首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
硝化型生物絮团的驯化培养   总被引:1,自引:0,他引:1  
为培养硝化型生物絮团、减少碳源投加、提高絮团效率并缩短培养周期,文章采用养殖废水排污口底泥为接种污泥培养生物絮团,通过逐渐减少碳源投加,开展了硝化型生物絮团的定向培养,并结合高通量测序分析了生物絮团菌群变化。结果显示,排污口底泥主要优势菌群与其他报道的异养生物絮团一致,具有良好的微生物菌群基础,能够在7 d内形成出水稳定的生物絮团。随着碳源减少,生物絮团微生物菌群结构随之改变,32 d后形成硝化型生物絮团。高通量测序结果显示,接种污泥和硝化型生物絮团主要优势菌群均为变形菌门和拟杆菌门。在纲水平上,原始污泥优势菌群为Gammaproteobacteria (γ-变形杆菌属)、Bacteroidia (拟杆菌属)和Deltaproteobacteria (δ-变形杆菌属),而硝化型生物絮团优势菌群为Bacteroidia、Gammaproteobacteria和Anaerolineae (厌氧绳菌属)。硝化型生物絮团硝化菌总相对丰度对比原始污泥有了较大提高,出水水质稳定,能有效调控养殖后期水质并降低养殖成本。  相似文献   

2.
生物絮团中异养亚硝化菌的分离鉴定及其特性   总被引:1,自引:0,他引:1       下载免费PDF全文
采用富集培养、分离纯化等微生物学手段,从对虾养殖池的生物絮团中筛选出两株对氨氮具有高转化率的菌株.16S rRNA测序及系统发育分析结果表明,两株菌均属于盐单胞菌属,菌株2011072708与食物盐单胞菌Halomonas alimentaria有99%的同源性,而菌株2011072709与胜利盐单胞菌H.shengliensis有100%的同源性.比较研究了两株菌在不同温度、盐度、pH、碳氮比条件下对氨氮的转化率,菌株2011072708在温度37℃、盐度30~40、pH 8、碳氮比28的条件下对氨氮的转化率最高;菌株2011072709在温度27~42℃、盐度40~50、pH 6、碳氮比21的条件下对氨氮的转化率最高.研究结果表明,胜利盐单胞菌(2011072709)对温度、盐度、pH、碳氮比等各方面的适应性优于食物盐单胞菌(2011072708),更适合在生物絮团技术中得到应用.  相似文献   

3.
正跑道池模式高密度养虾,池水在跑道池中循环流动,活性生物絮团悬浮于水体中,利用生物絮团来调控和净化水质。整个养殖过程水质可控,无需换水。每方水体产量超12斤 "每立方水体能产出13~15斤对虾,这种养殖模式最大的特点就是养殖过程中采用生物絮团技术调控水质,全程零换水,且  相似文献   

4.
不同C/N对草鱼池生物絮团的形成及水质的影响研究   总被引:1,自引:1,他引:0  
为了研究草鱼池生物絮团形成所需的适合C/N,实验分析不同C/N水平对水泥池中生物絮团的形成、水质及草鱼生长的影响。对照组投喂基础饲料(C/N为10.8∶1),实验组在基础饲料上添加葡萄糖,控制C/N分别为15∶1、20∶1和25∶1。结果显示,当C/N≥15时,形成的生物絮团可以有效的调节水质,降低水体中的氨氮、亚硝酸盐氮水平;各组的生物絮团体积指数(FVI)随养殖时间逐步增加,在第14天趋于稳定;随着C/N增高,尽管实验组水体中形成的生物絮团粗蛋白含量显著高于对照组(P<0.05),但是草鱼生长却呈下降趋势。综合而言,生物絮团技术应用于草鱼养殖适宜的C/N为15,该比值能促进生物絮团的形成,并能有效降低水中的氨氮、亚硝酸盐氮水平。  相似文献   

5.
生物絮团的群落结构特征与其营养类型密切相关, 并与系统水质相互影响。本研究应用高通量测序技术研究了凡纳滨对虾(Litopenaeus vannamei)养殖系统中异养、自养型生物絮团的微生物群落结构特征, 讨论了絮团微生物与养殖水环境的相互作用。群落结构分析表明, 异养、自养型生物絮团的优势门类均为变形菌门(Proteobacteria, 相对丰度占比 24.2%~70.45%)、拟杆菌门(Bacteroldota, 相对丰度占比 8.45%~28.09%); 属水平上, 对构建生物絮团骨架起重要作用的亮发菌属(Leucothrix)相对丰度在两种生物絮团间无显著差异(P>0.05); 此外, 注释为硝化螺旋菌门(Nitrospirota)的 OTU 仅存在于自养絮团。功能基因预测分析表明, 自养型生物絮团 amoA、amoB 等硝化基因的丰度(0.17%, 0.20%)明显高于异养型生物絮团(0.10%, 0.09%)。絮团微生物组成的变化改变了水体氮循环路径, 造成氨氮、亚硝酸盐、硝酸盐浓度的不同, 并受到水质差异的反作用。生物絮团的营养类型对对虾特定生长率无显著性影响。结论认为: 与异养型生物絮团相比, 自养型生物絮团硝化细菌和硝化基因的丰度、多样性明显升高, 微生物组成与功能更加合理, 能有效控制养殖水质, 维持养殖系统的平衡与良性发展。  相似文献   

