首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 121 毫秒
1.
An analytical method for the simultaneous determination of residues of eight neonicotinoid insecticides and two metabolites in honey using LC-MS/MS was developed and validated. Two approaches of sample preparation were investigated, with the final method involving acetonitrile extraction and subsequent cleanup by dispersive solid-phase extraction (QuEChERS type). Validation was based on quintuplicate analysis at three fortification levels and showed satisfactory recoveries (60-114%) and high precision (RSDs between 2.7 and 12.8%). Low limits of detection and quantification could be achieved for all analytes ranging from 0.6 to 5 μg/kg and from 2 to 10 μg/kg, respectively. Investigations of Austrian honey samples revealed the presence of acetamiprid, thiacloprid, and thiamethoxam residues in honey; however, no sample exceeded the maximum residue limits. On average, flower honey samples contained neonicotinoid residues in higher quantities compared to forest honey samples.  相似文献   

2.
A multiresidue method analyzing 209 pesticides in 24 agricultural commodities has been developed and validated using the original Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) procedure and high performance liquid chromatography-positive electrospray ionization-tandem mass spectrometry (LC-MS/MS) analysis. Using solvent-only calibration standards (SOCSs) and matrix-matched calibration standards (MMCSs), it was demonstrated that a minimal concentration of 5-10 μg/kg (part per billion, ppb) of analytes in matrix is required for the consistent identification of targeted pesticides with two MRM transitions. Method performance was validated by the precision and accuracy results obtained from fortification studies at 10, 25, 100, and 500 ppb and MMCSs. The method was demonstrated to achieve an average recovery of 100 ± 20% (n = 4) for >75% of evaluated pesticides at the low fortification level (10 ppb) and improved to >84% at the higher fortification concentrations in all 24 matrices. Matrix effects in LC-MS/MS analysis were studied by evaluating the slope ratios of calibration curves (1.0-100 ng/mL) obtained from the SOCSs and MMCSs. Principal component analysis (PCA) of LC-MS/MS and method validation data confirmed that each matrix exerts its specific effect during the sample preparation and LC-MS/MS analysis. The matrix effect is primarily dependent on the matrix type, pesticide type and concentration. Some caution is warranted when using matrix matched calibration curves for the quantitation of pesticides to alleviate concerns on matrix effects. The QuEChERS method with LC-MS/MS was used to identify and quantitate pesticides residues, with concentrations ranging from 2.5 to >1000 ppb in a variety of agricultural samples, demonstrating fitness for screening and surveillance applications.  相似文献   

3.
An on-line solid-phase extraction (SPE) following a liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method was established for the simultaneous analysis of bisphenol A (BPA), nonylphenol (NP), and octylphenol (OP) in cereals (including rice, maize, and wheat). The target compounds were extracted by acetonitrile, purified by an automated on-line SPE cartridge, and analyzed by LC-MS/MS under the negative-ion mode. Mean recoveries fortified at three concentration levels ranged from 81.6 to 115.7%, and the coefficient of variation ranged from 4.6 to 19.9% (n = 6). The limits of quantification (LOQs) of the method were 0.5, 0.5, and 0.25 μg/kg for BPA, NP, and OP, respectively, in both rice and maize, while the LOQs in wheat were 0.5, 1.25, and 0.5 μg/kg for BPA, NP, and OP, respectively. This method was applied in the analysis of rice, maize, and wheat from a local market. As a result, NP occurred in all cereal samples at the concentration range of 9.4-1683.6 μg/kg and BPA was detected in a few samples.  相似文献   

4.
This study was designed to develop a sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the simultaneous detection and quantification of 25 mycotoxins in cassava flour, peanut cake and maize samples with particular focus on the optimization of the sample preparation protocol and method validation. All 25 mycotoxins were extracted in a single step with a mixture of methanol/ethyl acetate/water (70:20:10, v/v/v). The method limits of quantification (LOQ) varied from 0.3 μg/kg to 106 μg/kg. Good precision and linearity were observed for most of the mycotoxins. The method was applied for the analysis of naturally contaminated peanut cake, cassava flour and maize samples from the Republic of Benin. All samples analyzed (fifteen peanut cakes, four maize flour and four cassava flour samples) tested positive for one or more mycotoxins. Aflatoxins (total aflatoxins; 10-346 μg/kg) and ochratoxin A (相似文献   

