首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
This study was designed to characterise the soil translocation effect induced by mouldboard ploughing with an implement traditionally used in the Tuscany region (Central Italy). We discuss the results of a set of field experiments performed to measure soil displacement along slopes of varying gradient in different directions and at several depths of tillage. Using the Soil Erosion by Tillage (SETi) model, soil translocation patterns for different tillage scenarios were analysed, with special attention paid to the effects of the direction and depth of tillage on the extent and spatial pattern of soil movement. The lateral slope gradient SP and tillage depth D were found to be the dominant controlling factors for total soil displacement. The effect of the slope gradient in a direction parallel to tillage ST was much less pronounced. These findings reveal the importance of the asymmetric nature of the soil movement produced by mouldboard ploughing and the predominant effect of the lateral displacement dP on the actual trajectory of soil motion. Results demonstrate that spatial patterns of soil redistribution due to mouldboard ploughing are highly variable and depend on the particular characteristics of the implement used. This dependence is so strong that maximum downslope soil translocation can occur during both, contour tillage or up–down tillage. For this particular mouldboard plough, maximum downslope soil transport took place at a tillage direction ca. 70° and not when tillage was conducted along the steepest slope direction (0°). These findings highlight the potential of the combined approach applied. The physically based SETi model can be properly calibrated using a relatively limited dataset from field experiments. Once calibrating, the SETi model can then be used to generate synthetic tillage translocation relationships, which can predict the intensity and spatial pattern of soil translocation over a much wider range of tillage scenarios than the particular experimental conditions, in terms of topography complexity (slope gradients and morphology) and the direction and depth of tillage. These synthetic relationships are useful tools for evaluating strategies designed to reduce tillage erosion.  相似文献   

2.
Tillage erosion studies have mainly focused on the effect of topography and cultivation practices on soil translocation during tillage. However, the possible effect of initial soil conditions on soil displacement and soil erosion during tillage have not been considered. This study aims at investigating the effect of the initial soil conditions on net soil displacement and the associated erosion rates by a given tillage operation of a stony loam soil. Tillage erosion experiments were carried out with a mouldboard plough on a freshly ploughed (pre-tilled) soil and a soil under grass fallow in the Alentejo region (Southern Portugal).

The experimental results show that both the downslope displacement of soil material and the rate of increase of the downslope displacement with slope gradient are greater when the soil is initially in a loose condition. This was attributed to: (i) a greater tillage depth on the pre-tilled soil and (ii) a reduced internal cohesion of the pre-tilled soil, allowing clods to roll and/or slide down the plough furrow after being overturned by the mouldboard plough.

An analysis of additional available data on soil translocation by mouldboard tillage showed that downslope displacement distances were only significantly related to the slope gradient when tillage is carried out in the downslope direction. When tillage is carried out in the upslope direction, the effect of slope gradient on upslope displacement distances was not significant. This has important implications for the estimation of the tillage transport coefficient, which is a measure for the intensity of tillage erosion, from experimental data. For our experiments, estimated values of the tillage transport coefficient were 70 and 254 kg m−1 per tillage operation for grass fallow and pre-tilled conditions, respectively, corresponding to local maximum erosion rates of ca. 8 and 35 Mg ha−1 per tillage operation and local maximum deposition rates of ca. 33 and 109 Mg ha−1 per tillage operation.  相似文献   


3.
A tillage erosion model was developed for southwestern Ontario based on the relationship between tillage translocation and slope gradient and slope curvature. Two studies of tillage translocation and tillage erosion were used to calibrate this model, one a comparison of upslope and downslope tillage translocation on shoulder slopes, the other an examination of tillage translocation throughout topographically complex landscapes. Two field sites were used for validation of the model. For both sites, past tillage practices were known and past soil erosion was determined using 137Cs as an indicator of soil redistribution. The model accurately predicted the pattern of soil redistribution that had occurred within the two field sites. Severe soil loss was observed and predicted on convex landscape positions and soil accumulation was observed and predicted on concave landscape positions. The model accounted for almost all of the soil lost from the convex upper slope positions where tillage erosion was expected to be the dominant erosion process. There was considerable soil loss and accumulation elsewhere in the landscapes which could not be accounted for by the model and was presumed to be primarily the result of water erosion. It was concluded that tillage erosion must be incorporated into soil erosion modelling for the purposes of soil conservation.  相似文献   

