首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
Calculations of the effects of both natural and anthropogenic tropospheric sulfate aerosols indicate that the aerosol climate forcing is sufficiently large in a number of regions of the Northern Hemisphere to reduce significantly the positive forcing from increased greenhouse gases. Summer sulfate aerosol forcing in the Northern Hemisphere completely offsets the greenhouse forcing over the eastern United States and central Europe. Anthropogenic sulfate aerosols contribute a globally averaged annual forcing of -0.3 watt per square meter as compared with +2.1 watts per square meter for greenhouse gases. Sources of the difference in magnitude with the previous estimate of Charlson et al. are discussed.  相似文献   

2.
Recent measurements demonstrate that the "background" stratospheric aerosol layer is persistently variable rather than constant, even in the absence of major volcanic eruptions. Several independent data sets show that stratospheric aerosols have increased in abundance since 2000. Near-global satellite aerosol data imply a negative radiative forcing due to stratospheric aerosol changes over this period of about -0.1 watt per square meter, reducing the recent global warming that would otherwise have occurred. Observations from earlier periods are limited but suggest an additional negative radiative forcing of about -0.1 watt per square meter from 1960 to 1990. Climate model projections neglecting these changes would continue to overestimate the radiative forcing and global warming in coming decades if these aerosols remain present at current values or increase.  相似文献   

3.
Airborne measurements in smoke from biomass burning in Brazil have yielded optical parameters that permit an improved assessment of the effects of smoke on Earth's radiation balance. The global-mean direct radiative forcing due to smoke from biomass burning worldwide is estimated to be no more than about -0.3 watt per square meter (cooling), compared with +2.45 watts per square meter (warming) due to anthropogenic greenhouse gases. On regional scales, direct radiative forcing due to smoke can be large and might indirectly affect global climate.  相似文献   

4.
In organic light-emitting diodes (OLEDs), a stack of multiple organic layers facilitates charge flow from the low work function [~4.7 electron volts (eV)] of the transparent electrode (tin-doped indium oxide, ITO) to the deep energy levels (~6 eV) of the active light-emitting organic materials. We demonstrate a chlorinated ITO transparent electrode with a work function of >6.1 eV that provides a direct match to the energy levels of the active light-emitting materials in state-of-the art OLEDs. A highly simplified green OLED with a maximum external quantum efficiency (EQE) of 54% and power efficiency of 230 lumens per watt using outcoupling enhancement was demonstrated, as were EQE of 50% and power efficiency of 110 lumens per watt at 10,000 candelas per square meter.  相似文献   

5.
Idso SB 《Science (New York, N.Y.)》1980,207(4438):1462-1463
The mean global increase in thermal radiation received at the surface of the earth as a consequence of a doubling of the atmospheric carbon dioxide content is calculated to be 2.28 watts per square meter. Multiplying this forcing function by the atmosphere's surface air temperature response function, which has recently been determined by three independent experimental analyses to have a mean global value of 0.113 K per watt per square meter, yields a value of 相似文献   

6.
Preliminary results from solar radiation measurements from the earth radiation budget experiment on the Nimbus 7 satellite yield a mean value of 1376.0 watts per square meter for the "solar constant" from 16 November 1978 to 15 May 1979. The observed variability (root-mean-square deviation) is +/- 0.73 watt per square meter (+/- 0.05 percent) for the period.  相似文献   

7.
Climate forcing by anthropogenic aerosols   总被引:14,自引:0,他引:14  
Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.  相似文献   

8.
Stronger constraints on the anthropogenic indirect aerosol effect   总被引:4,自引:0,他引:4  
The anthropogenic indirect aerosol effects of modifying cloud albedo and cloud lifetime cannot be deduced from observations alone but require a modeling component. Here we validate a climate model, with and without indirect aerosol effects, by using satellite observations. The model agrees better with observations when both indirect aerosol effects are included. However, the simulated clouds are more susceptible to aerosols than the observed clouds from the POLDER satellite, thus overestimating the indirect aerosol effect. By taking the difference in susceptibilities into account, the global mean total anthropogenic aerosol effect is reduced from -1.4 to -0.85 watts per square meter.  相似文献   