5.
A highly selective and sensitive method was developed for the simultaneous determination of 12 sulfonamides in beef and milk by immunoaffinity chromatography purification coupled to ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The MS/MS conditions, UPLC mobile phase, injection solution, sample purification process, and matrix effect were studied to optimize the operating conditions. The limits of detection (LODs) of the instrument for the studied sulfonamides ranged from 0.4 to 2.0 μg L(-1), being 1.6-8.0 μg kg(-1) for beef and 1.8-6.4 μg kg(-1) for milk. The standard solution was diluted with blank beef or milk matrix for the construction of calibration curves, which had a linear range from 10 to 200 μg kg(-1) and regression coefficients higher than 0.990 (n=10) for all the studied sulfonamides. Samples spiked at 10, 20, and 100 μg kg(-1) showed recoveries above 70% and relative standard deviations below 10%.  相似文献   

6.
In this study an LC-MS/MS multitoxin method covering a total of 247 fungal and bacterial metabolites was applied to the analysis of different foods and feedstuffs from Burkina Faso and Mozambique. Overall, 63 metabolites were determined in 122 samples of mainly maize and groundnuts and a few samples of sorghum, millet, rice, wheat, soy, dried fruits, other processed foods and animal feeds. Aflatoxin B(1) was observed more frequently in maize (Burkina Faso, 50% incidence, median = 23.6 μg/kg; Mozambique, 46% incidence, median = 69.9 μg/kg) than in groundnuts (Burkina Faso, 22% incidence, median = 10.5 μg/kg; Mozambique, 14% incidence, median = 3.4 μg/kg). Fumonisin B(1) concentrations in maize were higher in Mozambique (92% incidence, median = 869 μg/kg) than in Burkina Faso (81% incidence, median = 269 μg/kg). In addition, ochratoxin A, zearalenone, deoxynivalenol, nivalenol, and other less reported mycotoxins such as citrinin, alternariol, cyclopiazonic acid, sterigmatocystin, moniliformin, beauvericin, and enniatins were detected. Up to 28 toxic fungal metabolites were quantitated in a single sample, emphasizing the great variety of mycotoxin coexposure. Most mycotoxins have not been reported before in either country.  相似文献   

7.
Seven FDA pesticide laboratories collaborated to develop and validate an LC-MS/MS method to determine 173 pesticides in <20 min. The average determination coefficient (r2) was >0.99 for all but two compounds tested. The limits of detection were <20 ng/mL for all compounds and <10 ng/mL for 363 of the 368 transitions reported. The method was used to determine pesticides in two AOAC sponsored proficiency samples. The LC-MS/MS determination was used for the analysis of oranges, carrots and spinach using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe) method. Each matrix was fortified at 20, 100, 400, and 1000 ng/g. No false positive responses were detected in controls of the three matrices. 165 pesticides had recoveries between 70 and 130%, and 161 had minimum detection levels less than 10 ng/g. Recoveries of 169 compounds for the 1000 ng/g spikes were within 50-150%. A matrix effect study indicated all three matrices caused a small net suppressing effect, the most pronounced attributable to the citrus matrix. The procedure proved to be accurate, precise, linear, sensitive and rugged, and adds 100 pesticides to the scope of the FDA pesticide program.  相似文献   

8.
A reliable, rapid, and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous determination of chloramphenicol and aflatoxin M(1) in milk has been developed. This method includes simple extraction of sample with acetonitrile, separation on a MGIII-C(18) column using 5 mM ammonium acetate aqueous solution/methanol (60:40, v/v) as mobile phase, and MS/MS detection using multiple reaction monitoring mode. The method was validated according to Commission Decision 2002/657/EC. The limits of detection (LODs) were 0.05 μg/kg for chloramphenicol and 0.005 μg/kg for aflatoxin M(1.) The limits of quantification (LOQs) were 0.2 μg/kg for chloramphenicol and 0.02 μg/kg for aflatoxin M(1). The recovery values ranged from 88.8% to 100.6%, with relative standard deviation lower than 15% in all cases, when samples were fortified at three different concentrations. The decision limits (CCα) and detection capability (CCβ) of the method were also reported. This method has been successfully applied for simultaneous analysis of chloramphenicol and aflatoxin M(1) residues in milk from local supermarkets in China.  相似文献   

