共查询到20条相似文献,搜索用时 15 毫秒
1.
Two studies were conducted to evaluate effects of wet distillers grains with solubles (WDG) and dietary concentration of alfalfa hay (AH) on performance of finishing beef cattle and in vitro fermentation. In both studies, 7 treatments were arranged in a 2 × 3 + 1 factorial; factors were dietary concentrations (DM basis) of WDG (15 or 30%) and AH (7.5, 10, or 12.5%) plus a non-WDG control diet that contained 10% AH. In Exp. 1, 224 beef steers were used in a randomized complete block (initial BW 342 kg ± 9.03) finishing trial. No WDG × AH interactions were observed (P > 0.12). There were no differences among treatments in final shrunk BW or ADG (P > 0.15), and DMI did not differ with WDG concentration for the overall feeding period (P = 0.38). Increasing dietary AH concentration tended (P < 0.079) to linearly increase DMI, and linearly decreased (P < 0.05) G:F and calculated dietary NE(m) and NE(g) concentrations. Carcasses from cattle fed 15% WDG had greater yield grades (P = 0.014), with tendencies for greater 12th-rib fat (P = 0.054) and marbling score (P = 0.053) than those from cattle fed 30% WDG. There were no differences among treatments (P > 0.15) in HCW, dressing percent, LM area, KPH, proportions of cattle grading USDA Choice, and incidence of liver abscesses. In Exp. 2, ruminal fluid was collected from 2 ruminally cannulated Jersey steers adapted to a 60% concentrate diet to evaluate in vitro gas production kinetics, H(2)S production, IVDMD, and VFA. Relative to the control substrate, including WDG in substrates increased (P < 0.01) H(2)S production and decreased total gas production (P = 0.01) and rate of gas production (P = 0.03). Increasing substrate WDG from 15 to 30% increased (P < 0.05) H(2)S production and decreased (P < 0.001) total gas production, with a tendency (P = 0.073) to decrease IVDMD and fractional rate of gas production (P = 0.063). Treatments did not significantly affect (P > 0.09) molar proportions or total concentration of VFA. Results indicate that including 15 or 30% WDG in steam-flaked corn-based diets did not result in major changes in feedlot performance or carcass characteristics, but increasing AH concentration from 7.5 to 12.5% in diets containing WDG decreased G:F. Including WDG in substrates decreased rate and extent of gas production and increased H(2)S production. Changes in various measures of in vitro fermentation associated with AH concentrations were not large. 相似文献
2.
Six hundred ten crossbred-yearling heifers (347 +/- 5 kg of initial BW) were obtained and used in a randomized complete-block design finishing study. Finishing diets were based on steam-flaked corn and ground alfalfa hay. The control (CONT) treatment contained no distillers grains with solubles (DGS), the second diet was formulated to contained 13% (DM basis) dried corn DGS derived from a traditional dry-grind ethanol process (TRAD), and the third diet was formulated to contained 13% (DM basis) dried corn DGS derived from a partial fractionation dry-grind process (FRAC). Dry matter intake, ADG, and gain efficiency were not different (P >/= 0.48) for yearling heifers fed CONT when compared with heifers fed DGS. Heifers fed TRAD consumed more (P = 0.01) feed than heifers fed FRAC. However, ADG and feed efficiency were not different (P >/= 0.07) for heifers fed DGS. Moderate inclusion levels of DGS in finishing flaked corn diets yielded satisfactory performance. Growth performance was not different for heifers fed DGS originating from either ethanol processing method. 相似文献
3.
The objectives of this research were to determine the interaction of monensin and haylage supplementation for steers fed 60% dried distillers grains (DDGS) on 1) mineral status, performance, and carcass characteristics, and on 2) ruminal pH, H(2)S, and short-chain fatty acid concentrations. In Exp. 1, Angus-cross steers (n=168; BW=277 ± 67 kg) were blocked by BW and allotted in a 2 × 2 factorial arrangement of treatments to 24 pens. Dietary treatments were 1) 0 mg of monensin/kg of diet + 0% haylage, 2) 33 mg of monensin/kg of diet + 0% haylage, 3) 0 mg of monensin/kg of diet + 10% haylage, and 4) 33 mg of monensin/kg of diet + 10% haylage. The remainder of the diet was 60% DDGS, 10% corn silage, 15% supplement, and corn (either 5 or 15%) on a DM basis. When supplemented with 0 mg of monensin/kg of diet, added haylage increased ADG by 5.7%, whereas when supplemented with 33 mg of monensin/kg of diet, added haylage increased ADG by 13% (P < 0.01). No interactions of monensin and haylage were observed for DMI or G:F (P ≥ 0.36). Haylage inclusion increased (P < 0.01) DMI and decreased (P < 0.01) G:F. No interactions (P > 0.05) on plasma mineral concentrations were observed; however, over time, plasma Cu concentrations decreased (P < 0.01), whereas plasma ceruloplasmin and S concentrations increased (P < 0.01). There were no treatment effects (P ≥ 0.08) on carcass characteristics. Cattle fed the 60% DDGS diets benefitted from increased dietary forage, and the effects of monensin and forage were additive for ADG and final BW. In Exp. 2, ruminally fistulated steers (n=8; BW = 346 ± 34 kg) were used in a replicated 4 × 4 Latin square design and were randomly assigned to the diets used in Exp. 1. Haylage inclusion increased ruminal pH from 1.5 through 12 h postfeeding, and the effects of monensin supplementation were additive (P < 0.05). From 1.5 through 9 h postfeeding, steers fed 33 mg of monensin/kg of diet tended to have reduced (P ≤ 0.10) concentrations of H(2)S when compared with steers fed 0 mg of monensin/kg of diet. Acetate:propionate ratios at 6 h postfeeding were 0.94, 0.93, 1.29, and 1.35 for diets 1 to 4, respectively (P < 0.01); total lactate was decreased regardless of treatment (range: 0.94 to 1.42 μmol/mL). Sulfuric acid in DDGS, not ruminal short-chain fatty acids, may be responsible for the low rumen pH observed and may influence the maximum inclusion of DDGS in cattle diets. Monensin supplementation decreased H(2)S concentration and may decrease the risk of polioencephalomalacia for cattle fed high-DDGS diets. 相似文献
4.