9.
The vertical flux of nitrate across the thermocline in the upper ocean imposes a rigorous constraint on the rate of export of organic carbon from the surface layer of the sea. This export is the primary means by which the oceans can serve as a sink for atmospheric carbon dioxide. For the oligotrophic open ocean regions, which make up more than 75% of the world's ocean, the rate of export is currently uncertain by an order of magnitude. For most of the year, the vertical flux of nitrate is that due to vertical turbulent transport of deep water rich in nitrate into the relatively impoverished surface layer. Direct measurements of rates of turbulent kinetic energy dissipation, coupled with highly resolved vertical profiles of nitrate and density in the oligotrophic eastern Atlantic showed that the rate of transport, averaged over 2 weeks, was 0.14 (0.002 to 0.89, 95% confidence interval) millimole of nitrate per square meter per day and was statistically no different from the integrated rate of nitrate uptake as measured by incorporation of (15)N-labeled nitrate. The stoichiometrically equivalent loss of carbon from the upper ocean, which is the relevant quantity for the carbon dioxide and climate question, is then fixed at 0.90 (0.01 to 5.70) millimole of carbon per square meter per day. These rates are much lower than recent estimates based on in situ changes in oxygen over annual scales; they are consistent with a biologically unproductive oligotrophic ocean.  相似文献   

10.
The region of W-44 was mapped at 8350 megacycles per second. The degree of linear polarization of the most intense portion of W-44 integrated over the 10.8-minute-of-arc beam was 11+/-2 percent at position angle 45 degrees +/-5 degrees . This high degree of polarization is further evidence that W-44 is a supernova remnant. The integrated flux density of (95+/-25) x 10(-26) watt per square meter per cycle per second for this source is consistent with measurements at lower frequencies extrapolated with the use of a spectral index of-0.44, obtained by other observers. In addition, the compact source 3 minutes of right ascension west of W-44 was unpolarized, within the error of measurement. The flux density of (23+/-6)x 10(-26) watt per square meter per cycle per second determined for it along with the results of other observers indicate that this source has a thermal spectrum.  相似文献   

11.
Phytoplankton and cloudiness in the Southern Ocean   总被引:1,自引:0,他引:1  
The effect of ocean biological productivity on marine clouds is explored over a large phytoplankton bloom in the Southern Ocean with the use of remotely sensed data. Cloud droplet number concentration over the bloom was twice what it was away from the bloom, and cloud effective radius was reduced by 30%. The resulting change in the short-wave radiative flux at the top of the atmosphere was -15 watts per square meter, comparable to the aerosol indirect effect over highly polluted regions. This observed impact of phytoplankton on clouds is attributed to changes in the size distribution and chemical composition of cloud condensation nuclei. We propose that secondary organic aerosol, formed from the oxidation of phytoplankton-produced isoprene, can affect chemical composition of marine cloud condensation nuclei and influence cloud droplet number. Model simulations support this hypothesis, indicating that 100% of the observed changes in cloud properties can be attributed to the isoprene secondary organic aerosol.  相似文献   

12.
We detected a compound previously unreported in the atmosphere, trifluoromethyl sulfur pentafluoride (SF(5)CF(3)). Measurements of its infrared absorption cross section show SF(5)CF(3) to have a radiative forcing of 0.57 watt per square meter per parts per billion. This is the largest radiative forcing, on a per molecule basis, of any gas found in the atmosphere to date. Antarctic firn measurements show it to have grown from near zero in the late 1960s to about 0.12 part per trillion in 1999. It is presently growing by about 0.008 part per trillion per year, or 6% per year. Stratospheric profiles of SF(5)CF(3) suggest that it is long-lived in the atmosphere (on the order of 1000 years).  相似文献   

13.
The multimodal microstructure of the Venus cloud system has been examined. In addition to confirmed H(2)SO(4) droplets and suspected elemental sulfur, a highly concentrated aerosol population has been observed extending above, within, and below the cloud system. These aerosols appear to cycle through the cloud droplets, but can never be removed by the weak precipitation mechanisms present. All cloud particles are likely laced with aerosol contaminants. Sedimentation and decomposition of H(2)SO(4) in the droplets of the lower cloud region contribute more than 7 watts per square meter of heat flux equaling one-fourth of the solar net flux at 50 kilometers.  相似文献   