9.
Resveratrol in the fruits of bilberry (Vaccinium myrtillus L.), the lowbush "wild" blueberry (Vaccinium angustifolium Aiton), the rabbiteye blueberry (Vaccinium ashei Reade), and the highbush blueberry (Vaccinium corymbosum L.) were measured using a new assay based on high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The LC-MS/MS assay provided lower limits of detection than previous methods for resveratrol measurement, 90 fmol of trans-resveratrol injected on-column, and a linear standard curve spanning >3 orders of magnitude. The recoveries of resveratrol from blueberries spiked with 1.8, 3.6, or 36 ng/g were 91.5 +/- 4.5, 95.6 +/- 6.5, and 88.0 +/- 3.6%, respectively. trans-Resveratrol but not cis-resveratrol was detected in both blueberry and bilberry samples. The highest levels of trans-resvertatrol in these specimens were 140.0 +/- 29.9 pmol/g in highbush blueberries from Michigan and 71.0 +/- 15.0 pmol/g in bilberries from Poland. However, considerable regional variation was observed; highbush blueberries from British Columbia contained no detectable resveratrol. Because blueberries and bilberries are often consumed after cooking, the effect of baking on resveratrol content was investigated. After 18 min of heating at 190 degrees C, between 17 and 46% of the resveratrol had degraded in the various Vaccinium species. Therefore, the resveratrol content of baked or heat-processed blueberries or bilberries should be expected to be lower than in the raw fruit. Although blueberries and bilberries were found to contain resveratrol, the level of this chemoprotective compound in these fruits was <10% that reported for grapes. Furthermore, cooking or heat processing of these berries will contribute to the degradation of resveratrol.  相似文献   

10.
A method based on a gel permeation chromatography (GPC) extraction procedure combined with an additional cleanup by solid-phase extraction (SPE) on silica gel and liquid chromatography-mass spectrometry (LC-MS) detection has been validated for the analysis of seven glycidyl esters (GEs) including glycidyl laurate, myristate, palmitate, stearate, oleate, linoleate, and linolenate in various edible oils. This method was conjointly developed and validated by two different laboratories, using two different detection systems, a LC time of flight MS (LC-ToF-MS) and a LC triple-quadrupole MS (LC-MS/MS). The extraction procedure allowed targeting low contamination levels due to a highly efficient matrix removal from the 400 mg oil sample loaded on the GPC column and is suitable for routine analysis as 24 samples can be extracted in an automated and reproducible way every 12 h. GPC extraction combined with SPE cleanup and LC-MS/MS detection leads to a limit of quantification in oil samples between 50 and 100 μg/kg depending on the type of glycidyl ester. Recoveries ranged from 68 to 111% (average = 93%). Quantification was performed by automated standard addition on extracts to compensate matrix effects artifacts. To control recoveries of each sample four isotopically labeled GEs ((13)C(3) or (13)C(4)) were included in the method.  相似文献   