The effects of 3 supplemental Cu concentrations on feedlot performance, mineral absorption, carcass characteristics, and ruminal S metabolism of cattle fed diets containing 60% dried distillers grains with solubles (DDGS) were evaluated in 2 experiments. Experiment 1 was conducted with 84 Angus-cross yearling steers and heifers (initial BW = 238 ± 36 kg), which were blocked by gender and allocated to 12 pens. Supplemental dietary Cu (tribasic copper chloride) treatments were: 1) 0 mg Cu/kg diet DM, 2) 100 mg Cu/kg diet DM, 3) 200 mg Cu/kg diet DM. The remainder of the diet was DDGS (60%), grass hay (10%), pelleted soy hulls (15%), and a vitamin-mineral supplement (15%). Diets were offered ad libitum throughout the finishing phase (168 d). Three cattle from each pen (n = 36) were harvested on d 168 and carcass data and liver samples were collected. Copper supplementation did not affect ADG (P = 0.22). However, the nonsignificant trend for increased ADG and decreased DMI led to a linear increase (P = 0.02) feed efficiency (G:F = 0.167, 0.177, and 0.177 for 0, 100, and 200 mg Cu/kg diet DM, respectively). The apparent absorption of Cu decreased quadratically (P = 0.07) and the apparent absorption of Mn and Zn were decreased linearly (P = 0.03 and P = 0.05, respectively) with increased Cu supplementation. Cattle supplemented with 100 or 200 mg Cu/kg diet DM had greater liver Cu concentrations (P < 0.01) than cattle that were not supplemented with Cu. There were no treatment effects (P > 0.10) on HCW, LM area, USDA yield grade, backfat, or marbling score. Experiment 2 was conducted with 6 ruminally fistulated steers that were fed the same diets as in Exp 1 in a replicated 3 × 3 Latin Square design. Copper supplementation did not affect (P > 0.10) ruminal pH or liquid S(2-) concentrations in steers consuming 60% DDGS diets (total dietary S = 0.55%). From 3 to 9 h after feeding, H(2)S gas concentration was decreased in those cattle supplemented with 100 mg Cu/kg diet. Concentration of H(2)S gas did not differ among cattle supplemented with 0 or 200 mg Cu/kg diet DM on 60% DDGS diets. Supplemental Cu improved feed efficiency in cattle consuming diets containing 60% DDGS; however, effects of Cu on rumen S metabolism were minimal even when supplemented at twice the maximum tolerable limit for beef cattle (NRC, 2000). 相似文献
5.
Two hundred sixty-four crossbred heifers (initial BW = 354 kg ± 0.5) were used to determine effects of corn processing method and wet distillers grains plus solubles (WDGS) inclusion in finishing diets on animal performance, carcass characteristics, and manure characteristics. The study was conducted as a randomized complete block with a 2 × 2 factorial arrangement of treatments. Dietary treatments included steam-flaked corn (SFC)- and dry-rolled corn (DRC)-based finishing diets containing 0 or 20% WDGS (0SFC, 20SFC, 0DRC, and 20DRC, respectively). Heifers averaged 154 d on feed and were marketed in 3 groups. There were no interactions between corn processing method and WDGS detected (P ≥ 0.29) for any performance or carcass response variables. Heifers fed diets containing WDGS tended to have greater final BW (P = 0.10) and increased G:F (P = 0.08) compared with heifers fed diets without WDGS. Heifers fed SFC-based diets consumed 7% less feed (P < 0.01) and were 9% more efficient (P < 0.01) than heifers fed DRC-based diets. Carcass characteristics were not affected by corn processing method or WDGS inclusion (P ≥ 0.16). Intakes of OM, N, P, and K were greater (P ≤ 0.05) for heifers fed DRC-based diets than those fed SFC-based diets, which resulted in greater net accumulation of the nutrients in the manure (P ≤ 0.04). Heifers fed diets containing WDGS had greater (P < 0.01) intakes of N, P, and K than heifers fed diets without WDGS. As a result, a greater net accumulation of P and K (P ≤ 0.03) and N (P = 0.10) were present in the manure from cattle fed diets containing WDGS compared with those fed diets without WDGS. There was no interaction (P ≥ 0.16) between corn processing and WDGS on N volatilization losses. Nitrogen volatilization losses from manure (expressed as a percentage of intake and g·heifer(-1)·d(-1)) were greater (P < 0.01) for heifers fed SFC-based diets than heifers fed DRC-based diets. Feeding DRC-based finishing diets to heifers resulted in increased manure production and nutrient excretion and decreased N volatilization. Both corn processing method and WDGS inclusion affected animal performance and manure characteristics. 相似文献
6.