4.
Until now, most tillage erosion experiments were conducted under controlled soil and operating conditions. However, soil condition, tillage depth, speed and direction generally show substantial within-field variation. In this study, a series of tillage experiments were set up to investigate the erosivity of tillage under normal operating conditions. The effect of a typical tillage sequence, including multiple mouldboard, chisel and harrow passes, on soil translocation and tillage erosion was studied during a period of 3 years. Soil translocation in excess of 10 m was observed while the average net translocation rates ranged between 0 and 0.9 m. The results suggest that the annual tillage transport coefficient, associated with mechanized agriculture, is in the order of 781 kg m−1 yr−1. The experimental results also show that the tillage transport coefficient of a sequence of tillage operations can be reasonably well predicted from information provided by the farmer and by summing the transport coefficients obtained from controlled, single pass experiments. However, a Monte Carlo simulation showed that a relatively high number of tillage operations are required to obtain accurate estimates of the tillage transport coefficients in multiple pass experiments.  相似文献   

5.
Abstract. Tillage displaces large amounts of soil from upper slopes and deposits soil in lower landscape positions, greatly affecting productivity in these areas. The long-term effect of tillage on soil erosion was studied in four field sites growing mainly rainfed wheat. The soil loss from landscape positions with slopes, ranging from 3 to 28%, was estimated by: (a) comparing data of horizon thickness described at the same position at different times; and (b) using soil movement tracers added to the soil. Existing empirical relationships were used for estimating soil loss by tillage and runoff water, and loss in wheat biomass production. The experimental data showed soil losses of 0.4 to 1.4 cm yr–1 depending on slope gradient, plough depth, and tillage direction. In two of the sites, soil depth has been reduced by 24–30 cm in a period of 63 years. The mean soil displacement of the plough layer (30 cm thick), measured by soil movement tracers, ranged from 31 to 95 cm yr–1 depending mainly on slope gradient, corresponding to a rate of soil loss of 0.3 cm to 1.4 cm yr–1. Soil eroded from the upper slopes was deposited on the lower slopes increasing soil thickness by 0.4 cm to 1.4 cm yr–1. The application of empirical relationships, estimating soil loss by tillage and water runoff, showed that soil erosion at the field sites can be mainly attributed to tillage. The loss in wheat biomass production due to erosion was estimated at 26% on upper slopes for a period of 63 years, while a 14.5% increase in wheat production was estimated due to deposition of soil material in the lower landscape.  相似文献   

6.
Few studies have demonstrated soil redistribution under upslope tillage (UT) rather than downslope tillage (DT) and its impact on soil organic carbon (SOC) redistribution in long‐term agricultural practices in hillslope landscapes. We selected two neighbouring sites from the Sichuan Basin, China, one under DT and the other under UT, to determine the pattern of soil and SOC redistribution under a long‐term UT practice. DT caused soil loss at upper slope positions and soil accumulation at lower slope positions. However, UT resulted in soil accumulation at upper slope positions and soil loss at lower slope positions. The total erosion rate decreased by 60.5% after 29 years of UT compared with DT. Having the same direction of soil movement by tillage and water exaggerated total soil loss, whereas having the two movements in the contrasting direction of soil for the two reduced it. SOC stocks at positions from summit to downslope were much larger (33.8%) and at toe‐slope positions were only slightly greater (4.5%) in the UT soils than comparable values for the DT site. The accumulation rate of SOC at the UT site increased by 0.26 Mg/ha/year compared with that at the DT site. It is suggested that soil movement by water and tillage erosion occurred in the same direction accelerates the depletion of SOC pools, whereas the opposite direction of soil movement for the two can increase SOC accumulation. Our results suggest that UT has significant impacts on soil redistribution processes and SOC accumulation on steeply sloping land.  相似文献   

