首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose  

This study aimed to (1) increase understanding of the relation between sediment yield and environmental variables at the catchment scale; (2) test and validate existing and newly developed regression equations for prediction of sediment yield; and (3) identify how better predictions may be obtained.  相似文献   

2.

Purpose  

Sediment delivery from headwater catchments to reservoirs is a serious threat to reservoir sustainability and is a critical issue in Mediterranean environments where water resources are scarce. In this study we assessed the consequences of two landscape management scenarios (natural vegetation recovery and scrub clearance) on soil erosion and sediment yield. The results were analyzed in relation to predicted and measured rates of soil erosion and sediment yield, with the aim of promoting better management practices.  相似文献   

3.

Purpose  

The impact of wildfire on (a) slope hydrological processes, (b) soil erodibility, and (c) post-fire hillslope sediment and phosphorus (P; dissolved and particulate) yields are quantified for natural forest areas of the burned Evrotas River basin, Peloponnese, Greece. Further, the geochemical partitioning of P in burned and unburned sediment is evaluated by sequential extraction to assess potential bioavailability of particulate P (PP) in downstream aquatic ecosystems.  相似文献   

4.

Purpose  

The Ethiopian highlands are a fragile environment characterized by steep slopes, intense rainfall, a sparse vegetation cover, and the occurrence of flash floods. Although important efforts have been made to mitigate the ongoing soil erosion and land degradation problems, the sediment dynamics at medium-sized catchment scale (100–10,000 km2) are not fully understood. Therefore, this study aims to provide a better understanding of sediment export processes and the importance of flash flood events in semi-arid tropical catchments.  相似文献   

5.

Purpose  

The management of natural resources over large spatial scales is inherently complex due to numerous biophysical and socioeconomic factors and the uncertainty associated with environmental systems and human behavior. Numerous approaches have been put forward to facilitate the decision-making process, including adaptive management (AM) which was developed in the 1960s and 1970s as an alternative to more rigid management frameworks. In recent years, it has been utilized for the management of water and river basin resources, particularly in North America. Its use for sediment resources is less well developed. This paper presents a review of the AM approach, including its characteristics, steps, and barriers to implementation. It also gives some recent examples where the AM approach has been used for sediment quantity and quality issues. Finally, it considers the potential of the AM approach for sediment resource management given Water Framework Directive and other legislative requirements.  相似文献   

6.

Background, aim, and scope  

Fenoxycarb is an insect growth regulator widely used to control a variety of pests. As a juvenile hormone analogue, it interacts with the natural hormones involved in insect development, inhibiting metamorphosis to the adult stage. Adverse effects of fenoxycarb on non-target organisms have been repeatedly observed and its rapid dissipation from water to the organic fraction of the sediment is known. The aim of this work was to investigate the impact of fenoxycarb on the development of sediment-dwelling larvae of the midge Chironomus riparius after exposure to spiked sediment.  相似文献   

7.

Purpose

In this paper, a novel modeling approach is applied to assess the unique transport characteristics of hydrophobic (bitumen containing) cohesive sediment for the Ells River, AB, Canada. The modeling offers a new way of treating the transport and fate of fine sediment in rivers and points to the importance of including a sediment entrapment process in the modeling of the Ells River sediment dynamics.

Materials and methods

The modeling approach involves combining two existing models (RIVFLOC and MOBED). Using fine sediment transport parameters derived from laboratory flume experiments (e.g., settling velocity of sediment as a function of floc size and the critical shear stresses for deposition) and the calculated flow field from the MOBED model (using field survey data such as, cross-sectional geometry, river slope, grain size of bed material, and discharge), the RIVFLOC model is used to predict the transport characteristics (including entrapment) of the hydrophobic Ells River sediment.

Results and discussion

The application of the connected RIVFLOC and MOBED models, demonstrated the unique hydrophobic sediment dynamics of the Ells River. The model showed no deposition (in the classical sense) of the hydrophobic sediment as the bed shear stresses, even at base flow, are well above the critical bed shear for deposition (flocculation is shown to occur, but its impact on settling is negligible given the high shear stresses). However, the model showed the possibility of fine sediment ingression into the river bed (interstitial voids) due to the entrapment process which is known to occur at bed shear stresses well above the critical shear stress for deposition.

Conclusions

The salient features of RIVFLOC and MOBED models and their applications for understanding the transport and fate of unique hydrophobic fine sediments are presented. The models are shown to be useful for the understanding and projection of flow characteristics and sediment dynamics (including entrapment), and will be of benefit for the adaptive management of riverine monitoring programs given various flow scenarios including extreme events and climate change.
  相似文献   

8.

Purpose

The particle-size distribution of runoff sediment is important in understanding, characterizing and modeling the transport behavior of sediment and sediment-associated chemicals. The objective of this study was to investigate the particle-size distribution of sediments eroded from three soils in China under natural rainfall.