The objectives of this study were to determine the effects of 0, 20, 40, or 60% dietary dried distillers grains with solubles (DDGS) on 1) growing lamb performance, carcass characteristics, and tissue minerals, and 2) nutrient digestibility and retention in growing lambs. In Exp. 1, ninety-six lambs were blocked by sex (ewes, n = 48; wethers, n = 48) and BW, housed in 24 pens (4 lambs per pen), and used in a 92-d feedlot trial (initial BW = 26.4 ± 9.3 kg). Lambs were fed 1 of 4 dietary treatments 1) 0% DDGS, 2) 20% DDGS, 3) 40% DDGS, or 4) 60% DDGS. The DDGS replaced primarily corn, and diets were fed as a complete pellet. There was a quadratic effect of DDGS inclusion on ADG; lambs fed the 20% DDGS diet had the greatest (P = 0.04) gains at 0.358 kg/d. This effect on ADG led to a quadratic (P = 0.03) effect of DDGS on final BW. Increasing dietary DDGS did not affect (P > 0.13) DMI and resulted in a linear (P = 0.02) decrease in G:F. In the liver, S increased linearly (P = 0.05), whereas Cu decreased linearly (P < 0.01) with increasing dietary DDGS; other liver minerals were not affected (P > 0.05). Carcass backfat, yield grade, and marbling score were not affected (P > 0.05) by dietary DDGS. In Exp. 2, twenty-four lambs (initial BW = 43.0 ± 4.4 kg) were used in a metabolism study. Lambs were adapted to the same diets described above for 17 d before a 5-d sampling period during which total feces and urine were collected. Apparent digestibility of dietary DM decreased linearly (P < 0.01) with increasing dietary inclusion of DDGS. Digestibility of fat followed a similar pattern, whereas N, S, and P absorption increased linearly (P < 0.03) with increasing dietary DDGS. The digestibility of NDF was not affected (P > 0.05) by dietary treatment. Apparent retentions (as a percentage of intake) of N, K, Mg, Cu, Fe, and Zn were not affected (P > 0.05) by dietary DDGS inclusion, whereas the retention of S and P decreased (P < 0.04). Daily urine output increased linearly (P < 0.01) and urine pH decreased linearly (P < 0.01) with increasing DDGS (urine pH was 7.46, 5.86, 5.52, and 5.32 for treatments 1 to 4, respectively). These data suggest urine is a major route for excretion of acid when high-S diets containing DDGS are fed. Increases in dietary DDGS resulted in decreased digestion of DM and fat, which may be partially responsible for decreased lamb feedlot performance for 40 and 60% dietary DDGS when compared with 20% DDGS. 相似文献
7.
Two experiments using 96 steers each were conducted to evaluate the effect of corn wet distillers grains plus solubles (WDGS) concentration on steer performance, N loss, and P mass balance. Feeding WDGS as an energy source instead of protein may increase N release into the environment but also the amount of N removed in the manure. Calves (BW = 294 ± 33 kg) were fed 167 d from November to May (WIN), and yearlings (BW = 373 ± 24 kg) were fed 133 d from June to October (SUM). Treatments consisted of 0, 15, and 30% dietary inclusion of WDGS (DM basis) replacing corn (CON, 15WDGS, 30WDGS, respectively). Basal diets consisted of high-moisture and dry-rolled corn fed at a 1:1 ratio, 7.5% alfalfa hay, 5% molasses, and 5% supplement (DM basis). The CON and 15WDGS diets were formulated to meet MP requirements, and 30WDGS exceeded MP requirements. Dry matter intake, ADG, and HCW increased linearly (P < 0.05) with WDGS concentration in the WIN, whereas DMI and ADG increased linearly (P < 0.10) in the SUM. Efficiency of BW gain was not different (P > 0.10) among treatments in either experiment. Nitrogen and P intake increased linearly (P < 0.01) with WDGS concentration in both experiments. Calculated retention of N and P increased linearly (P ≤ 0.05) with WDGS concentration in the WIN but not in the SUM (P > 0.10). Calculated excretion of N and P increased linearly (P < 0.01) with WDGS concentration in both experiments. Amount of N removed in the manure was not different (P = 0.26) among treatments in the WIN but increased linearly (P = 0.05) with WDGS concentration in the SUM. Amount of P and OM removed increased linearly (P ≤ 0.05) with WDGS concentration in both experiments. Amount of N lost (kg/steer) increased linearly (P < 0.05) with WDGS concentration in both experiments. Expressed as a percentage of N excretion, N volatilization rate (amount of N lost divided by N excretion) was not different (P > 0.30) among treatments and averaged 68.3 and 77.0 in the WIN and SUM, respectively. More N volatilized when WDGS were fed, but not all of the additional N excreted was volatilized. Regressing the amount of OM on the pen surface against manure N, 98% of the variability for manure N in the WIN and 92% in the SUM was accounted for. Feeding WDGS increased the total amount of N lost to volatilization; however, not all of the additional N excreted was lost because of an increase in the proportion of manure OM. 相似文献
8.