14.
Dessler AE 《Science (New York, N.Y.)》2010,330(6010):1523-1527
Estimates of Earth's climate sensitivity are uncertain, largely because of uncertainty in the long-term cloud feedback. I estimated the magnitude of the cloud feedback in response to short-term climate variations by analyzing the top-of-atmosphere radiation budget from March 2000 to February 2010. Over this period, the short-term cloud feedback had a magnitude of 0.54 ± 0.74 (2σ) watts per square meter per kelvin, meaning that it is likely positive. A small negative feedback is possible, but one large enough to cancel the climate's positive feedbacks is not supported by these observations. Both long- and short-wave components of short-term cloud feedback are also likely positive. Calculations of short-term cloud feedback in climate models yield a similar feedback. I find no correlation in the models between the short- and long-term cloud feedbacks.  相似文献   

15.
Nearly 200 nearby stars similar to the sun were observed at the 21-centimeter neutral hydrogen wavelength (in the heliocentric frame) with a bandwidth of 1 kilohertz and a resolution of 0.015 hertz, using the Arecibo 305-meter antenna. At this resolution the effects of terrestrial interference are so slight that the detection limit of 4 x 10(-27) watt per square meter was set by receiver noise alone. No evidence of artificial signals was found.  相似文献   

16.
Observations of Venus made during 1967 and 1968 at a frequency of 15.4 gigahertz set an upper limits of 5 percent for the variation of brightness temperature with phase. This negative result appears to contradict earlier detections of a phase effect. By comparison with Virg A (3C 274), which has an assumed flux density of 29 x 10(-26) watt per square meter per hertz, the brightness temperature of Venus at this frequency is 485 + 60, -40 degrees K (mean error).  相似文献   

17.
Ultragiant urban aerosol particles   总被引:1,自引:0,他引:1  
Measurements taken 300 meters above ground level show surprisingly high concentrations of ultragiant aerosol particles both upwind and downwind of the St. Louis, Missouri, urban area. Assuming an average particle density of 2.0 grams per cubic centimeter, concentrations of particles with diameters between 5 and 55 micrometers sampled on 11 different days averaged 31 micrograms per cubic meter upwind and 55 micrograms per cubic meter downwind of the city.  相似文献   

18.
Measurement of the effect of Amazon smoke on inhibition of cloud formation   总被引:3,自引:0,他引:3  
Urban air pollution and smoke from fires have been modeled to reduce cloud formation by absorbing sunlight, thereby cooling the surface and heating the atmosphere. Satellite data over the Amazon region during the biomass burning season showed that scattered cumulus cloud cover was reduced from 38%in clean conditions to 0%for heavy smoke (optical depth of 1.3). This response to the smoke radiative effect reverses the regional smoke instantaneous forcing of climate from -28 watts per square meter in cloud-free conditions to +8 watts per square meter once the reduction of cloud cover is accounted for.  相似文献   

19.
Thermal conductivity of monolithic organic aerogels   总被引:1,自引:0,他引:1  
The total thermal conductivity lambda of resorcinol-formaldehyde aerogel monoliths has been measured as a function of density rho in the range from rho = 80 to 300 kilograms per cubic meter. A record-low conductivity value in air at 300 K of lambda approximately 0.012 watt per meter per kelvin was found for rho approximately 157 kilograms per cubic meter. Caloric measurements under variation of gas pressure as well as spectral infrared transmission measurements allowed the determination of solid conductivity, gaseous conductivity, and radiative conductivity as a function of density. The development of such low conductivity materials is of great interest with respect to the substitution of environmentally harmful insulating foams made from chlorofluorocarbons.  相似文献   

20.
According to evidence from our laboratory, acidic surfaces on atmospheric aerosols lead to potentially multifold increases in secondary organic aerosol (SOA) mass. Experimental observations using a multichannel flow reactor, Teflon (polytetrafluoroethylene) film bag batch reactors, and outdoor Teflon-film smog chambers strongly confirm that inorganic acids, such as sulfuric acid, catalyze particle-phase heterogeneous reactions of atmospheric organic carbonyl species. The net result is a large increase in SOA mass and stabilized organic layers as particles age. If acid-catalyzed heterogeneous reactions of SOA products are included in current models, the predicted SOA formation will be much greater and could have a much larger impact on climate forcing effects than we now predict.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号