Materials and methods

Each of the three soils was packed to a depth of 30 cm in a 20?×?2.1 m runoff plot. Sediments yielded in nine natural rainfall events were analyzed for their particle-size distribution prior to and following dispersion.

Results and discussion

The sediment size measured in the undispersed condition was always larger than the one determined after chemical dispersion, indicating that part of the sediment was eroded in aggregated form. The degree of sediment aggregation depended on the clay content and the organic matter content of the sources. The mean sediment size quantified by mean weight diameter linearly increased with sediment yield for the two soils with relatively high clay content. The rate of increase was greater in the undispersed condition than that in the dispersed condition for these two soils. Comparing sediments to the corresponding source soil, the results of mean weight diameter and enrichment ratio both revealed that aggregate-size distribution was more sensitive to soil erosion than the primary particle-size distribution. Small aggregates, rather than the primary particles, were selectively eroded in the rainfall events.

Conclusions

These findings support the use of both dispersed and undispersed sediment-size distributions for the characterization of sediment transport and the associated sediment-bound nutrients and contaminants.
  相似文献   

9.

Purpose  

This paper evaluates the feasibility of using the buffering capacity of natural soil for the remediation of dredged material before being disposed in soil landfills. To achieve that, an Integrated Soil Microcosms (ISM) system was designed to produce elutriates and leachates from the sediment/soil percentage mixtures. Furthermore, to investigate the biological effects of the contaminated sediments, the toxicity behavior of leachates and elutriates was assessed and compared by performing acute (48 h) toxicity assays with the cladoceran Daphnia magna as test organism.  相似文献   

10.

Purpose  

Sediments serve as integral and dynamic parts of our aquatic systems. Within the last 15 to 20 years, however, the scientific community has begun noticing deterioration of sediment quality at an alarming rate worldwide. Sediments are now harboring hazardous pollutants that can directly influence water quality, thereby creating very stressful conditions for aquatic life. As a consequence, global efforts were initiated in the early 1970s, to find ways to assess sediment quality. Because of their obvious ecological and economic significance, fish have remained a major taxonomic group for appraising the general quality of aquatic systems. However, for sediment risk assessment, fish have lagged behind invertebrates due to their mobility and generally, pelagic lifestyle. To our knowledge, this is the first paper that comprehensively presents and reviews the versatile role of fish in assessing the state of health of aquatic sediments.  相似文献   

11.

Purpose

To support scientifically sound water management in dryland environments a modelling system has been developed for the quantitative assessment of water and sediment fluxes in catchments, transport in the river system, and retention in reservoirs. The spatial scale of interest is the mesoscale because this is the scale most relevant for management of water and land resources.

Materials and methods

This modelling system comprises process-oriented hydrological components tailored for dryland characteristics coupled with components comprising hillslope erosion, sediment transport and reservoir deposition processes. The spatial discretization is hierarchically designed according to a multi-scale concept to account for particular relevant process scales. The non-linear and partly intermittent run-off generation and sediment dynamics are dealt with by accounting for connectivity phenomena at the intersections of landscape compartments. The modelling system has been developed by means of data from nested research catchments in NE-Spain and in NE-Brazil.

Results and discussion

In the semi-arid NE of Brazil sediment retention along the topography is the main process for sediment retention at all scales, i.e. the sediment delivery is transport limited. This kind of deposition retains roughly 50 to 60 % of eroded sediment, maintaining a similar deposition proportion in all spatial scales investigated. On the other hand, the sediment retained in reservoirs is clearly related to the scale, increasing with catchment area. With increasing area, there are more reservoirs, increasing the possibility of deposition. Furthermore, the area increase also promotes an increase in flow volume, favouring the construction of larger reservoirs, which generally overflow less frequently and retain higher sediment fractions. The second example comprises a highly dynamic Mediterranean catchment in NE-Spain with nested sub-catchments and reveals the full dynamics of hydrological, erosion and deposition features. The run-off modelling performed well with only some overestimation during low-flow periods due to the neglect of water losses along the river. The simulated peaks in sediment flux are reproduced well, while low-flow sediment transport is less well captured, due to the disregard of sediment remobilization in the riverbed during low flow.

Conclusions

This combined observation and modelling study deepened the understanding of hydro-sedimentological systems characterized by flashy run-off generation and by erosion and sediment transport pulses through the different landscape compartments. The connectivity between the different landscape compartments plays a very relevant role, regarding both the total mass of water and sediment transport and the transport time through the catchment.  相似文献   

12.