Two experiments were conducted to determine the effects of wet distillers grain plus solubles (WDG; <15% sorghum grain) concentration in steam-flaked corn (SFC) diets on feedlot performance, carcass characteristics, ruminal fermentation, and diet digestibility. In Exp. 1, six hundred crossbred steers (364 ± 35 kg of BW) were used in a randomized complete block design with 8 replications/treatment. Dietary treatments consisted of a dry-rolled corn (DRC) control diet without WDG, a SFC control without WDG, and SFC with 4 WDG concentrations (15, 30, 45, 60% DM basis) replacing SFC, cottonseed meal, urea, and yellow grease. Final BW, ADG, G:F, HCW, and 12th-rib fat depth were greater (P ≤ 0.05) for SFC compared with DRC. Dry matter intake tended (P = 0.06) to be greater for DRC compared with SFC. Final BW, ADG, G:F, HCW, 12th-rib fat depth, and marbling score decreased linearly (P < 0.01) with increasing WDG concentration. In Exp. 2, six ruminally and duodenally cannulated crossbred steers (481 ± 18 kg of BW) were used in a 6 × 6 Latin square design using the same diets as Exp. 1. Ruminal, postruminal, and total tract OM and NDF digestibility were not different (P > 0.14) for DRC compared with SFC. Ruminal and total tract starch digestibility were greater (P < 0.01) for SFC compared with DRC. Dry matter and OM intake were not different (P ≥ 0.43) among WDG treatments. Ruminal and total tract OM digestibility decreased linearly (P < 0.01) with increasing WDG concentration. Intake, ruminal digestibility, and total tract digestibility of NDF increased linearly (P < 0.01) with increasing WDG concentration. Starch intake decreased linearly (P < 0.01) with increasing WDG concentration. Ruminal starch digestibility increased (P = 0.01) with increasing concentration of WDG. Total tract starch digestibility decreased quadratically (P < 0.01) with increasing concentration of WDG. Feeding SFC improved steer performance compared with DRC. The concentration of WDG and corn processing method influences nutrient digestibility and ruminal fermentation. The addition of WDG in SFC-based diets appears to negatively affect animal performance by diluting the energy density of the diet. 相似文献
9.
A study was conducted to evaluate feed intake, ADG, carcass quality, eating behavior, and blood metabolites in feedlot beef steers fed diets that varied in proportion of wheat dried distillers grains with solubles (DDGS) replacing barley grain or barley silage. Two hundred crossbred steers (BW = 489 ± 30 kg) were blocked by BW and randomly allotted to 20 pens (5 pens per treatment). Steers were fed 1 of 4 diets: control without DDGS (CON), 25% (25DDGS), 30% (30DDGS), or 35% (35DDGS) wheat DDGS (DM basis). The CON diet consisted of 15% barley silage and 85% barley-based concentrate; the 3 wheat DDGS diets were formulated by substituting 20% barley grain and 5, 10, or 15% silage, respectively, with 25, 30, or 35% wheat DDGS so that the 35DDGS diet contained no silage. The diets were formulated such that wheat DDGS was substituted for both barley grain and barley silage to evaluate whether wheat DDGS can be fed as a source of both energy and fiber in feedlot finishing diets. Dry matter intake of steers fed 25DDGS was greater (P < 0.01), but final BW, ADG, and G:F were not different compared with steers fed CON diet. Carcass characteristics and liver abscess score were not different between CON and 25DDGS. Steers fed 25DDGS had longer eating time (min/d; P < 0.01), greater meal frequency (P < 0.04), but a slower eating rate (P < 0.04). Replacing barley silage with increasing amounts of wheat DDGS (from 25DDGS to 35DDGS) linearly reduced (P < 0.01) DMI. Final BW, ADG, and G:F were not affected by increasing amounts of wheat DDGS. Carcass traits were not different, whereas liver abscess scores linearly (P < 0.01) increased as more barley silage was replaced by wheat DDGS. Eating time (min/d) and duration of each meal linearly (P < 0.02) decreased, whereas eating rate (min/g of DM) linearly (P < 0.01) increased with increasing replacement of barley silage. Blood urea N was doubled (P < 0.01) compared with CON by inclusion of wheat DDGS. Results indicate that wheat DDGS can be used effectively in feedlot diets, decreasing the need for barley grain or silage without negatively affecting growth performance and carcass characteristics. A reduction in the amount of roughage required to maintain growth performance is a potential advantage in feedlot operations because forage is costly and often of limited availability. Thus, DDGS can be a possible alternative as long as they are available and cost effective; however, increased incidence of liver abscess and increased N content of manure need to be considered when greater amounts of wheat DDGS are included in finishing diets. 相似文献
10.