7.
Most of the erosion research in the Palouse region of eastern Washington State, USA has focused on quantifying the rates and patterns of water erosion for purposes of conservation planing. Tillage translocation, however, has largely been overlooked as a significant geomorphic process on Palouse hillslopes. Tillage translocation and tillage deposition together have resulted in severe soil degradation in many steep croplands of the Palouse region. Few controlled experiments have heretofore been conducted to model these important geomorphic processes on Palouse hillslopes. The overarching purpose of this investigation, therefore, was to model tillage translocation and deposition due to moldboard plowing in the Palouse region. Soil movement by moldboard plowing was measured using 480-steel flat washers. Washers were buried in silt loam soils on convex–convex shoulder, linear-convex backslope, and linear-concave footslope landform components, and then displaced from their original burial locations by a moldboard plow pulled by a wheel tractor traveling parallel to the contour at ca. 1.0 m s−1. Displaced washers were located using a metal detector, and the distance and azimuth of the resultant displacement of each washer from its original burial location was measured using compass and tape. Resultant displacement distances were then resolved into their component vectors of displacement parallel and perpendicular to the contour. A linear regression equation was developed expressing mean soil displacement distance as a function of slope gradient. Tillage translocation and deposition were modeled as diffusion-type geomorphic processes, and their rates were described in terms of the diffusion constant (k). A multivariate statistical model was developed expressing mean soil displacement distance as a function of gravimetric moisture content, soil bulk density, slope gradient, and direction of furrow slice displacement. Analysis of variance (ANOVA) revealed a weak correlation between soil displacement and both bulk density and moisture content. Soil displacement was, however, significantly correlated with direction of furrow slice displacement. Tillage translocation rates were expressed in terms of the diffusion constant (k) and ranged from 105 to 113 kg m−1 per tillage operation. Tillage deposition rates ranged from 54 to 148 kg m−1 per tillage operation. With respect to tillage deposition, the diffusion constant calculated from volumetric measurements of tillage deposits equals ca. 150 kg/m. The rates of tillage translocation and deposition are not completely in balance; however, these rates do suggest that soil tillage is a significant geomorphic process on Palouse hillslopes and could account for the some of the variations in soil physical properties and crop yield potential at the hillslope and farm-field scale in the Palouse region.  相似文献   

8.
Simulation of the redistribution of soil by tillage on complex topographies   总被引:1,自引:0,他引:1  
Tillage redistributes soil and contributes significantly to the within‐field soil variation, especially on topographically complex terrain. Although the basic principles of the redistribution are well understood, models for simulating the redistribution are poor predictors. This paper presents a modelling structure that allows a simulation of the redistribution of soil constituents on complex topographies for various tillage implements. The model simulates the redistribution of soil constituents by convoluting the probability distribution of the tillage displacement with the spatial distribution of the soil constituents. The probability distributions in two dimensions are derived from a series of tillage experiments conducted with a mouldboard plough at various positions in the landscape. Furthermore, the effects of topography and tillage direction on the probability distributions were characterized and implemented in the model. A first application showed that the direction of tillage significantly affects the long‐term redistribution of soil constituents. The inclusion of other implements in the model was explored, and we found that data in the literature could be used for simulating the long‐term effects of tillage.  相似文献   

9.
岩溶区坡地耕作侵蚀过程中的土壤再分布研究   总被引:4,自引:1,他引:4  
贾红杰  傅瓦利 《土壤》2008,40(6):986-991
对耕作侵蚀引起的土壤空间再分布进行研究,有利于改革不合理的耕作方式和治理坡耕地水土流失。本文以重庆市中梁山为例用示踪法对坡耕地进行试验研究。结果表明:随着坡度的增大,耕作后示踪剂在示踪区的含量越来越少;它的最大值出现的位置离基线越来越远,值越来越小;沿耕作方向移动的距离越来越远。这种规律性以锄头和铁锹顺坡明显,等高和踩锹顺坡不明显。从本区耕作侵蚀的角度考虑,等高耕作方式明显要优于顺坡耕作;在顺坡耕作中踩锹优于锄头和铁锹。最后还结合岩溶山区特殊的自然环境条件,讨论了耕作侵蚀对石漠化的影响。  相似文献   