11.
The dissipation behavior and degradation kinetics of azoxystrobin, carbendazim, and difenoconazole in pomegranate are reported. Twenty fruits/hectare (5 kg) were collected at random, ensuring sample-to-sample relative standard deviation (RSD) within 20-25%. Each fruit was cut into eight equal portions, and two diagonal pieces per fruit were drawn and combined to constitute the laboratory sample, resulting in RSDs <6% (n = 6). Crushed sample (15 g) was extracted with 10 mL of ethyl acetate (+ 10 g Na(2)SO(4)), cleaned by dispersive solid phase extraction on primary secondary amine (25 mg) and C(18) (25 mg), and measured by liquid chromatography tandem mass spectrometry. The limit of quantification was ≤0.0025 μg g(-1) for all the three fungicides, with calibration linearity in the concentration range of 0.001-0.025 μg mL(-1) (r(2) ≥ 0.999). The recoveries of each chemical were 75-110% at 0.0025, 0.005, and 0.010 μg g(-1) with intralaboratory Horwitz ratio <0.32 at 0.0025 μg g(-1). Variable matrix effects were recorded in different fruit parts viz rind, albedo, membrane, and arils, which could be correlated to their biochemical constituents as evidenced from accurate mass measurements on a Q-ToF LC-MS. The residues of carbendazim and difenoconazole were confined within the outer rind of pomegranate; however, azoxystrobin penetrated into the inner fruit parts. The dissipation of azoxystrobin, carbendazim, and difenoconazole followed first + first order kinetics at both standard and double doses, with preharvest intervals being 9, 60, and 26 days at standard dose. At double dose, the preharvest intervals extended to 20.5, 100, and 60 days, respectively.  相似文献   

12.
A comparison of ultrahigh performance liquid chromatography (UHPLC) with a 2.6 μm core-shell particle column (Kinetex C(18)) and conventional liquid chromatography (LC) with a 3 μm porous particle column (Atlantis dC(18)), coupled with electrospray ionization tandem mass spectrometry (ESI-MS/MS), for the determination of 151 pesticides in grains is presented in this study. Pesticides were extracted from grain samples using a procedure known as QuEChERS (quick, easy, cheap, effective, rugged, and safe). Quantification, with an analytical range from 5 to 500 μg/kg, was achieved using matrix-matched standard calibration curves with isotopically labeled standards or a chemical analogue as internal standards. The method performance parameters that included overall recovery, intermediate precision, and measurement uncertainty were evaluated using a designed experiment, that is, the nested design. The UHPLC (Kinetex C(18)) was superior to conventional LC (Atlantis dC(18)) as it yielded a shorter analytical run time, increased method sensitivity, and improved method performance. For UHPLC/ESI-MS/MS (Kinetex C(18)), 90% of the pesticides studied had recoveries between 81 and 110%, 88% of the pesticides had intermediate precision ≤20%, and 84% of the pesticides showed measurement uncertainty ≤40%. As compared to UHPLC/ESI-MS/MS (Kinetex dC(18)), the LC/ESI-MS/MS (Atlantis dC(18)) showed a relatively lower sensitivity, less repeatability, and larger measurement uncertainty. UHPLC/ESI-MS/MS with 2.6 μm core-shell particle column and scheduled MRM proved to be a good choice for quantification or determination of pesticides in grains.  相似文献   

13.
A novel multiresidue analysis method is developed for the determination of twenty phthalate esters at the μg/kg level in edible vegetable oils by microwave-assisted extraction-gel permeation chromatography-solid phase extraction-high resolution gas chromatography-tandem mass spectrometry (MAE-GPC-SPE-HRGC-MS/MS). The samples were extracted with methanol under microwave incubation. Cleanup was carried out with GPC followed by a further C18 SPE column and then separated by the HP-5MS capillary column under a temperature program. The eluents were qualitatively and quantitatively determined by tandem mass analyzer with selected reaction monitoring (SRM) type and positive ion mode. The calibration curves showed good linearity in the range 5 μg/kg to 2.50 mg/kg with correlation coefficients larger than 0.999. Low detection limits (LODs) of 0.218-1.367 μg/kg and quantification limits (LOQ) of 0.72-4.51 μg/kg were achieved. The mean recoveries were in the range from 93.04% to 104.6% at 5, 15, and 40 μg/kg spiked levels, and the relative standard deviations (RSDs) were in the range of 1.01% and 5.26% (n = 7). This method could potentially overcome the interference from large amounts of lipids and pigment. The real sample test showed this method can be used for sensitive and accurate determination and confirmation of phthalate ester residues in high-fat and complex samples.  相似文献   