Three hundred seventy-one crossbred-yearling heifers (299 +/- 9 kg initial BW) were obtained from a common source and used in a randomized complete-block designed finishing study. A 2 x 3 factorial arrangement of treatments was used with one factor being diet: based on steam-flaked corn finishing diet (SFC) or SFC plus 25% (dry basis) corn wet distillers grains with solubles (WDGS). The second factor was feed additives: no added antibiotics (NONE), 300 mg of monensin daily (MONENSIN), or 300 mg of monensin + 90 mg of tylosin daily (MON+TYL). Main effect of diet resulted in no difference in DMI (P = 0.34). Heifers fed SFC gained 9% faster (P = 0.01) and were 7% more efficient (P = 0.01) than heifers fed WDGS. In addition, heifers fed SFC had 3% heavier (P = 0.01) HCW; 1% greater (P = 0.01) dress yield; and had 3% larger (P = 0.05) LM area. Marbling score and carcasses that graded USDA Choice or better were both greater (P = 0.03) for heifers fed SFC. Heifers fed MONENSIN had a smaller (P = 0.01) LM area than heifers fed NONE and tended (P = 0.09) to have smaller LM area than heifers fed MON+TYL. Marbling score, USDA quality grade, and USDA yield grade were not different (P >/= 0.12) among feed additive treatments. Kidney, pelvic, and heart fat and s.c. fat thickness at the 12th rib were also not different (P >/= 0.55) for main effects of diet and feed additive. There was a tendency (P = 0.09) for a diet x feed additive interaction for the most severe (A+) liver abscesses. Heifers fed NONE yielded the greatest percentage (16%) of A+ livers in the SFC treatment, whereas heifers fed MON+TYL yielded the greatest percentage (10%) in the WDGS treatment. Including wet distillers grains with solubles in diets based on steam-flaked corn decreased finishing heifer performance, HCW, and marbling. Tylosin addition tended to decrease severity of liver abscesses in diets containing SFC, but not in diets containing WDGS. These data indicate that monensin and tylosin may not be as effective when used in steam-flaked corn diets with 25% WDGS. 相似文献
11.
This study was conducted to determine the effects of dietary crude glycerol and dried distillers grains with solubles (DDGS) on growing-finishing pig performance, carcass characteristics, and carcass fat quality. We hypothesized that because dietary crude glycerol has been observed to increase carcass SFA, it might ameliorate the negative effects of DDGS on fat quality. The 97-d study was conducted at a commercial swine research facility in southwestern Minnesota with 1,160 barrows (initial BW = 31.0 ± 1.1 kg). Pigs were blocked by initial BW, and pens were randomly allotted to 1 of 6 dietary treatments with 7 replications per treatment. Treatments were arranged in a 2 × 3 factorial with main effects of crude glycerol (0, 2.5, or 5%) and DDGS (0 or 20%). All corn-soybean meal-based diets contained 3% added fat (choice white grease). There were no glycerol × DDGS interactions for any response criteria evaluated. Increasing dietary glycerol did not affect finishing pig growth performance. Adding 20% DDGS to the diet did not affect ADG; however, finishing pigs fed diets with added DDGS had greater (2.47 vs. 2.41 kg/d; P = 0.02) ADFI and poorer (0.39 vs. 0.40; P = 0.01) G:F than pigs not fed DDGS. Feeding increasing dietary glycerol or 20% DDGS did not affect carcass characteristics. For carcass fat quality, feeding 20% DDGS resulted in decreased (P < 0.01) palmitic and oleic acids, total SFA and total MUFA, and increased (P < 0.01) linoleic, total PUFA, total unsaturated fatty acids, and iodine value in jowl fat, belly fat, and backfat. Increasing dietary crude glycerol increased myristic acid (linear, P < 0.05) and MUFA (quadratic, P < 0.05) in jowl fat and increased (quadratic, P < 0.05) oleic acid and MUFA in backfat. In conclusion, feeding 20% DDGS to finishing pigs increased ADFI, reduced G:F, and increased carcass fat iodine value, whereas feeding crude glycerol did not influence growth performance, carcass characteristics, and had a minor influence on fatty acids of carcass fat. Both of these biofuel coproducts can be used in combination without affecting finishing pig performance or carcass traits; however, feeding crude glycerol did not fully mitigate the increased unsaturation of carcass fat observed when feeding DDGS. 相似文献
12.