10.
Modeling spatial variation in productivity due to tillage and water erosion   总被引:5,自引:0,他引:5  
The advent of precision farming practices has heightened interest in managing field variability to optimize profitability. The large variation in yields across many producer fields demonstrated by yield–monitor–equipped combines has generated concern about management-induced causes of spatial variation in soil productivity. Soil translocation from erosion processes may result in variation in soil properties across field landscape positions that produce long-term changes in soil productivity. The objective of this study was to examine the relationships between soil redistribution caused by tillage and water erosion and the resulting spatial variability of soil productivity in a soil catena in eastern South Dakota. An empirical model developed to estimate tillage erosion was used to evaluate changes expected in the soil profile over a 50-year period on a typical toposequence found in eastern South Dakota and western Minnesota. Changes in the soil profile due to water erosion over a 50-year period were evaluated using the WEPP hillslope model. The tillage erosion model and the WEPP hillslope model were run concurrently for a 50-year period to evaluate the combined effect of the two processes. The resulting changes in soil properties of the root zone were evaluated for changes in productivity using a productivity index model. Tillage erosion resulted in soil loss in the shoulder position, while soil loss from water erosion occurred primarily in the mid to lower backslope position. The decline in soil productivity was greater when both processes were combined compared to either process acting alone. Water erosion contributed to nearly all the decline in soil productivity in the backslope position when both tillage and water erosion processes were combined. The net effect of soil translocation from the combined effects of tillage and water erosion is an increase in spatial variability of crop yields and a likely decline in overall soil productivity.  相似文献   

11.
黄土区坡耕地土壤结皮对入渗的影响   总被引:8,自引:2,他引:8  
黄土高原地区,坡面土壤水分是生态建设的关键问题。以黄土高原坡耕地人为管理方式为背景,在室内人工模拟降雨条件下采用等高耕作和人工掏挖两种措施,并且设计直线坡作为对照,研究不同耕作措施下土壤结皮的形成特征,同时从降雨-入渗的角度研究两种类型结皮(结构结皮和沉积结皮)对坡面土壤水分入渗的影响。研究结果表明:土壤结皮阻碍坡面土壤水分入渗,结皮坡面产流时间早,且土壤累积入渗量明显低于无结皮坡面;采用Kostiakov模型、Horton模型、蒋定生模型对坡面土壤水分入渗过程进行优化模拟的结果表明蒋定生模型适用于描述本研究坡面土壤水分入渗的特征;耕作措施造成的微地形对土壤结皮的类型有很大影响,在洼地径流携带泥沙堆积形成沉积结皮,地势较高处降雨雨滴直接打击形成结构结皮。研究两种类型结皮发现,沉积结皮相对于结构结皮密度高且孔隙度低,并且两种类型结皮对坡面土壤水分入渗的影响存在差异,沉积结皮平均减渗效应为37.13%,结构结皮平均减渗效应为19.79%,因此,沉积结皮更大程度影响坡面土壤水分入渗。  相似文献   

12.
Tillage erosion is increasingly recognised as an important soil erosion process on agricultural land. In view of its potential significance, there is a clear need to broaden the experimental database for the magnitude of tillage erosion to include a range of tillage implements and agricultural environments. The study discussed in this paper sought to address the need for such data by examining tillage erosion by a duckfoot chisel plough in stony soils on steep slopes in a semi-arid environment. Results of the investigation of coarse fraction (rock fragment) translocation by tillage in this environment have been presented elsewhere and the paper focuses on tillage translocation and erosion of the fine earth. Tillage translocation was measured at 10 sites, representing both upslope and downslope tillage by a duckfoot chisel plough on five different slopes, with tangents ranging from 0.02 to 0.41. A fine-earth tracer, comprising fine earth labelled with 134Cs, was introduced into the plough layer before tillage. After a single pass of the plough, incremental samples of plough soil were excavated and sieved to separate the fine earth from the rock fragments. Translocation of the fine-earth tracer was established by analysing the 134Cs content of the samples of fine earth. These data were used to establish translocation distances for each combination of slope and tillage direction. Translocation distances of the fine earth were not significantly different from translocation distances of the coarse fraction. For all sites, except uphill on the 0.41 slope, translocation distances were found to be linearly related to slope tangent. The soil flux due to tillage for each site was calculated using the translocation distance and the mass per unit area of the plough layer. For slopes with tangents <0.25, the relationship between soil flux and tangent was linear and the soil flux coefficient derived was 520–660 kg m−1 per pass. This is much larger than the coefficients found in other studies and this high magnitude is attributed to the non-cohesive nature and high rock fragment content of the soil in this investigation. A second contrast with previous studies was found in non-linearity in the relationship between soil flux and tangent when steeper slopes were included. This was a product of variation in plough depth between the steepest slopes and the remainder of the study area. On the basis of the study it is suggested that an improved understanding of tillage erosion may be obtained by considering the dual processes of tillage detachment (mass per unit area of soil subject to tillage) and tillage displacement (equivalent to translocation distance per pass) in assessing, comparing and modelling tillage translocation. An improved model is proposed that recognises the complexity of soil redistribution by tillage, provides a framework for process-based investigation of the controls on tillage fluxes, and allows identification of potential self-limiting conditions for tillage erosion.  相似文献   