14.
建立了环境内分泌干扰物辛基酚、壬基酚及短链壬基酚聚氧乙烯醚降解产物的高效液相色谱串联质谱分析方法。选择易受环境污染的玉米、白菜等农产品及目标物可能迁移到环境中的食品包装材料为研究对象,经过液液萃取、浓缩,乙腈甲苯(3:1)溶液溶解,经ENVITMCarblI/PSA氨基固相萃取柱净化,甲醇一二氯甲烷(4:3)溶液为洗脱液。采用Agilent ZORBAX RX-C18柱,以甲醇:10mmol·L^-1乙酸铵(9:1)为流动相,梯度洗脱分离后,在LC—MS/MS多反应监测模式下正负离子同时扫描进行定性与定量分析。结果表明,该方法对辛基酚、壬基酚、壬基酚一氧乙烯醚和壬基酚二氧乙烯醚的检出限分别为O.03、0.6、1.6、0.03μg·kg^-1,在不同基质中添加浓度为0.5-5μg·kg^-1的四种物质平均回收率在62%~113%之间。对实际样品进行检测时,在蔬菜和粮食作物及其包装材料中分别检测到不同含量的上述物质,表明该方法准确、快速、灵敏度高,可用于农产品和食品包装材料中该类物质的监控。  相似文献   

15.
A rapid, specific, and sensitive method based on the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) method and a cleanup using dispersive solid-phase extraction with MgSO(4), PSA, and C18 sorbents has been developed for the routine analysis of 14 pesticides in strawberries. The analyses were performed by three different analytical methodologies: gas chromatography (GC) with electron capture detection (ECD), mass spectrometry (MS), and tandem mass spectrometry (MS/MS). The recoveries for all the pesticides studied were from 46 to 128%, with relative standard deviation of <15% in the concentration range of 0.005-0.250 mg/kg. The limit of detection (LOD) for all compounds met maximum residue limits (MRL) accepted in Portugal for organochlorine pesticides (OCP). A survey study of strawberries produced in Portugal in the years 2009-2010 obtained from organic farming (OF) and integrated pest management (IPM) was developed. Lindane and β-endosulfan were detected above the MRL in OF and IPM. Other OCP (aldrin, o,p'-DDT and their metabolites, and methoxychlor) were found below the MRL. The OCP residues detected decreased from 2009 to 2010. The QuEChERS method was successfully applied to the analysis of strawberry samples.  相似文献   

16.
Analysis of acrylamide,a carcinogen formed in heated foodstuffs   总被引:55,自引:0,他引:55  
Reaction products (adducts) of acrylamide with N termini of hemoglobin (Hb) are regularly observed in persons without known exposure. The average Hb adduct level measured in Swedish adults is preliminarily estimated to correspond to a daily intake approaching 100 microg of acrylamide. Because this uptake rate could be associated with a considerable cancer risk, it was considered important to identify its origin. It was hypothesized that acrylamide was formed at elevated temperatures in cooking, which was indicated in earlier studies of rats fed fried animal feed. This paper reports the analysis of acrylamide formed during heating of different human foodstuffs. Acrylamide levels in foodstuffs were analyzed by an improved gas chromatographic-mass spectrometric (GC-MS) method after bromination of acrylamide and by a new method for measurement of the underivatized acrylamide by liquid chromatography-mass spectrometry (LC-MS), using the MS/MS mode. For both methods the reproducibility, given as coefficient of variation, was approximately 5%, and the recovery close to 100%. For the GC-MS method the achieved detection level of acrylamide was 5 microg/kg and for the LC-MS/MS method, 10 microg/kg. The analytic values obtained with the LC-MS/MS method were 0.99 (0.95-1.04; 95% confidence interval) of the GC-MS values. The LC-MS/MS method is simpler and preferable for most routine analyses. Taken together, the various analytic data should be considered as proof of the identity of acrylamide. Studies with laboratory-heated foods revealed a temperature dependence of acrylamide formation. Moderate levels of acrylamide (5-50 microg/kg) were measured in heated protein-rich foods and higher contents (150-4000 microg/kg) in carbohydrate-rich foods, such as potato, beetroot, and also certain heated commercial potato products and crispbread. Acrylamide could not be detected in unheated control or boiled foods (<5 microg/kg). Consumption habits indicate that the acrylamide levels in the studied heated foods could lead to a daily intake of a few tens of micrograms.  相似文献   

