共查询到18条相似文献,搜索用时 78 毫秒
1.
育苗是水培蔬菜种植过程中的关键环节,幼苗分拣是育苗过程中不可或缺的一个步骤。本文以水培生菜幼苗的死亡和双株状态为研究对象,提出了一种基于YOLOv5的水培生菜幼苗状态快速检测方法。根据水培生菜幼苗数据集密集、小目标的特点,采用K-means++聚类算法优化预设锚框尺寸,有效提高模型的检测精度。同时,利用AdamW优化算法,改良模型收敛结果。实验结果表明,本方法的平均检测精度为92.1%,能够实现水培生菜问题幼苗状态的实时、高精度检测,可为水培蔬菜幼苗分拣智能化和农业智能装备精准作业提供技术方案。 相似文献
2.
为解决水培生菜包装前分选机械化程度低、分选任务重的问题,结合深度学习方法设计了一种异常水培生菜自动分选系统。该系统由信息感知、信息处理以及分选动作执行3个子系统组成。根据水培生菜异常叶片与正常叶片间差异性进行水培生菜分类,采用从下向上的三摄像头配合拍摄方式进行图像信息感知,并基于语义分割DeepLabV3+深度学习网络实现水培生菜图像信息实时处理,其处理性能为:平均联合交并比达83.26%,像素精度为99.24%,单幅图像处理时间为(193.4±4) ms。为便于实现异常水培生菜分选,基于水培生菜的表型及采收模式,设计了一种托架式异常水培生菜分选执行子系统,并以横向支撑杆角度、纵向支撑杆角度和步进电机转速为试验因素,以分选动作执行子系统的分选成功率为评价指标,设计二次正交旋转组合试验。建立了各因素与指标间回归数学模型,运用Design-Expert软件的多目标优化算法进行参数优化。获得参数最优组合为:横向支撑杆角度146°、纵向支撑角度150°、步进电机转速11 r/min。依据参数最优组合进行性能试验,得到分选动作执行子系统的分选成功率为98%,异常水培生菜自动分选系统的分选成功率为... 相似文献
3.
4.
腐植酸对水培生菜产量和水分及养分利用的影响 总被引:1,自引:0,他引:1
通过营养液水培试验,研究了生育期不同腐植酸浓度对生菜产量和水分及养分利用的影响。结果表明,在0~1.41mg/g腐植酸浓度内,随着腐植酸浓度的增加,生菜地上部和地下部鲜干重随之增加,腐植酸浓度为1.41mg/g时,上述指标同时达到最大。腐植酸浓度在0~1.41mg/g内,随着其浓度的增加,生菜水分利用效率逐渐增大,对矿质元素的利用效率逐渐提高。腐植酸对生菜吸收矿质元素的影响不显著,不同的腐植酸处理,生菜吸收无机养分的能力不同。综合产量、水分和养分利用等因素,添加1.41mg/g的腐植酸可达到高产、节水、省肥的生产效应。 相似文献
5.
杨天宇王海瑞 《农业装备与车辆工程》2022,(11):68-72
针对火焰目标尺寸变化大、YOLOv3算法对小尺寸目标的检测性能有所欠缺、对火焰目标的检测效果不好的问题,提出对YOLOv3的改进策略。充分发挥空洞卷积在不提升训练参数的同时扩大卷积核感受野的优点,构建2层空洞卷积层,对特征金字塔的融合特征进一步提取多尺度特征;在空洞卷积模块后添加通道注意力机制模块,抑制冗余的特征;使用DIOU损失函数降低对目标的漏检率。通过在火焰目标数据集上的对比实验表明,改进后的YOLOv3训练模型在精度上达到了81.2%,相比原YOLOv3模型提升2.9%。与SSD模型相比在精度上有所提高,相比Faster R-CNN模型在检测速度上更具有优势;对小尺寸目标的检测效果相比原YOLOv3模型有所提升。 相似文献
6.
近年来,由于交通事故发生率逐渐上升,智能交通系统受到研究人员的广泛关注.前方车辆检测作为其中的重要组成部分,能够及时提醒驾驶人员潜在的危险来减少交通事故的发生.基于图像处理技术,针对目前车辆检测方法中鲁棒性差、误检过多的问题,提出一种基于HOG和Haar-like特征融合算法,将提取的特征输入AdaBoost级联分类器... 相似文献
7.
