental whole corn fed at .2% of BW had no detrimental effects and tended to increase FOMI. However, supplemental corn fed at .4 or .6% of BW decreased FOMI compared with 0 or .2% of BW.  相似文献   

16.
Effects of increasing level of field pea (variety: Profi) on intake, digestion, microbial efficiency, and ruminal fermentation were evaluated in beef steers fed growing diets. Four ruminally and duodenally cannulated crossbred beef steers (367+/-48 kg initial BW) were used in a 4 x 4 Latin square. The control diet consisted of 50% corn, 23% corn silage, 23% alfalfa hay, and 4% supplement (DM basis). Treatments were field pea replacing corn at 0, 33, 67, or 100%. Diets were formulated to contain a minimum of 12% CP, 0.62% Ca, 0.3% P, and 0.8% K (DM basis). Each period was 14 d long. Steers were adapted to the diets for 9 d. On d 10 to 14, intakes were measured. Field pea was incubated in situ, beginning on d 10, for 0, 2, 4, 8, 12, 16, 24, 36, 48, 72, and 96 h. Bags were inserted in reverse order, and all bags were removed at 0 h. Ruminal fluid was collected and pH recorded at -2, 0, 2, 4, 6, 8, 10, and 12 h after feeding on d 13. Duodenal samples were taken for three consecutive days beginning on d 10 in a manner that allowed for a collection to take place every other hour over a 24-h period. Linear, quadratic, and cubic contrasts were used to compare treatments. There were no differences in DMI (12.46 kg/d, 3.16% BW; P > 0.46). Ruminal dry matter fill (P = 0.02) and mean ruminal pH (P = 0.009) decreased linearly with increasing field pea level. Ruminal ammonia-N (P < 0.001) and total VFA concentrations (P = 0.01) increased linearly with increasing field pea level. Total-tract disappearance of OM (P = 0.03), N (P = 0.01), NDF (P = 0.02), and ADF (P = 0.05) increased linearly with an increasing field pea level. There were no differences in total-tract disappearance of starch (P = 0.35). True ruminal N disappearance increased linearly (P < 0.001) with increasing field pea level. There were no differences in ruminal disappearance of OM (P = 0.79), starch (P = 0.77), NDF (P = 0.21), or ADF (P = 0.77). Treatment did not affect microbial efficiency (P = 0.27). Field pea is a highly digestible, nutrient-dense legume grain that ferments rapidly in the rumen. Because of their relatively high level of protein, including field peas in growing diets will decrease the need for protein supplementation. Based on these data, it seems that field pea is a suitable substitute for corn in growing diets.  相似文献   

17.
A feedlot growth-performance trial involving 64 yearling steers and a metabolism trial involving four steers with cannulas in the rumen, proximal duodenum, and distal ileum were conducted to evaluate the comparative feeding value of steam-flaked corn (SFC, density = .30 kg/liter) and sorghum (SFS, density = .36 kg/liter) in finishing diets supplemented with or without .75% sodium bicarbonate (BICARB). No interactions between BICARB and grain type proved to be significant. Supplemental BICARB increased ADG 5.9% (P less than .10) and DMI 4.6% (P less than .05) but did not influence (P greater than .10) the NE value of the diet. Supplemental BICARB increased ruminal pH (P less than .01) and total tract fiber digestion (P less than .05). Differences in ruminal and total tract OM, starch, and N digestion were small (P greater than .10). Replacing SFC with SFS decreased (P less than .05) ADG 6.1% and increased (P less than .01) DMI/gain 9.7%. Corresponding diet NEm and NEg were decreased (P less than .01) 7.0 and 9.3%, respectively. Ruminal digestion of OM and starch tended to be lower (11.8 and 7.2%, respectively, P less than .10) for SFS. Ruminal degradation of feed N was 31% lower (P less than .05) for the SFS diets. Total tract digestibility of OM, N, DE, and ME were 3.3, 10.8, 4.4, and 5.5% lower (P less than .05), respectively, for the SFS vs SFC diets. In conclusion, 1) SFS had 92% the NEm of SFC; 2) differences in total tract starch digestibility were small and cannot explain the higher feeding value of SFC; 3) the low ruminal degradation of sorghum N (roughly 20%) should be considered in diet formulation to avoid a deficit in ruminally available N; and 4) .75% BICARB supplementation increased DMI and ADG of cattle fed highly processed grain-based diets.  相似文献   

