首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estimating variation in grain mineral concentration and bioavailability in relation to grain yield and the year of cultivar release is important for breeding wheat with increased content of bioavailable minerals. The grain yield and yield components, grain phytate concentration, and concentration and bioavailability of minerals (zinc Zn, iron Fe and calcium Ca) in wheat grains were estimated in 40 wheat cultivars released in Punjab (Pakistan) during the last five decades. Mean grain Zn and Ca concentrations in current-cultivars were significantly lower (≥14%) than in obsolete cultivars released during the Green Revolution (1965–1976). Much of this variation was related to increased grain weight in current-cultivars. There was a positive correlation among minerals (r = 0.39 or higher, n = 40) and minerals with phytate in wheat grains (r = 0.38 or higher, n = 40). The tested cultivars varied widely in grain yield and grain phytate-to-mineral molar ratios (phytate:mineral). Compared to obsolete cultivars, the current-cultivars had a higher phytate:mineral ratio in grains, indicating poor bioavailability of minerals to humans. The study revealed a non-significant relationship between grain yield and phytate:mineral ratios in grains. Therefore, breeding for lower phytate:mineral ratios in wheat grains can ensure increased mineral bioavailability without significant reduction in the yield potential. Future breeding should be focused on developing new genotypes suitable for mineral biofortification and with increased mineral bioavailability in grains.  相似文献   

2.
福建烟区土壤中、微量元素丰缺状况及施肥对策   总被引:5,自引:1,他引:4  
2005年采集了福建省三明、龙岩、南平3个主产烟区有代表性的植烟土壤样品557个,并进行了土壤中、微量元素分析。结果表明,该区植烟土壤平均交换性钙含量1059.3±395.3mg/kg、交换性镁171.2±125.3 mg/kg、有效硫34.1±21.7 mg/kg、水溶性硼0.18±0.14mg/kg、水溶性氯23.5±11.8 mg/kg、有效锌1.99±1.30mg/kg、有效铜2.84±1.56mg/kg、有效铁216.6±98.2mg/kg。有26.2%的土壤缺钙,有12.4%的土壤严重缺镁,有42.2%的土壤缺硫或潜在缺硫,土壤普遍缺B,土壤水溶性Cl含量在比较适宜范围,土壤Cu、Fe、Zn营养供应比较充足。为此,在烟叶生产上要因地制宜,注意增施钙镁磷肥或氧化镁,喷施硼肥。  相似文献   

3.
The aims of these field experiments were to investigate the effectiveness of soil application of rubber tire ash in comparison with soil and foliar applications of zinc (Zn) sulfate to increase Zn and decrease cadmium (Cd) concentrations in wheat grain. A two-year field experiment was conducted during the 2007–2008 and 2007–2008 growing seasons at Isfahan research field, Iran. Ten different Zn-efficiency bread wheat cultivars (Triticum aestivum L.) commonly cultivated in different parts of Iran were subjected to no Zn fertilizer addition (control), soil application of 40 kg ha−1 ZnSO4, soil application of 100 (for the first year) and 250 (for the second year) kg ha−1 waste rubber tire ash, foliar application of Zn at the mid tillering stage, and foliar application of Zn at the early anthesis stage. In the foliar application, ZnSO4 was sprayed at a rate of 0.66 kg Zn/ha. Foliar spray of zinc sulfate at early anthesis, in general, had no significant effect on the yield and grain Cd while significantly increased grain Zn concentrations of most cultivars. On average, the foliar Zn treatment at the mid tillering stage (0.66 kg Zn/ha), decreased the mean grain Cd concentration from 0.032 mg kg−1 in the control treatment to 0.024 mg kg−1. While the grain Zn concentrations of some cultivars increased with soil application of Zn sulfate, they were not affected or even decreased in other cultivars. For most studied wheat cultivars, pre-planting application of rubber tire ash in soil resulted in a significant decrease of grain Cd concentrations. The results show that the effectiveness of soil and foliar application of Zn on yield and grain Zn and Cd concentrations greatly depends on the cultivar. The currently recommended rates of soil applications of Zn to ameliorate Zn deficiency are sufficient to increase grain Zn and decrease grain Cd concentrations in some wheat cultivars, while they do not in the others. In this study, soil application of 250 kg rubber tire ash/ha and foliar spray of 0.66 kg Zn/ha at tillering stage were the most effective treatments to ameliorate Zn deficiency and to increase Zn and decrease Cd concentration in grains of most wheat cultivars.  相似文献   