Jersey cattle are known for producing carcasses with a greater amount of marbling, but they require more days on feed to achieve acceptable market weights compared with other breeds. The objective of this study was to evaluate the effect of dietary forage (12 vs. 24% sudangrass:alfalfa hay, DM basis) in steam-flaked, corn-based finishing diets on carcass characteristics, beef palatability, and retail color stability of steaks from Jersey beef compared with conventionally fed commodity beef strip loins (COM) of identified quality (Choice(-) and Select(+)). Jersey steers (n = 77) were blocked by BW and randomly assigned to 1 of the following treatments for a 383-d trial period: Jersey low 12% (JL; n = 38) or Jersey high 24% (JH; n = 39) forage (DM basis). A comparison group was selected from conventionally fed cattle on the same day of slaughter as the Jersey treatments, and strip loins from USDA Select(+) (COM; n = 20) and Choice(-) (COM; n = 20) were removed for data analysis. Seventy-two hours postmortem, strip loins were removed, vacuum-packaged, and aged at 3°C for 18 d postmortem. After the aging period, steaks from the LM were sliced, vacuum-packaged, and frozen (-20°C) until analyzed. Jersey steaks had reduced (P < 0.05) Warner-Bratzler shear force values compared with COM steaks. Trained sensory panelists rated JL greater (P < 0.05) for initial and sustained tenderness and initial juiciness than COM, whereas JH was intermediate. As expected, marbling was greater (P < 0.05) for both JL and JH compared with COM, and trained sensory panel sustained juiciness, beef flavor intensity, and overall acceptability scores were greater (P < 0.05) for both JL and JH compared with COM; however, no differences (P = 0.14) were reported for consumer tenderness and flavor. Objective color (L*, a*, b*) measurements decreased (P < 0.05) over time across treatments. There were no differences among treatments for lightness (L*); however, overall during retail display JL were less (P < 0.05) red (a*) and yellow (b*) than JH and COM. Subjective color scores indicated both JL and JH were less red (P < 0.05) than COM. Steaks from Jersey were equal to and on some measurements more desirable than steaks from COM carcasses for both color stability and palatability. These results suggest that dietary forage level had minimal effects on carcass characteristics and beef palatability. However, feeding a low-forage diet decreases input cost and potentially results in a greater valued carcass. Finishing long-fed (383 d) Jersey steers can meet beef industry expectations with respect to quality grade. 相似文献
13.
Corn distiller's grains plus solubles (DGS) have become a common replacement for shelled corn in diets of finishing steers. Numerous studies have evaluated DGS inclusion, both wet (WDGS) and dry (DDGS), into feedlot diets with conflicting reports on feedlot performance and subsequent meat quality. Many authors have failed to describe the nutrient composition of the DGS utilized in their studies making it difficult to determine why different studies have different results. The objective of this study was to evaluate the feedlot performance and subsequent meat quality characteristics of steers fed high fat (10.36±0.72%), modified wet corn distiller's grains plus solubles (HWDGS) at 0, 25, 40, and 70% of the diet dry matter (DM). Angus cross steers ( n=240; 335±55 kg) were blocked by source and stratified within block (3 blocks) by body weight (BW) to 32 treatment pens containing either 6 or 10 steers/pen. Pens within block were randomly assigned to one of four diets containing 15% corn silage: (1) 76.9% shelled corn, 6.4% soybean meal 1.5% limestone, 0.2% premix (0 HWDGS); (2) 25.0% HWDGS, 58.20% shelled corn 1.6% limestone, 0.2% premix (25 HWDGS); (3) 40.0% HWDGS, 42.74% shelled corn 2.06% limestone, 0.2% premix (40 HWDGS); (4) 70.0% HWDGS, 12.30% shelled corn 2.5% limestone, 0.2% premix (70 HWDGS). Target BW at harvest was 591 kg±23 kg with 121 steers harvested on day (d) 161 and 117 steers on d 224. Hot carcass weight and liver abscess scores were recorded on d of harvest. Longissimus muscle area, rib fat thickness, marbling score, and kidney, pelvic and heart fat were measured after a 24 h chill. No significant differences were observed between treatments regarding average daily gain (ADG) or BW. Steers fed 0 HWDGS had significantly lower average daily feed intake (ADFI) than steers fed HWDGS and the response was quadratic at lower ADFI. Steers fed 70 HWDGS had lower ( P<0.05) dry matter intake (DMI) compared to steers fed lower HWDGS concentrations. Steer gain to feed ratio (G:F) was significantly higher for steers fed 70 HWDGS compared to 0, 25, or 40 HWDGS with a quadratic response at higher % HWDGS diets. Mean United States Department of Agriculture (USDA) quality grade was average choice. Mean USDA yield grade was 3.0. Steers fed 70 HWDGS had significantly smaller rib eye areas and a linear trend ( P=0.08) to have lower USDA quality grades compared to steers fed lower HWDGS inclusion rates. Increasing dietary HWDGS increased polyunsaturated fatty acid (PUFA) and PUFA/saturated fatty acid concentrations in intramuscular fat with both a linear and quadratic effect. High fat modified WDGS can be fed up to 70% of diet DM without compromising feedlot performance, carcass characteristics, or meat quality. 相似文献
14.
1材料和方法
1.1试验动物和日粮
在生长期将72头杂交肉牛分成4个组别,日粮中的DDGS含量分别为0、30%、0、30%,进入育成期后,相对应肉牛日粮的DDGS含量分别为0、0、30%、30%,因此将这4组肉牛以DDGS含量不同划分成(0:0,30:0,0:30,30:30)4个组别。 相似文献
15.