18.
Nine ruminally and duodenally cannulated (145 +/- 21 kg of initial BW; Exp. 1) and sixteen intact (181 +/- 36 kg of initial BW; Exp. 2), commercial, Angus, nursing, steer calves were used to evaluate the effects of advancing season and corn distillers dried grains with solubles in creep feed on intake, digestion, microbial efficiency, ruminal fermentation, and performance while grazing native rangeland. Calves were assigned to 1 of 2 treatments: a supplement containing 41% soybean meal, 26.25% wheat middlings, 26.25% soybean hulls, 5% molasses, and 1.5% limestone (control) or a supplement containing 50% corn distillers dried grains with solubles, 14.25% wheat middlings, 14.25% soybean hulls, 14% soybean meal, 5% molasses, and 1.5% limestone (CDDGS). Calves were offered supplement individually (0.45% of BW) once daily. Three 15-d collection periods occurred in June, July, and August. In Exp. 1, there were no differences in OM intake, or OM, N, NDF, or ADF digestion between control calves and those fed CDDGS. Forage and total OM intake increased (P < 0.03), whereas OM digestion decreased (P < 0.01), with advancing season. Duodenal microbial N flow (g/d) was not affected (P = 0.50) by treatment and increased linearly (P = 0.003) as season progressed. Calves consuming CDDGS had decreased (P < 0.01) ruminal acetate:propionate ratio, increased (P < 0.01) molar proportion of butyrate, and decreased (P < 0.001) molar proportions of isobutyrate and isovalerate. In Exp. 2, supplement OM intake (% of BW) was less for CDDGS compared with control calves, but there were no differences in performance or subsequent carcass composition between treatments. Inclusion of 50% corn distillers dried grains with solubles in a creep supplement for nursing calves produced similar results compared with a control creep feed based on soybean meal, soybean hulls, and wheat middlings.  相似文献   

19.
Four ruminally and duodenally cannulated Suffolk wether lambs (34.5 +/- 2 kg initial BW) were used in a 4 x 4 Latin square designed experiment to compare effects of supplemental ruminally degradable protein (RDP) vs. increasing amounts of supplemental ruminally undegradable protein (RUP) on ruminal characteristics and site and extent of digestion in lambs. Lambs were fed a basal diet of crested wheatgrass hay (4.2% CP) for ad libitum consumption, plus 1 of 4 protein supplements: isolated soy protein (RDP source) fed to meet estimated RDP requirements assuming a microbial efficiency of 11% of TDN (CON) or corn gluten meal (RUP source) fed at 50, 100, or 150% of the supplemental N provided by CON (C50, C100, and C150, respectively). Neither NDF nor ADF intake was affected (P >/= 0.18) by protein degradability, but they increased or tended to increase (P /= 0.26) for CON and C100, but increased (P /= 0.33) by protein degradability. However, true ruminal N digestibility was greater (P = 0.03) for CON compared with C100. Ruminal ammonia concentrations were greater (P = 0.002) for CON compared with C100 lambs, and increased (P = 0.001) with increasing RUP. Microbial N flows were not affected (P >/= 0.12) by protein degradability or increasing RUP. Likewise, neither ruminal urease activity (P >/= 0.11) nor microbial efficiency (P >/= 0.50) were affected by protein degradability or level of RUP. Total tract OM, NDF, and ADF digestibility was greater (P 相似文献   

20.
Eight cannulated Holstein steers (average BW: 251 kg) were used in 2 simultaneous 4 x 4 Latin squares in a split-plot arrangement to test the effects of processing method [dry-rolled (DR) vs. steam-flaked (SF); main plot] and vitreousness (V, %; subplot) of yellow dent corn (V55, V61, V63, and V65) on site of digestion of diets containing 73.2% corn grain. No vitreousness x processing method interactions were detected for ruminal digestion, but ruminal starch digestion was 14.4% lower (P < 0.01) for DR than for SF corn. Interactions were detected between vitreousness and processing method for postruminal (P < 0.10) and total tract digestion (P < 0.05). With DR, vitreousness tended to decrease (linear effect, P < 0.10) postruminal OM and starch digestion. With SF, vitreousness did not affect (P > or = 0.15) postruminal digestion of OM and starch. Postruminal N digestion tended to decrease (linear effect, P = 0.12) as vitreousness increased. Postruminal digestion was greater for SF than for DR corn OM (25.7%, P < 0.05), starch (94.3%, P < 0.10), and N (10.7%, P < 0.01). Steam flaking increased total tract digestion of OM (11%, P < 0.05), starch (16%, P < 0.01), and N (8.4%, P < 0.05) but decreased total tract ADF digestion (26.7%, P < 0.01). With DR, total tract starch digestion was lower for V65 (cubic effect, P < 0.10) than for the other hybrids. With SF, total tract starch digestion was not affected (P > or = 0.15) by vitreousness. Fecal starch and total tract starch digestion were inversely related (starch digestion, % = 101 - 0.65 x fecal starch, %; r2 = 0.94, P < 0.01). Ruminal pH was greater for steers fed DR than for steers fed SF corn (6.03 vs. 5.62, P < 0.05). Steam flaking decreased (P < 0.01) the ruminal molar proportion of acetate (24%), acetate:propionate molar ratio (55%), estimated methane production (37.5%), and butyrate (11.3%, P < 0.05). There was a vitreousness x processing interaction (P < 0.01) for acetate:propionate. For DR, acetate:propionate tended to increase (linear effect; P < 0.10) with increasing vitreousness. With SF, acetate:propionate was greater (cubic effect, P < 0.01) for V65. Starch from more vitreous corn grain was less digested when corn grain was DR, but this adverse effect of vitreousness on digestion was negated when the corn grain was SF. Of the 19% advantage in energetic efficiency associated with flaked over rolled corn grain, about 3/4 can be attributed to increased OM digestibility, with the remaining 1/4 ascribed to reduced methane loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号