针对茶叶病害检测面临的病害尺度多变、病害密集与遮挡等诸多问题,提出了一种多尺度自注意力茶叶病害检测方法(Multi-scale guided self-attention network, MSGSN)。该方法首先采用基于VGG16的多尺度特征提取模块,以获取茶叶病害图像在不同尺度下的局部细节特征,例如纹理和边缘等,从而有效表达多尺度的局部特征。其次,通过自注意力模块捕获茶叶图像中像素之间的全局依赖关系,实现病害图像全局信息与局部特征之间的有效交互。最后,采用通道注意力机制对多尺度特征进行加权融合,提升了模型对病害多尺度特征的表征能力,使其更加关注关键特征,从而提高了病害检测的准确性。实验结果表明,融合多尺度自注意力的茶叶病害检测方法在背景复杂、病害尺度多变等场景下具有更好的检测效果,平均精度均值达到92.15%。该方法可为茶叶病害的智能诊断提供参考依据。 相似文献
8.
基于Faster R-CNN的田间西兰花幼苗图像检测方法 总被引:4,自引:0,他引:4
为解决自然环境下作物识别率不高、鲁棒性不强等问题,以西兰花幼苗为研究对象,提出了一种基于Faster R-CNN模型的作物检测方法。根据田间环境特点,采集不同光照强度、不同地面含水率和不同杂草密度下的西兰花幼苗图像,以确保样本多样性,并通过数据增强手段扩大样本量,制作PASCAL VOC格式数据集。针对此数据集训练Faster R-CNN模型,通过设计ResNet101、ResNet50与VGG16网络的对比试验,确定ResNet101网络为最优特征提取网络,其平均精度为90. 89%,平均检测时间249 ms。在此基础上优化网络超参数,确定Dropout值为0. 6时,模型识别效果最佳,其平均精度达到91. 73%。结果表明,本文方法能够对自然环境下的西兰花幼苗进行有效检测,可为农业智能除草作业中的作物识别提供借鉴。 相似文献
9.
对经济林木虫害进行目标检测有助于及时发现虫情,从而更有针对性地控制虫害。首先采用加权双向特征融合技术丰富各级特征图的语义信息和修改自适应Anchor计算方法对YOLOv5主干网络模型进行改进,然后在含20种经济林木虫害的图像扩增数据集上进行试验,最后与多种基于深度学习的目标检测方法进行对比。试验结果表明:改进后的YOLOv5模型相对于YOLOv3、YOLOv4、YOLOv5、Faster-RCNN和CenterNet模型,其平均精度均值分别提升0.133、0.156、0.113、0.128和0.078,最优达到0.923,模型推断速度为64.9帧。因此,改进的YOLOv5模型对经济林木虫害检测已达到实际应用水平,可为经济林木虫害预警系统提供算法支撑。 相似文献
10.
针对红花采摘机器人田间作业时花冠检测及定位精度不高的问题,提出了一种基于深度学习的目标检测定位算法(Mobile safflower detection and position network, MSDP-Net)。针对目标检测,本文提出了一种改进的YOLO v5m网络模型C-YOLO v5m,在YOLO v5m主干网络和颈部网络插入卷积块注意力模块,使模型准确率、召回率、平均精度均值相较于改进前分别提高4.98、4.3、5.5个百分点。针对空间定位,本文提出了一种相机移动式空间定位方法,将双目相机安装在平移台上,使其能在水平方向上进行移动,从而使定位精度一直处于最佳范围,同时避免了因花冠被遮挡而造成的漏检。经田间试验验证,移动相机式定位成功率为93.79%,较固定相机式定位成功率提升9.32个百分点,且在X、Y、Z方向上移动相机式定位方法的平均偏差小于3 mm。将MSDP-Net算法与目前主流目标检测算法的性能进行对比,结果表明,MSDP-Net的综合检测性能均优于其他5种算法,其更适用于红花花冠的检测。将MSDP-Net算法和相机移动式定位方法应用于自主研发的红花采摘机器人上进行... 相似文献
11.
基于多尺度融合模块和特征增强的杂草检测方法 总被引:1,自引:0,他引:1
针对单步多框检测器(Single shot multibox detector, SSD)网络模型参数多、小目标检测效果差、作物与杂草检测精度低等问题,提出一种基于多尺度融合模块和特征增强的杂草检测方法。首先将轻量网络MobileNet作为SSD模型的特征提取网络,并设计了一种多尺度融合模块,将浅层特征图先通过通道注意力机制增强图像中的关键信息,再将特征图经过不同膨胀系数的扩张卷积扩大感受野,最后将两条分支进行特征融合,对于检测小目标的浅层特征图,在包含较多小目标细节信息的同时,还包含丰富的语义信息。在此基础上对输出的6个特征图经过通道注意力机制进行特征增强。实验结果表明,本文提出的基于多尺度融合模块和特征增强的杂草检测模型,在自然环境下甜菜与杂草图像数据集中,平均检测精度可达88.84%,较标准SSD模型提高了3.23个百分点,参数量减少57.09%,检测速度提高88.44%,同时模型对小目标作物与杂草以及叶片交叠情况的检测能力均有提高。 相似文献
12.