Purpose  

The speciation of polycyclic aromatic hydrocarbons (PAHs) in sediment-porewater systems affects both the chemical fate and bioavailability of these compounds. PAHs may be dissolved or sorbed to sediment particles or dissolved organic carbon (DOC). Furthermore, soot carbon has been shown to control the sorption of PAHs onto particles in natural waters. The present study investigates the distribution of individual PAHs among these three phases by examining sediments from the western Baltic Sea, focusing on a highly contaminated former dumping area and evaluating the importance of soot-carbon partitioning.  相似文献   

13.

Purpose

Knowledge of sediment sources is a prerequisite for sustainable management practices and may furthermore improve our understanding of water and sediment fluxes. Investigations have shown that a number of characteristic soil properties can be used as “fingerprints” to trace back the sources of river sediments. Spectral properties have recently been successfully used as such characteristics in fingerprinting studies. Despite being less labour-intensive than geochemical analyses, for example, spectroscopy allows measurements of small amounts of sediment material (>60 mg), thus enabling inexpensive analyses even of intra-event variability. The focus of this study is on the examination of spectral properties of fluvial sediment samples to detect changes in source contributions, both between and within individual flood events.

Materials and methods

Sediment samples from the following three different origins were collected in the Isábena catchment (445 km2) in the central Spanish Pyrenees: (1) soil samples from the main potential source areas, (2) stored fine sediment from the channel bed once each season in 2011 and (3) suspended sediment samples during four flood events in autumn 2011 and spring 2012 at the catchment outlet as well as at several subcatchment outlets. All samples were dried and measured for spectral properties in the laboratory using an ASD spectroradiometer. Colour parameters and physically based features (e.g. organic carbon, iron oxide and clay content) were calculated from the spectra. Principal component analyses (PCA) were applied to all three types of samples to determine natural clustering of samples, and a mixing model was applied to determine source contributions.

Results and discussion

We found that fine sediment stored in the river bed seems to be mainly influenced by grain size and seasonal variability, while sampling location—and thus the effect of individual tributaries or subcatchments—seem to be of minor importance. Suspended sediment sources were found to vary between, as well as within, flood events; although badlands were always the major source. Forests and grasslands contributed little (<10 %), and other sources (not further determinable) contributed up to 40 %. The analyses further suggested that sediment sources differ among the subcatchments and that subcatchments comprising relatively large proportions of badlands contributed most to the four flood events analyzed.

Conclusions

Spectral fingerprints provide a rapid and cost-efficient alternative to conventional fingerprint properties. However, a combination of spectral and conventional fingerprint properties could potentially permit discrimination of a larger number of source types.  相似文献   

14.

Purpose  

The effects of black carbon (BC) on resistant desorption of organic pollutants in soil and sediment were evaluated to further understand the mechanisms for the resistant desorption and to find a more accurate desorption model which can improve risk assessment and management of ubiquitous soil/sediment contamination.  相似文献   

15.

Purpose  

This study uses sediment cores to quantify Holocene sedimentation rates in the Trinity River delta, Texas. An important question is whether modern fluvial sediment input from the Trinity River is adequate to sustain sedimentation in the delta, thereby combating subsidence and further wetland loss. Our objective was to quantify sedimentation rates within the delta in order to assess whether the delta is in- or out-of-phase with modern sediment delivery rates.  相似文献   

16.

Purpose

Using Ells River, Alberta, Canada bed sediments, this study aims to determine (1) the erosion, transport, and deposition characteristics of cohesive bottom sediments, and (2) the influence of the microbial community in this regard.

Materials and methods

A 2-m annular flume was used to generate bed shear to assess cohesive sediment dynamics for eroded beds with consolidation/biostabilization periods of 1, 3, and 7 days. Additional optical particle sizing, image analysis, densitometry, and microbial analysis were employed to further the analysis with respect to bed erosion and eroded floc characteristics.

Results and discussion

Sediment dynamics can influence the benthic and planktonic community health within aquatic systems. The critical bed shear stress for erosion increased from 0.05 to 0.19 Pa (for 1- to 7-day runs). Consolidation (dry density) increased with time and depth and eroded biofilm biomass was observed to increase with time. The community structure of the eroded sediment did not change with time suggesting a stable well-established and highly selected community. Hydrocarbon-degrading bacteria were present within the microbial consortium. The sediment was highly hydrophobic (96 %) due to a high natural oil content which likely had a profound effect on sediment dynamics, flocculation, and sediment cohesion. Eroded sediment settled poorly, which will result in the long-range transport of associated contaminants.

Conclusions

The Ells River possesses some unique properties which should be considered when assessing contaminant source, fate, and effect. The most significant of these are small floc size, the hydrophobicity of the sediment, and the biological community as these were found to be influential in both the erosion and flocculation processes. It is important that any management strategies and operational assessments of reclamation strategies that may have implication on river health incorporate the sediment compartments (SS and bed sediment), biology, and the energy dynamics within the system in order to better predict the downstream flux of sediments.
  相似文献   

17.