6.
我国水产养殖业发展迅猛,虽然有品质、疾病和安全风险等诸多限制,但逐利和资源压力等原因,使养殖者始终以高产为追求目标。而以高产为目的高密度养殖势必造成饲料高消耗、水体高污染及对环境的高排放,养殖水体也因持续的养殖而造成废氮的超负荷。水产业面临诸多限制和瓶颈,传统的看水养鱼、依靠藻类调控水质等养殖技术已远不能适应和满足产业发展的现实。因此,我国水产养殖必将进入微生物群落管理时代,微生物群落将取代藻类成为池塘主角。而"生物絮团"就是这样的一项技术,在此我们特别邀请珠江水产研究所谢骏研究员及青岛根源生物技术集团有限公司技术服务经理张许光、产品经理蔡玉勇详细讲解这一技术,希望能对大家有所帮助和启迪。  相似文献   

7.
生物絮团的研究进展   总被引:1,自引:0,他引:1  
生物絮团是养殖水体中以好氧微生物为主体的有机体和无机物,经生物絮凝形成的团聚物,由细菌、浮游动植物、有机碎屑和一些无机物质相互絮凝组成。通过对生物絮团研究的发展过程、絮团的结构特征、絮凝机理、影响絮团的形成因素以及生物絮团技术在水产养殖应用中存在的问题进行了综述,为生物絮团技术在水产领域中的进一步研究和应用具有一定的指导意义。  相似文献   

8.
为了解硝化型和光合自养型生物絮团对于泥鳅(Misgurnus anguillicaudatus)的养殖效果, 设置清水组(CW 组)、硝化组(BFT 组)和光合自养组(ABFT 组)生物絮团养殖泥鳅 45 d, 比较泥鳅的生长和消化酶活性、两类絮团的营养组成情况, 以及养殖水体和泥鳅肠道微生物的群落结构。结果显示, BFT 组和 ABFT 组的饲料转化率、特定生长率和末均重没有显著性差异(P>0.05)。与 CW 组相比, 两实验组的饲料转化率显著降低; BFT 组的终末密度与 CW 组相比没有显著性差异(P>0.05)。与 CW 组相比, BFT 组和 ABFT 组生物絮团可以提供(36.69±1.17)%和 (40.20±1.05)%的粗蛋白; 与 BFT 组相比, ABFT 组的生物絮团粗脂肪含量显著提高(P<0.05), 并且促进脂肪酸由饱和向不饱和转化。ABFT 的泥鳅胰蛋白酶和脂肪酶的活性显著高于另外两组(P<0.05)。微生物群落分析表明, 添加藻类对成熟生物絮团 Alpha 多样性指数、群落门水平和属水平没有显著影响。泥鳅摄食生物絮团会导致肠道菌群 sobs 指数显著降低。BFT 组肠道的优势菌群为变形菌门(Proteobacteria)、放线菌门(Actinobacteriota)和绿弯菌门 (Chloroflexi); ABFT 组为变形菌门和蓝藻门(Cyanobacteria)。属水平上, ABFT 组检测到高水平的气单胞菌属 (Aeromonas)。本研究表明, 硝化型和光合自养型生物絮团养殖均适合作为泥鳅绿色健康养殖的新模式。  相似文献   

9.
碳氮比(C/N)调控是生物絮团养殖的核心技术特征,相关研究和实践中C/N中的碳和氮有不同的表征形式,本研究用溶解有机碳(dissolved organic carbon, DOC)表征碳,分别用总氮(total nitrogen, TN)、溶解无机氮(dissolved inorganic nitrogen, DIN)、总氨氮(total ammonia nitrogen, TAN)表征氮,比较了相同C/N、不同氮素形式条件下生物絮团的氨氮去除能力、基本营养组分、氮代谢相关功能基因及总异养菌数量。实验设置A组DOC/TN为20, B组DOC/DIN为20, C组DOC/TAN为20。各实验组8 h内可将10 mg/L氨氮降低到1 mg/L以下, TAN去除速率分别为(2.11±0.05)mgTAN/gTSS·h、(2.00±0.02)mgTAN/gTSS·h和(2.09±0.02)mgTAN/gTSS·h,A组显著高于B组(P<0.05),C组与A、B组无显著差异。各组絮团粗蛋白含量无显著差异,C组絮团粗脂肪含量显著高于B组和A组(P<0.05),主要氨基酸和脂肪酸组分含量...  相似文献   