针对自然场景下的枣品种识别问题,以枣果为研究对象的机器视觉技术已成为枣品种精准识别的主流方法之一。针对枣品种存在类间差异小、类内差异大的问题,提出了一种基于多器官特征融合的枣品种识别方法。首先利用YOLO v3检测算法将采集的自然场景图像中的枣果和叶片器官分割提取,提出了基于笛卡尔乘积构建两器官组合对的枣品种多样本数据集,然后基于EfficientNetV2网络模型,设计了能够充分学习两器官特征相关性的融合策略来提升模型性能,引入了逐步迁移训练方式以提升枣品种识别效率。最后,在构建的包含20个枣品种数据集上进行了大量实验,得到97.04%的识别准确率,明显优于现有研究结果,并且在训练时间和收敛速度上,本方法也有一定提升。结果表明该方法能够有效融合枣品种枣果和叶片器官的特征信息,可为其他品种识别研究提供参考。 相似文献
13.
为实现自然环境下蔬菜幼苗精准快速识别,本文以豆角、花菜、白菜、茄子、辣椒、黄瓜等形态差异大、具有代表性的蔬菜幼苗为研究对象,提出一种基于轻量化二阶段检测模型的多类蔬菜幼苗检测方法。模型采用混合深度分离卷积作为前置基础网络对输入图像进行运算,以提高图像特征提取速度与效率;在此基础上,引入特征金字塔网络(Feature pyramid networks, FPN)单元融合特征提取网络不同层级特征信息,用于增强深度学习检测模型对多尺度目标的检测精度;然后,通过压缩检测头网络通道维数和全连接层数量,降低模型参数规模与计算复杂度;最后,将距离交并比(Distance-IoU, DIoU)损失作为目标边框回归损失函数,使预测框位置回归更加准确。试验结果表明,本文提出的深度学习推理模型对多类蔬菜幼苗的平均精度均值为97.47%,识别速度为19.07 f/s,模型占用存储空间为60 MB,对小目标作物以及叶片遮挡作物的平均精度均值达到88.55%,相比于Faster R-CNN、R-FCN模型具有良好的泛化性能和鲁棒性,可以为蔬菜田间农业智能装备精准作业所涉及的蔬菜幼苗检测识别问题提供新方案。 相似文献
14.
基于图像处理多算法融合的杂草检测方法及试验 总被引:1,自引:0,他引:1
自动化除草是现代精确农业科学领域的研究热点。已有的自动化除草解决方案中普遍存在鲁棒性不强、过度依赖大量样本等问题,针对上述问题,本研究提出了基于图像处理多算法融合的田间杂草检测方法,设计了一套田间杂草自动识别算法。首先通过设置颜色空间的阈值从图像中分割土壤背景。然后采用面积阈值、模板匹配和饱和度阈值三种方法对作物和杂草进行分类。最后基于投票的方式,综合权衡上述三种方法,实现对作物和杂草的精准识别与定位。以大豆田间除草为对象进行了试验研究,结果表明,使用融合多图像处理算法的投票方法进行作物和杂草识别定位,杂草识别平均错误率为1.79%,识别精度达到98.21%。相较单一的面积阈值、模板匹配和饱和度阈值方法,基于投票权重识别杂草的精度平均提升5.71%。同时,针对复杂多变的农业场景,进行了存在雨滴和阴影干扰的鲁棒性测试,实现了90%以上的作物识别结果,表明本研究方法具有较好的适应性和鲁棒性。本研究算法可为智能移动机器人除草作业等智慧农业领域应用提供技术支持。 相似文献
15.
在离散小波变换特征提取算法基础上,结合有机物近红外谱区倍频中心近似位置,提出一种分段离散小波变换特征提取的方法。以4类农药残留水平(重度超标、中度超标、轻微超标、低于国标)生菜为研究对象,通过透射电镜对生菜叶片微观结构进行检测,并利用近红外高光谱成像仪采集生菜样本的高光谱图像。在生菜高光谱图像中选取感兴趣区域并提取该区域的平均光谱,依据常见基团主要中心近似位置对平均光谱进行有效分段,以sym5为小波基函数,依次对每段光谱数据进行小波变换分解。通过每段不同层次高频小波系数曲线的奇异值分析,来获取光谱特征波段。为了便于判断特征提取波段的优劣,提出初步评估参数契合度,并结合支持向量机分类准确率进一步评估提取特征波段。试验结果表明:随着农药残留浓度的增加,生菜叶片内部嗜锇颗粒数量变多,而淀粉颗粒变少,细胞间隙逐渐变大。不同浓度农药残留的生菜叶片内部细胞排列结构方式和组织结构存在差异,从而使不同浓度农药残留的生菜近红外光谱具有一定的差异性。与离散小波变换特征提取算法相比,分段离散小波变换具有较高的预测分类准确率。分段数取值为4时,取得最佳的契合度、校正集、交叉验证集与预测集准确率分别为75%、95%、92.86%和90.63%。分段离散小波变换结合契合度参数评估,能有效提高光谱特征提取波段可靠性,为快速、准确地无损检测生菜农药残留提供了一种新方法。 相似文献
16.