17.
A method for determining residues of the new reduced-risk pesticide acequinocyl and its deacetylated derivative hydroxyacequinocyl on fruits and vegetables (grapes, lemons, pears, and tomatoes) by HPLC is described. The pesticides were extracted from the fruits and vegetables with hexane and ethyl acetate solution (1:1, v/v), determined by HPLC-DAD at 250 nm and confirmed by LC/MS. No cleanup was necessary. This method is characterized by recoveries (0.01-4 mg/kg) > 77%, while the coefficient of variation was determined to be less than 11%. The limit of quantitation for both acequinocyl and hydroxyacequinocyl was 0.01 mg/kg for all matrixes.  相似文献   

18.
Methoxyfenozide [3-methoxy-2-methylbenzoic acid 2-(3,5-dimethylbenzoyl)-2-(1,1-dimethylethyl) hydrazide; RH-2485], in the formulation of INTREPID, was applied to various crops. Analysis of methoxyfenozide was accomplished by utilizing liquid-liquid extraction and partitioning, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Method validations for fruits, vegetables, and mint are reported. Methoxyfenozide mean recoveries ranged from 72 to 129% over three levels of fortification. The overall average of mean recoveries is 97 +/- 10%. The limit of quantitation for fruits, artichoke, cucumber, squash, and refined sugar was 0.010 ppm, with a detection limit of 0.005 ppm. For all other crops, the limit of quantitation was 0.050 ppm, with a detection limit of 0.025 ppm. No residues were found greater than the limit of quantitation in control samples. Residues above the limit of quantitation were found in all matrices except refined sugar. Foliage (bean, beet, pea, and radish) had greater residue levels of methoxyfenozide residue than their corresponding roots or pods. Other crop matrices contained <1.0 ppm of methoxyfenozide except artichoke, which had a mean of 1.10 ppm.  相似文献   

19.
A rapid confirmatory method for monitoring chloramphenicol (CAP) residues in honey, whole milk, and eggs is presented. This method is based on the polymer monolith microextraction (PMME) technique and high-performance liquid chromatography (HPLC)-electrospray ionization mass spectrometry (MS). A poly(methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary column was selected as the extraction medium. To obtain optimum extraction efficiency, several parameters related to PMME were investigated. After dissolution in 20 mM phosphate solution at pH 4.0 and centrifugation, honey, eggs, or milk samples were directly passed through the extraction tube. The LC-MS instrument was equipped with an electrospray ion source and a single quadrupole. The eluates were analyzed by LC-MS in the negative-ion mode and by monitoring a pair of isotopic ions for the target compound. The in-source collision-induced dissociation process produced confirmatory ions. The recoveries of CAP from real samples spiked at 0.1-10 ng/g (honey), 0.2-10 ng/mL (milk), and 0.2-10 ng/g (egg) were in the range of 85-102%, with relative standard deviations ranging between 2.1% and 8.9%. The limits of detection (S/N = 3) were 0.02 ng/g, 0.04 ng/mL, and 0.04 ng/g in honey, milk, and eggs, respectively. The proposed method was proved to be robust in monitoring CAP residue in honey, milk, and eggs.  相似文献   

20.
A rapid LC-MS/MS method, using a triple-quadrupole/linear ion trap mass spectrometer, was developed for the quantitative determination of oleandrin in serum, urine, and tissue samples. Oleandrin, the major cardiac glycoside of oleander (Nerium oleander L.), was extracted from serum and urine samples with methylene chloride and from tissues with acetonitrile. The tissue extracts were cleaned up using Florisil solid-phase extraction columns. Six replicate fortifications of serum and urine at 0.001 microg/g (1 ppb) oleandrin gave average recoveries of 97% with 5% CV (relative standard deviation) and 107% with 7% CV, respectively. Six replicate fortifications of liver at 0.005 microg/g (5 ppb) oleandrin gave average recoveries of 98% with 6% CV. This is the first report of a positive mass spectrometric identification and quantitation of oleandrin in tissue samples from oleander intoxication cases. The sensitivity and specificity of the LC-MS/MS analysis enables it to be the method of choice for toxicological investigations of oleander poisoning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号