Purpose  

In situ contaminated sediment remediation through the addition of activated carbon has been proven to be an effective remediation technique. An amendment delivery system was developed to accurately place and inject a powdered activated carbon slurry. The system was set up to deliver a series of discrete injections over a rectangular grid with the objective to deliver 3% carbon (C) by dry weight to an inundated saturated sediment at a maximum sediment depth of 30 cm.  相似文献   

18.

Purpose

Traditionally, methods for sediment extractions are characterised using chemical analyses. However, in order to evaluate sediment extracts with regard to biological effects and, thus, bioaccessibility, extraction methods have to be compared to effect data obtained from experiments with in situ exposure scenarios, i.e., sediment contact tests. This study compares four extraction methods and sediment contact test data from a previous project with respect to predictive power in the fish embryo test with zebrafish (Danio rerio).

Materials and methods

A natural and an artificial sediment spiked with a mixture of six organic pollutants (2,4-dinitrophenol, diuron, fluoranthene, nonylphenol, parathion and pentachlorophenol) were extracted using (a) membrane dialysis extraction (MDE), (b) a Soxhlet procedure, (c) hydroxypropyl-??-cyclodextrin (HPCD) or (d) Tenax®-TA. Whereas the former two are regarded being exhaustive with respect to non-covalently bound contaminants, the latter two are considered to predict bioaccessibility. Resulting extracts were tested in the fish embryo assay with D. rerio for embryotoxic and teratogenic potential.

Results and discussion

Mortalities caused by organic extracts from Soxhlet extraction and MDE were high. However, HPCD extracts turned out to be at least as effective as extracts obtained with these two methods. One possible reason might be short ageing time of the spiked sediments. Only Tenax®-TA extracts gave results comparable to the sediment contact assay for natural sediment, but revealed low reproducibility. Significant differences between natural and artificial sediment were found for extracts obtained with techniques using native (i.e., non-freeze-dried) sediments, i.e., HPCD and Tenax®-TA. In contrast, MDE and Soxhlet extracts used freeze-dried sediment and did not differentiate between natural and artificial sediment. Therefore, freeze-drying has likely altered and equalised sediment properties that influence accessibility, such as composition of bacterial communities and organic matter quality.

Conclusions

Four extraction methods were successfully characterised with respect to their stringency and predictiveness for bioaccessibility. MDE was confirmed as an alternative to Soxhlet extraction. High mortalities induced by HPCD extracts underline the need to include ageing into consideration when assessing sediments. Although Tenax®-TA may basically be used to predict bioaccessibility in the fish embryo test, the high variability observed warrants further investigation of the relation between effect and extractability. Apparently, freeze-drying can severely affect sediment properties, potentially eliminating individual properties of natural sediments.  相似文献   

19.

Purpose  

The significance of small farm dams in regulating water and sediment flows to downstream water storage reservoirs is identified as an important issue in South Africa where water shortages are a major current and likely future problem. The role of farm dam breaching, subsequent release of stored sediment and re-connection of the upstream sediment production areas to the downstream channels is a neglected topic in geomorphology.  相似文献   

20.

Purpose

The aim of this work was to develop a comprehensive fluvial suspended sediment budget for a large regulated river, the lower River Ebro (NE Spain).

Materials and methods

The sediment loads of the Ebro mainstem and its main tributaries were estimated from continuous records of water discharge and turbidity (appropriately transformed to suspended sediment concentrations). Records were obtained at ten monitoring sections during the relatively dry 2008–2011 period.

Results and discussion

The sediment load estimated for the River Ebro upstream of the Mequinenza Reservoir is remarkable (i.e. mean suspended load of 0.6?×?106?t?year?1), despite the fact that the site is already affected by a sediment deficit due to upstream reservoirs. Further downstream, and owing to their humid characteristics, the contribution of the Pyrenean tributaries (Segre and Cinca Rivers) is much larger compared with their Iberian Massif counterparts (Matarranya and Algars Rivers), with sediment loads of 0.49?×?106 and 2,260 t, respectively. The suspended sediment load trapped in the Mequinenza-Ribarroja-Flix Dam Complex for the study period was estimated at 2.3?×?106?t. Below the dams, the sediment load was reduced by 95 % but increased gradually in a downstream direction due to the erosion processes that clear water (i.e. very low sediment concentrations) flood flows exert on the river bed and banks and the episodic contribution from ephemeral tributaries.

Conclusions

Reservoirs have reduced the overall sediment load and the natural variability of flow and sediment transport in the River Ebro. In addition, the sediment budget revealed that floods were not the only drivers of the sediment dynamics in the lower Ebro. For instance, the particular location of the monitoring sections showed that episodic contributions from small tributaries alter the general sediment load of the river during certain torrential events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号