13.
Tillage translocation and tillage erosion were measured throughout the topographically complex landscapes of two fields in the upland region of southwestern Ontario. Translocation of soil by tillage was measured by labelling plots of soil with chloride and measuring the tracer's forward displacement in response to single passes by four tillage implements (mouldboard plough, chisel plough, tandem disc and field cultivator). The change in translocation within the landscape was used to measure tillage erosion. All four implements were erosive. A relationship between tillage translocation and slope gradient was observed; however, the variability in translocation could not be explained by slope gradient alone. Slope curvature was responsible for some translocation through the planning action of tillage implements. Tillage depth and speed were subject to considerable discontinuous and inconsistent manipulation by the operator in response to changing topographic and soil conditions. Tillage speed decreased by as much as 60% during upslope tillage and increased by as much as 30% during downslope tillage, relative to that on level ground. Tillage depth decreased by as much as 20% and increased by as much as 30%, relative to that on level ground. This manipulation is typical for tillage in complex landscapes and was presumed largely responsible for the variability in the results. The manipulation of tillage depth and speed are affected by the tractor-implement match and the responsiveness of the tillage operator.  相似文献   

14.
Field experiments were conducted on a clay soil in entisol to determine the effect of different tillage tools on soil properties, emergence rate index and yield of wheat in Middle Anatolia. There were four different tillage treatments: mouldboard ploughing followed by disc harrowing twice; rotary tillage twice; stubble cultivator followed by a disc harrowing; heavy globe disc twice. The smallest aggregate mean weight diameters and surface roughness were produced by rotary tillage. Decreasing mean weight diameter decreased the surface roughness. There was a significant (P < 0.01) effect of the four different tillage systems on moisture content, bulk density, penetration resistance, aggregate mean weight diameter and surface roughness. Tillage systems had a significant effect on emergence rate and yield of wheat. Emergence rate index and yield of wheat varied from 15.24 to 18.88 and from 3065 kg ha−1 to 4265 kg ha−1, respectively. The greatest emergence rate index and yield were obtained with stubble cultivator followed by disc harrowing treatment.  相似文献   

15.
等高犁耕朝向对紫色土坡面土壤再分布的影响   总被引:1,自引:0,他引:1  
选择一块坡长15 m、坡度14.16%的坡地,采用磁性示踪法分析等高向下犁耕(向下坡方向翻垈)和等高向上犁耕(向上坡方向翻垈)的土壤再分布特征,利用模拟耕作(15次)检验两种等高犁耕的长期作用下对土壤剖面和微地貌演化的影响。结果表明:等高向下犁耕导致土壤发生向下坡移动,土壤位移量为15.62~28.70 kg/m,坡度对其影响不显著(p=0.93);等高向上犁耕导致土壤同时发生向下坡和向上坡移动,土壤净位移量为-10.91~8.23 kg/m,坡度对其有显著影响(p < 0.001),土壤净位移方向随着坡度的增大由向上坡转为向下坡,本研究条件下临界坡度为14%;等高向下犁耕15次后坡顶侵蚀深度是原土层深度的132%,耕作后土层深度与耕作深度相当,表明等高向下犁耕加速土壤侵蚀和促进母岩成土的双重作用共同维持着坡顶土层深度的稳定;等高向上犁耕15次后坡顶土层深度增加了12.7%,表明等高向上犁耕具有保护坡顶土层深度的作用。等高向上犁耕是一种防治类似紫色土的薄层土壤耕作侵蚀和土壤退化的有效措施。  相似文献   