10.
生物絮团技术对异育银鲫生长性能和抗性的影响   总被引:1,自引:1,他引:1  
为研究生物絮团技术(Biofloc Technology,BFT)在沿海滩涂鱼类养殖中的应用效果,本实验以滩涂主要养殖种类——异育银鲫(Carassius auratus gibelio)为研究对象,按照BFT养殖模式(BFT组,不换水,只补存蒸发掉或取样部分的水分)和一般养殖模式(对照组,每日换水1次,每次换水1/4~1/3)分别饲养,测定各处理组异育银鲫的生长指标、消化酶活性和免疫相关酶活性,应用实时荧光定量PCR法定量分析热休克蛋白HSP70的相对表达,人工感染试验对比分析BFT养殖模式组和一般养殖模式组异育银鲫生长性能和抗性的变化。结果显示:(1)BFT组异育银鲫增重率、特定生长率和存活率均高于对照组(P0.01),肥满度、脏体比和肝体比与对照组间无显著差异(P0.05);(2)BFT组异育银鲫肠道中淀粉酶、脂肪酶和胃蛋白酶活性显著高于对照组(P0.05),分别提高了53.10%、28.10%和17.99%;(3)BFT组异育银鲫体表黏液中超氧化物歧化酶活性、血清中总抗氧化能力和溶菌酶活性高于对照组(P0.01);(4)BFT组脾、肾、肝和鳃中热休克蛋白HSP70的表达量分别上调了1.29倍、1.34倍、1.87倍和1.68倍;(5)嗜水气单胞菌(Aeromonas hydrophilia)人工感染试验证实,BFT组异育银鲫抗细菌感染能力显著增强。研究表明,BFT养殖模式适于异育银鲫养殖,可促进鱼体生长,增强其应激能力和抗病力。  相似文献   

11.
我国一直采用高密度的水产养殖方式,但是随着我国经济能力和各方面实力的不断增长,传统的水产养殖模式已经不能满足当代时代发展的要求了,它所带来的环境污染和资源浪费对我国的生态环境影响十分重大,这种传统的养殖方式最终会被我国水产养殖领域淘汰,而生物絮团技术具有净化水质和提高资源利用率的特点,这种新型的健康生态养殖技术吸引了水产养殖领域的注意力。为改善我国生态环境已经有部分养殖场引进了这种技术。本文将从水产养殖中生物絮团的应用和作用进行论述和分析。  相似文献   

12.
生物絮团对虾养殖技术是采用调控池塘微生物数量方式,使得养殖系统中残饵、粪便等有效转化为对虾可以重新摄取的营养物质的一项新技术,这在解决对虾养殖系统能量利用率低、养殖水环境调控和病害防控等一系列问题上有着重要意义。  相似文献   

13.
14.
正利用生物絮团结合生物膜调水技术,在一个个移动式支架养殖池里,建起养殖跑道,养出高产南美白对虾……近日,中国水产科学研究院南海水产研究所渔业工程研究室张家松博士向《海洋与渔业》记者介绍了一种投资小、产出高的对虾(主要针对南美白对虾)工厂化循环水养殖模式。目前已经在浙江、福建、广东等地推广运用,市场反馈效果较好,改变了大家对工厂化养虾高成本的看法。  相似文献   

15.
生物絮团技术具有净化养殖水质、提高饵料蛋白利用率和养殖对象存活率及抗病性等优势。为分析该技术的研发态势,采用PatSnap平台和文献计量法,对其专利概况、申请趋势、专利技术构成、创新主体分布、特殊专利和专利价值进行了系统分析。结果显示:该专利技术发展迅速,专利类型以发明专利为主,部分专利的质量和估值较高;主要技术构成是A01K(畜牧业;禽类、鱼类、昆虫的管理;捕鱼;饲养或养殖其他类不包含的动物;动物的新品种)、C02F(水、废水、污水或污泥的处理)、C12N(微生物或酶;其组合物)和A23K(专门适用于动物的喂养饲料;其生产方法)等,研究热点领域为对虾及鱼类的养殖、生物絮团饲料和循环水养殖等;申请人以企业和科研机构为主,其中科研机构的创新能力较强;沿海地区专利优势明显,广东省为该专利技术分布最多的省份。建议今后重视生物絮团专利技术分析的作用,加强产学研和区域层面的合作,突破技术短板,促进生物絮团技术向市场化与产业化的方向发展。  相似文献   