Distiller's dried grains with solubles (DDGS), a coproduct of the ethanol industry, are often used as feed material in livestock and poultry nutrition. Results of many experiments have indicated, however, that a high dietary level of DDGS can negatively affect the digestibility of nutrients and the performance of monogastric animals due to their high content of non‐starch polysaccharides (NSP). Nevertheless, using high levels of DDGS as a protein source in livestock diets can be still economically justifiable in view of the rising prices of soya bean meal and other protein sources. The aim of some recent experiments with poultry and pigs was to improve the nutritional efficacy of high‐NSP diets through the addition of feed enzymes. As presented and discussed in this review article, the efficacy of feed enzymes added to poultry and pig diets containing DDGS is not consistent and depends on many factors. However, NSP‐hydrolysing enzymes generally seemed to be more efficient than phytases in terms of the digestibility of nutrients and the growth performance of poultry and pigs fed high‐DDGS diets. For this reason, supplementation with NSP‐hydrolysing enzymes could be an efficient way to enable the use of increased levels of DDGS in poultry and pig diets. 相似文献
16.
Two experiments were conducted to evaluate the effects of adding combinations of wheat middlings (midds), distillers dried grains with solubles (DDGS), and choice white grease (CWG) to growing-finishing pig diets on growth, carcass traits, and carcass fat quality. In Exp. 1, 288 pigs (average initial BW = 46.6 kg) were used in an 84-d experiment with pens of pigs randomly allotted to 1 of 4 treatments with 8 pigs per pen and 9 pens per treatment. Treatments included a corn-soybean meal-based control, the control with 30% DDGS, the DDGS diet with 10% midds, or the DDGS diet with 20% midds. Diets were fed in 4 phases and formulated to constant standardized ileal digestible (SID) Lys:ME ratios within each phase. Overall (d 0 to 84), pigs fed diets containing increasing midds had decreased (linear, P ≤ 0.02) ADG and G:F, but ADFI was not affected. Feeding 30% DDGS did not influence growth. For carcass traits, increasing midds decreased (linear, P < 0.01) carcass yield and HCW but also decreased (quadratic, P = 0.02) backfat depth and increased (quadratic, P < 0.01) fat-free lean index (FFLI). Feeding 30% DDGS decreased (P = 0.03) carcass yield and backfat depth (P < 0.01) but increased FFLI (P = 0.02) and jowl fat iodine value (P < 0.01). In Exp. 2, 288 pigs (initial BW = 42.3 kg) were used in an 87-d experiment with pens of pigs randomly allotted to 1 of 6 dietary treatments with 8 pigs per pen and 6 pens per treatment. Treatments were arranged in a 2 × 3 factorial with 2 amounts of midds (0 or 20%) and 3 amounts of CWG (0, 2.5, or 5.0%). All diets contained 15% DDGS. Diets were fed in 4 phases and formulated to constant SID Lys:ME ratios in each phase. No CWG × midds interactions were observed. Overall (d 0 to 87), feeding 20% midds decreased (P < 0.01) ADG and G:F. Pigs increasing CWG had improved ADG (quadratic, P = 0.03) and G:F (linear, P < 0.01). Dietary midds or CWG did not affect ADFI. For carcass traits, feeding 20% midds decreased (P < 0.05) carcass yield, HCW, backfat depth, and loin depth but increased (P < 0.01) jowl fat iodine value. Pigs fed CWG had decreased (linear, P < 0.05) FFLI and increased (linear, P < 0.01) jowl fat iodine value. In conclusion, feeding midds reduced pig growth performance, carcass yield, and increased jowl fat iodine value. Although increasing diet energy with CWG can help mitigate negative effects on live performance, CWG did not eliminate negative impacts of midds on carcass yield, HCW, and jowl fat iodine value. 相似文献
17.
A 2-yr study was conducted using a 3 × 2 factorial arrangement of treatments to evaluate the effects of feeding dried distillers grains throughout a beef production system on performance, carcass characteristics, and fatty acid profile of beef. Factors were wheat pasture supplement [no supplement (CON), dry-rolled corn (DRC), and dried distillers grains (DDG)] fed at 0.5% BW daily and finishing diet [steam-flaked corn based diet containing 0 (SFC) or 35% (35DDG) DDG]. Each year, 60 preconditioned Hereford steers (initial BW = 198 kg ± 3) grazed winter wheat pasture with or without supplement. Body weight gain was 8% greater for steers consuming DDG supplement compared with CON and DRC steers (P < 0.01). After the grazing period, pastures within supplement treatment were randomly assigned to SFC or 35DDG. There was no supplement by finishing diet interaction for any performance or carcass variable of interest (P ≥ 0.41). Previous supplementation on winter wheat affected BW at feedlot entry and adjusted G:F (P ≤ 0.05) but had no effect on finishing ADG or carcass traits (P ≥ 0.12). On a carcass-adjusted basis, steers consuming 35DDG had reduced final BW, ADG, G:F, and total BW gain throughout the system (P ≤ 0.04) compared with SFC. Additionally, steers consuming 35DDG had reduced HCW, dressing percent, and fat thickness (P ≤ 0.03) compared with SFC. There was a supplement by finishing diet interaction (P = 0.02) for 18:0, in which cattle supplemented with DRC and fed the SFC finishing diet had the lowest concentration of 18:0 but DRC supplemented steers fed the 35DDG diet had the greatest concentration. The interaction was not significant (P ≥ 0.18) for other fatty acids. Main effects of supplement and finishing diet affected (P ≤ 0.05) several other fatty acids of interest, particularly 18:2, which is associated with reduced flavor-stability of beef. The use of DDG as a supplement to wheat pasture resulted in greater ADG during wheat grazing and heavier BW at feedlot entry, but final BW was not different from CON or DRC groups. Feeding DDG at 35% DM in steam-flaked corn-based finishing diets reduced ADG, G:F, and HCW, and affected the fatty acid composition of beef. 相似文献
18.