16.
Validation of spatially distributed models using spatially distributed data represents a vital element in the development process; however, it is rarely undertaken. To a large extent, this reflects the problems associated with assembling erosion rate data, at appropriate temporal and spatial scales and with a suitable spatial resolution, for comparison with model results. The caesium-137 (137Cs) technique would appear to offer considerable potential for meeting this need for data, at least for longer timescales. Nevertheless, initial attempts to use 137Cs for model validation did not prove successful. This lack of success may be explained by the important role of tillage erosion in redistributing soil within agricultural fields and, therefore, contributing to the 137Cs-derived soil redistribution rates. This paper examines the implications of tillage erosion for the use of 137Cs in erosion model validation and presents an outline methodology for the use of 137Cs in model validation. This methodology acknowledges and addresses the constraints imposed by the need to: (1) separate water and tillage erosion contributions to total soil redistribution as represented in 137Cs derived rates; (2) account for lateral mixing of 137Cs within fields as a result of tillage translocation; (3) simulate long-term water erosion rates using the model under evaluation if 137Cs-derived water erosion rates are to be used in model validation. The methodology is dependent on accurate simulation of tillage erosion and tillage translocation. Therefore, as greater understanding of tillage erosion is obtained, the potential for the use of 137Cs in water erosion model validation will increase. Caesium-137 measurements remain one of the few sources of spatially distributed erosion information and, therefore, their potential value should be exploited to the full.  相似文献   

17.
This article reviews the basic relationships between the geometry of tillage tools and soil physical properties on the nature of the soil disturbance ahead of the tool. These relationships are valuable to designers and operators of cultivation equipment in selecting the optimal design of the soil working elements and their supporting frame. In addition to the disturbance, the magnitude and direction of the resulting soil forces are important when both designing and using such equipment. Reference is made to an integrated model to predict these forces using a number of spreadsheets, which predict the draught force of a range of implements to within 20% of the measured value.  相似文献   

18.
The distance over which soil is displaced and mixed during tillage has important implications for the understanding the dynamics of soil variability within complex soil-landscapes. In two preceding studies of tillage translocation, tillage was observed to displace soil over a length of approximately 1 m following single passes of four tillage implements (chisel plough, mouldboard plough, tandem disc and field cultivator), and over a length of approximately 2 m per sequence of conventional tillage (one pass of mouldboard plough, two passes of tandem disc and one pass of field cultivator). Using data from these studies step, linear-plateau and exponential functions were assessed for their ability to estimate the magnitude of translocation and the redistribution pattern of soil within the till-layer, and to predict the redistribution pattern of soil within the till-layer. On average, step, linear-plateau and exponential models estimated 100.0%, 100.2% and 102.5% of the magnitude of translocation and 76%, 88% and 93% of the soil redistribution pattern, respectively. Based on these results, it was concluded that linear-plateau and exponential functions are suitable models of tillage translocation. The exponential model was superior to the step and linear-plateau models, and an improvement over the existing diffusion model.  相似文献   

19.
东北黑土区典型坡面耕作侵蚀定量分析   总被引:2,自引:1,他引:2  
东北黑土区水土流失主要集中在坡耕地,以往研究多关注水蚀而忽略了耕作侵蚀的存在。为印证并定量描述黑土耕作侵蚀,该文采用物理示踪法,测定了典型坡耕地耕作位移量及其分布格局。结果表明:铧式犁耕作后示踪剂沿耕作方向发生扩散,上坡耕作示踪剂集中分布在0~20 cm范围,而下坡耕作示踪剂集中分布在0~20和50~150 cm。一次耕作引起的耕作位移量为32.68~134.14 kg/m,耕作迁移系数234 kg/m。坡度是影响耕作位移的重要因素,二者呈显著的正相关关系,且对上坡耕作的影响大于下坡耕作。研究区耕作年侵蚀速率0.4~11.0 Mg/(hm2·a),凸起的坡背、坡肩处及坡度较大的位置侵蚀严重。虽然黑土区坡度较小,但由于耕作深度大,速度快,耕作侵蚀严重,应引起足够重视。  相似文献   

20.
This study reports the results of a series of experiments that were set up on agricultural land in central Belgium to investigate soil translocation and erosivity resulting from a secondary tillage operation using an implement sequence of a rotary harrow and seeder. Aluminium cubes were used as tracers of soil movement. Results show that soil displacement resulting from tillage with such an implement sequence is far from insignificant. This is mainly related to the relatively shallow tillage depth as well as to the loose initial soil condition of such secondary tillage operations. The calculated value for the tillage transport coefficient k (123 kg m−1 per tillage operation) is comparable with k-values from implements that are considered to be more erosive, like mouldboard and chisel implements. In conclusion, this study shows that tillage erosion not only results from relatively aggressive tillage operations such as mouldboard and chisel passes, but that secondary operations contribute significantly to soil displacement and tillage erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号