16.
正一、材料和方法1.材料试验在蓬莱市刘家沟镇宏发海水育苗总场进行,工厂化生物絮团南美白对虾养殖技术示范池3000米2,室外生物絮团对虾养殖示范池1个,面积800米3。2015年4月,放养的虾苗为F1代苗,规格P5~P6,总放苗86万尾。2.方法(1)生物絮团养殖车间的建造:生物絮团的形成与维持需要在一定的适温范围内,即20~35℃。因此,养殖车间的设计建造应具有较好的  相似文献   

17.
生物絮团技术在水产养殖中的应用研究   总被引:3,自引:0,他引:3  
传统的水产养殖模式所带来的环境污染、资源浪费和病害频发等问题已成为制约我国水产养殖业可持续发展的主要因素。生物絮团技术(BFT)具有净化水质、提高饵料利用率及病害防控等优点,被认为是有望解决上述问题的新型健康生态养殖技术,已在国内外得到一定规模的应用,并获得了良好的经济、社会和生态效益。本文重点介绍了生物絮团的形成与培养、生物絮团的主要影响因素及其在水产养殖中的应用效果。研究认为,BFT能够改良水质、节约养殖用水、降低饲料成本、提高养殖对象存活率、增加养殖产量和效益;将BFT与生物膜技术相结合,能够更有效地维持养殖水体中适宜的生物絮团含量,避免生物絮团的过量沉积,并能提高水质改良及增产增收的应用效果,具有广阔的应用前景。  相似文献   

18.
利用异位生物絮团反应器,分别在有机碳源存在(第Ⅰ阶段,持续21 d)和有机碳源缺失(第Ⅱ阶段,持续21 d)阶段,比较研究了无机碳源(NaHCO3)浓度为0.0 (对照组),0.5,1.0和1.5 g/L的模拟养殖废水对反应器生物絮团降氮及沉降性能的影响。结果显示,第Ⅰ阶段对照组出水氨氮浓度显著高于其他处理组,但总体上呈先下降后稳定的趋势,各组亚硝态氮和硝态氮均有少量积累;生物絮团生物量及沉降速度对照组显著低于处理组,处理组之间差异不显著。第Ⅱ阶段各组出水的氨氮、亚硝态氮浓度无显著差异,对照组硝态氮浓度高于各处理组,氨氮浓度迅速下降;此阶段生物絮团的生物量、沉降速度有所下降,NaHCO3浓度为1.0 g/L处理组表现出较好的沉降效果;粒径分布也趋向均匀。整个实验阶段,不同浓度无机碳源处理条件下,氨氮的去除效率均达到97.8%以上,亚硝态氮无显著积累,处理组生物絮团沉降速度和生物量显著高于对照组。研究表明,添加无机碳源可提高生物絮团降氮性能,增强其沉降速度;移除有机碳源后,生物絮团反应器可维持氨氮去除能力,但引起硝态氮积累,生物絮团生物量减少;...  相似文献   

19.
盖春蕾 《河北渔业》2011,(10):39-39
<正>生物絮团对虾养殖技术是在零换水量的基础上,采用人工调控池塘微生物数量以达到提高对虾养殖成活率、降低饲料系数的一项新技术。1微生态制剂应用情况目前对虾育苗上关于微生态的研究应用很多,Maeda和Nogami报道了从斑节对虾育苗养  相似文献   

20.
使用悬浮式生物反应器(suspendedgrowthreactor,SGRs)研究了生物絮团粒径对絮团的硝化氨氮能力和同化氨氮能力的影响。硝化作用条件下,未分筛组、粒径大于等于50μm的絮团组(≥50μm组)和粒径小于50μm的絮团组(50μm组)总氨氮(total ammonia nitrogen, TAN)去除速率分别为(1.33±0.01) mg TAN/(g TSS·h)、(1.62±0.04) mg TAN/(g TSS·h)和(1.64±0.06) mg TAN/(g TSS·h);同化作用条件下,三组的TAN去除速率分别为(2.83±0.08) mg TAN/(g TSS·h)、(3.34±0.12) mg TAN/(g TSS·h)和(3.52±0.12) mg TAN/(g TSS·h)。≥50μm组与50μm组的TAN去除速率、亚硝态氮(NO_2~–-N)、硝态氮(NO_3~–-N)和总氮(total nitrogen, TN)的最终浓度差异均不显著(P0.05)。检测了溶解性有机碳(dissolved organic carbon, DOC)、粗蛋白(crude protein)、总脂肪(crude fat)、氨基酸(amino acid)、脂肪酸(fatty acids)、粗灰分(crude ash)、碳氮比(carbon to nitrogen ratio, C/N)、挥发性悬浮固体(volatile suspended solids, VSS)和活性污泥比好氧速率(specific oxygen uptake rate, SOUR)等指标,比较结果表明,絮团粒径对硝化氨氮、同化氨氮效率没有显著影响,对絮团的营养价值有显著影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号