Three experiments were conducted to determine the optimal level of dried distiller grains with solubles (DDGS) from a common ethanol manufacturing facility and to determine the potential interactions between dietary DDGS and added fat on performance and carcass characteristics of growing and finishing pigs. All experiments were conducted at the same commercial facility and used DDGS from the same ethanol manufacturing facility. In Exp. 1, a total of 1,050 pigs (average initial BW 47.6 kg), with 24 to 26 pigs per pen and 7 pens per treatment, were fed diets containing 0 or 15% DDGS and 0, 3, or 6% added choice white grease in a 2 x 3 factorial arrangement in a 28-d growth study. Overall, there were no DDGS x added fat interactions (P >/= 0.14). There was an improvement (linear, P < 0.01) in ADG and G:F as the percentage of added fat increased. There was no difference (P = 0.74) in growth performance between pigs fed 0 or 15% DDGS. In Exp. 2, a total of 1,038 pigs (average initial BW 46.3 kg), with 24 to 26 pigs per pen and 10 pens per treatment, were fed diets containing 0, 10, 20, or 30% DDGS in a 56-d growth study. Pigs fed diets containing DDGS had a tendency for decreased ADG and ADFI (both linear, P = 0.09 and 0.05, respectively), but the greatest reduction seemed to occur between pigs fed 10 and 20% DDGS. In Exp. 3, a total of 1,112 pigs (average initial BW 49.7 kg), with 25 to 28 pigs per pen and 9 pens per treatment, were used in a 78-d growth study to evaluate the effects of increasing DDGS (0, 5, 10, 15, or 20%) in the diet on pig growth performance and carcass characteristics. From d 0 to 78, ADG and ADFI decreased linearly (P = 0.04) with DDGS level, but the greatest reduction seemed to occur between pigs fed 15 and 20% DDGS. Efficiency of gain tended to improve (P = 0.06) when DDGS were included in the diet. There was no effect of DDGS (P = 0.22) on loin depth. Carcass weight and percentage yield decreased (linear, P = 0.04) with increasing levels of DDGS in the diet. Backfat and fat-free lean index tended to decrease (linear, P = 0.09) with increasing levels of DDGS in the diet. In conclusion, finishing pigs raised under commercial production conditions can be fed 10 to 15% DDGS from the source evaluated in this study before growth rate is compromised. 相似文献
19.
There is much interest in quantifying the nutritional value of UK wheat distillers dried grains with solubles (W-DDGS) for livestock species. A study was designed to evaluate caecal parameters (pH, short chain fatty acids (SCFAs) and bacterial diversity) in layer hens fed on balanced diets containing graded concentrations of W-DDGS. A total of 32 layer hens (Bovans Brown strain at 27 weeks of age) were randomly allocated to one of 4 dietary treatments containing W-DDGS at 0, 60, 120 or 180 g/kg. Each treatment was fed to 8 replicate individually housed layer hens over a 5-d acclimatisation period, followed by a 4-week trial. Individual feed intakes were monitored and all eggs were collected daily for weeks 2, 3 and 4 of the trial, weighed and an assessment of eggshell “dirtiness” made. All hens were culled on d 29 and caecal pH and SCFAs measured. Polymerase chain reaction denaturing gradient gel electrophoresis of the bacterial 16 S rDNA gene was used to assess total bacterial diversity of luminal caecal content from hens fed the 0 and 180 g W-DDGS/kg diets. Unweighted pair group method with arithmetic mean (UPGMA) dendrograms were generated from DGGE banding patterns. Increasing W-DDGS dietary concentrations resulted in a more acidic caecal environment. Caecal SCFAs were unaffected by diet aside from a quadratic effect for molar proportions of isobutyric acid. Diversity profiles of the bacterial 16S rRNA gene from luminal caecal contents were unaffected by W-DDGS inclusion. The results of the current study suggest that W-DDGS can be successfully formulated into nutritionally balanced layer diets (supplemented with xylanase and phytase) at up to 180 g/kg with no detrimental effects to the caecal environment. 相似文献
|