共查询到18条相似文献,搜索用时 78 毫秒
1.
支持向量学习机(SVM)是基于统计学习理论的模式分类器,将SVM方法应用于降水异常的分类预测中尚属首次。主要利用1958—2003年逐月的74个环流特征量、NINO 3,NINO 4海温指数、相关区域海平面气压、500 HPA、100HPA有关指数资料等,分别建立了四川盆地5片区降水距平百分率大于50%(特多)和小于-50%(特少)的2个SVM推理模型,并进行了降水分类预测试验和2005年1-3月实际预测,结果显示出所建SVM推理模型的Ts评分较高,具有一定的预测能力,展示了SVM的优越性和推广前景,可在短期气候预测业务中参考应用。 相似文献
2.
支持向量学习机(SVM)是基于统计学习理论的模式分类器,将SVM方法应用于降水异常的分类预测中尚属首次.主要利用1958-2003年逐月的74个环流特征量、NINO 3,NINO 4海温指数、相关区域海平面气压、500 HPA、100HPA有关指数资料等,分别建立了四川盆地5片区降水距平百分率大于50%(特多)和小于-50%(特少)的2个SVM推理模型,并进行了降水分类预测试验和2005年1-3月实际预测,结果显示出所建SVM推理模型的Ts评分较高,具有一定的预测能力,展示了SVM的优越性和推广前景,可在短期气候预测业务中参考应用. 相似文献
3.
支持向量回归机在农业供应链预测中的应用 总被引:2,自引:0,他引:2
为了提农业供应链预测的能力,应用基于结构风险最小化准则的标准支持向量回归机方法来研究供应链预测问题。在选择适当的参数和核函数的基础上,通过对实例研究,对时间序列数据进行预测,并与人工神经网络方法进行对比,发现该方法能获得最小的训练相对误差和测试相对误差。结果表明,支持向量回归机是研究农业供应链预测的有效方法。 相似文献
4.
支持向量机(Support Vector Machines,SVM)是一种具有坚实理论基础的新颖小样本学习方法。采用支持向量机回归(Support Vector Machine Regression,SVR)算法,用libsvm-2.89软件包对我国近年来的粮食产量进行回归预测,选择交叉验证法进行参数寻优,建立粮食产量和其影响因素的支持向量机回归模型。粮食产量预测平均相对百分误差为1.209%,均方根误差为581.191,相关系数为0.962 24。将预测结果与指数平滑模型、生产函数模型及多元线性回归模型进行了比较,用平均绝对百分误差、希尔不等系数及均方根误差对4种模型预测结果进行评价。结果表明,基于支持向量机的径向基核函数(RBF)模型预测粮食产量的精度优于其他预测方法。 相似文献
5.
【目的】建立精度更高的需水量预测模型,为水资源规划管理提供理论依据。【方法】建立基于神经网络方法和支持向量机的需水量预测模型,以西安市需水预测为例,对2种预测模型的预测结果进行了比较。【结果】利用建立的径向基函数神经网络需水预测模型,得到西安市2010和2020年的需水量分别为32 485.65,48 180.43万m3;采用支持向量机模型能全面考虑影响需水预测的各种因素,预测西安市2010和2020年的需水量分别为32 488.03,48 184.41万m3。【结论】基于神经网络方法和支持向量机方法的需水量预测模型均可全面反映需水量的变化规律,两者预测结果十分接近,均可用于需水量的精确预测。 相似文献
6.
针对支持向量机方法所具有的拟合精度高、推广能力强、全局最优、针对小样本等特点,将支持向量机应用于对区域经济发展水平的预测中,建立了基于支持向量机的区域经济非线性预测模型。针对黑龙江省进行的经济发展模型预测及检验表明,该算法具有较高的精度和实用性。 相似文献
7.
支持向量机在害虫预测预报中的应用 总被引:1,自引:0,他引:1
对支持向量机回归(SVR)在害虫预测预报中的应用进行了研究。用一步预测法对1个害虫发生量样本集进行预测,结果表明:SVR在所有参比模型中预测精度最高.具有较强的泛化推广能力,在害虫预测预报领域具有广泛的应用前景。 相似文献
8.
9.
由于传统边缘检测方法中存在的比如粗糙边缘、噪声边缘和不准确边缘等缺点,因此在植物根系的研究中,采用传统的图像边缘检测方法检测出来的边缘信息都无法达到令人满意的效果。本文基于带高斯径向基核函数的最小二乘支持向量机方法,得到了一簇梯度算子和零交叉算子,用来定位图像边缘,从而得到一种有效的图像边缘检测算法。用所得到的边缘检测算法与Sobel算法和Prewitt算法的性能进行了比较。仿真结果表明本文给出的算法与传统算法相比,不仅边缘检测性能得到提高,而且可以一定程度地克服噪声干扰。 相似文献
10.
11.
提出一种温室环境智能控制模型。该模型从模式识别的角度解决温室环境最优控制问题。具体算法是根据作物生长模型、当前外界环境条件等,创建温室环境控制目标;对控制目标与温室内外环境条件的差值等特征参数模糊化;通过支持向量机的多分类方法进行分类决策,选择适宜的温室环境调控措施,达到对温室环境最优控制的目的。将采用该模型的温室环境控制系统应用于安徽蚌埠地区的Venlo温室。结果表明,该系统具有良好的控制效果。 相似文献
12.
13.
分析目前影响农村劳动力转移的主要因素,运用支持向量机理论将农村劳动力转移的主要影响因素作为量化指标,从农村经济持续发展的角度,结合《宁夏统计年鉴》1990~2002年数据,建立基于支持向量机的农村劳动力转移预测模型。对预测结果和精度进行分析,验证了该方法的有效性。 相似文献
14.
15.
针对Lasso方法与支持向量机两者的联系与各自的优势,给出了基于Lasso与支持向量机的串联型、并联型和嵌入型三种组合预测,并将它们运用到我国粮食价格预测中.实证结果表明,与单一预测方法的预测结果相比,基于Lasso方法与支持向量机的串联型组合预测和嵌入型组合预测具有更高的预测精度. 相似文献
16.
提出了一种基于支持向量机(Support Vector Machine,SVM)的个性图像检索方法,首先融合符合用户需求的图像的物理特征构造SVM分类器,然后把获得的图像信息提交给分类器进行识别,最后把检索结果返回给用户.实验结果表明,用SVM作为学习机器可以实现对图像的检索分类. 相似文献
17.
基于双编码遗传算法的支持向量机作物病害图像识别方法 总被引:1,自引:0,他引:1
为了实现作物病害的计算机识别,采用基于双编码遗传特征选择的支持向量机和病害图像多特征参数识别病害的方法,对病害图像增强处理,彩色病斑分割,特征参数提取,构建双编码遗传算法优化特征子集,并赋予权重的一对一投票策略支持向量机来分类识别作物病害进行研究.结果表明:在同等条件下,该方法与没有采用遗传算法的支持向量机相比,特征向量减少了38%,正确率提高了6.29%. 相似文献
18.
对灰色、神经网络和支持向量机的三个预测模型进行研究,以某某类科技图书1993-2000年的年发行量为例,对科技图书市场进行预测,经过比较,支持向量机的预测方法精度较高。本方法可推广应用于其他类图书市场的预测。 相似文献