基于高光谱成像技术的生菜冠层含水率检测 总被引:2,自引:0,他引:2
为实现作物含水率的无损检测,以6种水分胁迫水平的生菜为研究对象,利用高光谱成像技术和特征波长选取方法对生菜冠层含水率进行检测研究。采用掩模法去除高光谱图像的背景噪声,并对生菜冠层光谱图像进行光强校正。利用标准正态变量变换法(SNV)去除原始平均光谱数据的噪声,采用蒙特卡罗无信息变量消除法(MCUVE)剔除无关变量,结合基于最小绝对收缩和选择算法(LASSO)、连续投影法(SPA)、LASSO与SPA算法组合(LASSO SPA)筛选特征变量,对数据进行降维处理,采用偏最小二乘法(PLS)建立5个生菜冠层含水率检测模型。经对比发现,全光谱中存在很多冗余信息变量和无关变量,采用全光谱建立的PLS模型复杂度最高,且预测能力最差;以MCUVE LASSO SPA筛选变量后的PLS模型效果最优,其中建模集相关系数R c和预测集相关系数R p分别为0.8827和0.9015,均方根误差分别为1.0662和0.9287。择优选取MCUVE LASSO SPA PLS模型计算生菜冠层每个像素点的干基含水率,生成可视化分布图,实现了生菜冠层叶片干基含水率可视化检测。本研究可为生菜冠层含水率快速无损检测提供参考。 相似文献
17.
针对生猪体质量准确测定问题,提出了一种跨模态特征融合模型(Cross modality feature fusion ResNet,CFF-ResNet),充分利用可见光图像的纹理轮廓信息与深度图像的空间结构信息的互补性,实现了群养环境中无接触的生猪体质量智能测定。首先,采集并配准俯视猪圈的可见光与深度图像,并通过EdgeFlow算法对每一只目标生猪个体进行由粗到细的像素级分割。然后,基于ResNet50网络构建双流架构模型,通过内部插入门控形成双向连接,有效地结合可见光流和深度流的特征,实现跨模态特征融合。最后,双流分别回归出生猪体质量预估值,通过均值合并得到最终的体质量测定值。在试验中,以某种公猪场群养生猪为数据采集对象,构建了拥有9842对配准可见光和深度图像的数据集,包括6909对训练数据和2933对测试数据。本研究所提出模型在测试集上的平均绝对误差为3.019kg,平均准确率为96.132%。与基于可见光和基于深度的单模态基准模型相比,该模型体质量测定精度更高,其在平均绝对误差上分别减少18.095%和12.569%。同时,该模型体质量测定精度优于其他现有生猪体质量测定方法:常规图像处理模型、改进EfficientNetV2模型、改进DenseNet201模型和BotNet+DBRB+PFC模型,在平均绝对误差上分别减少46.272%、14.403%、8.847%和11.414%。试验结果表明,该测定模型能够有效学习跨模态的特征,满足了生猪体质量测定的高精度要求,为群养环境中生猪体质量测定提供了技术支撑。 相似文献
18.
针对果园道路无明显边界且道路边缘存在阴影、土壤和沙石干扰等问题,提出一种基于特征融合的果园非结构化道路识别方法。通过相机标定获取畸变参数对采集到的图像进行畸变矫正,并提出一种基于滤波与梯度统计相结合的动态感兴趣区域(ROI)提取方法对HSV颜色空间S分量进行ROI选取,采用最大值法将颜色特征与S分量多方向纹理特征掩膜相融合并进行二值化与降噪处理。根据道路边缘突变特征寻找特征点,并提出一种基于距离与位置双重约束的两级伪特征点剔除方法。为更好贴合非结构化道路不规则边缘,引入分段三次样条插值法拟合道路边缘,以此实现道路识别。试验结果表明,在晴天、阴天、顺光、逆光、冬季晴天和雨雪天气6种工况条件下,S分量、纹理图像和融合图像的平均纵向偏差均值分别为2.43、39.71、1.36像素,平均偏差率均值分别为0.99%、18.02%和0.54%,相较于S分量与纹理图像而言,使用本文方法构建的融合图像其平均纵向偏差与平均偏差率均得到有效减少。最小二乘法、随机采样一致性法(RANSAC)与分段三次样条插值法拟合边缘的平均偏差均值分别为2.64、3.16、0.66像素,平均偏差率均值分别为1.02%、1.... 相似文献