4.
Investigations on concentration of mineral elements including Fe and Zn in wheat grains are important for human health. Two hundreds and sixty-five cultivars and advanced lines were collected and sown at Anyang experimental station of the Institute of Crop Science of the Chinese Academy of Agriculture Sciences in season 2005–2006 to evaluate the genetic variation of major mineral element concentrations in wheat grain. Twenty-four selected cultivars were also planted at seven representative locations in seasons 2005–2006 and 2006–2007 to evaluate the effects of genotype, environment, and genotype by environment interaction on mineral element concentrations. The 265 genotypes displayed a large variation for all mineral elements investigated including Fe and Zn, ranging from 28.0 to 65.4 mg kg−1 and 21.4 to 58.2 mg kg−1 for Fe and Zn, with mean values of 39.2 and 32.3 mg kg−1, respectively. Jimai 26, Henong 326, and Jingdong 8 displayed high Fe and Zn concentrations, and Jimai 26 and Henong 326 also displayed high concentrations of Cu, Mg, K, P, and protein content. Jingdong 8 is the most promising leading cultivar for increasing Fe and Zn concentrations. All mineral element concentrations including Fe and Zn were largely influenced by environment effects. Production of high Fe concentration can be best secured at Jiaozuo and Jinan, and high Zn concentration can be best secured at Jinan and Xuzhou, since samples from these locations in the two seasons are characterized by high Fe or Zn concentration, compared with the other locations. High and significant genotype by environment interaction effects on all mineral element concentrations were also observed, with ratios of genotype by environment to genotype variances all larger than 1.20. Grain Fe concentration was highly significant and positively correlated with that of Zn, indicating a high possibility to combine high Fe and Zn traits in wheat breeding. It also indicated strong positive correlations between concentrations of Fe, Zn, and protein content.  相似文献   

5.
Iron and zinc grain density in common wheat grown in Central Asia   总被引:5,自引:0,他引:5  
Sixty-six spring and winter common wheat genotypes from Central Asian breeding programs were evaluated for grain concentrations of iron (Fe) and zinc (Zn). Iron showed large variation among genotypes, ranging from 25 mg kg−1 to 56 mg kg−1 (mean 38 mg kg−1). Similarly, Zn concentration varied among genotypes, ranging between 20 mg kg−1 and 39 mg kg−1 (mean 28 mg kg−1). Spring wheat cultivars possessed higher Fe-grain concentrations than winter wheats. By contrast, winter wheats showed higher Zn-grain concentrations than spring genotypes. Within spring wheat, a strongly significant positive correlation was found between Fe and Zn. Grain protein content was also significantly (P < 0.001) correlated with grain Zn and Fe content. There were strong significantly negative correlations between Fe and plant height, and Fe and glutenin content. Similar correlation coefficients were found for Zn. In winter wheat, significant positive correlations were found between Fe and Zn, and between Zn and sulfur (S). Manganese (Mn) and phosphorus (P) were negatively correlated with both Fe and Zn. The additive main effects and multiplicative interactions (AMMI) analysis of genotype × environment interactions for grain Fe and Zn concentrations showed that genotype effects largely controlled Fe concentration, whereas Zn concentration was almost totally dependent on location effects. Spring wheat genotypes Lutescens 574, and Eritrospermum 78; and winter wheat genotypes Navruz, NA160/HEINEVII/BUC/3/F59.71//GHK, Tacika, DUCULA//VEE/MYNA, and JUP/4/CLLF/3/II14.53/ODIN//CI13431/WA00477, are promising materials for increasing Fe and Zn concentrations in the grain, as well as enhancing the concentration of promoters of Zn bioavailability, such as S-containing amino acids.  相似文献   

6.
在防雨池栽条件下,研究了不同灌水时期、灌水次数和灌水量对两个不同类型燕麦品种内农大莜1号(Avena nuda L.)和白燕7号(A. sativa L.)籽粒产量及营养品质性状的影响。结果表明,内农大莜1号籽粒粗蛋白、总磷、钙、镁、锌、铁(P<0.01)和钾含量(P<0.05)高于白燕7号。不同灌水制度对植酸、总磷、蛋白质、钙、镁、钾、锌、铁和铜含量有显著影响,全生育期灌水3次(底墒+拔节水+抽穗水),灌水量1 800 m3 hm-2;或灌水4次(底墒+分蘖水+拔节水+抽穗水),灌水量2 400 m3 hm-2有利于燕麦籽粒产量和大多数品质性状的提高。大多数品质性状存在显著的品种×灌水互作效应。不同营养品质性状随灌水量变化规律不一致,并存在基因型差异。  相似文献   

7.
钙增效剂对稻米中钙等矿质元素积累及稻米品质的影响   总被引:1,自引:1,他引:0  
利用粳稻品种探讨了钙增效剂对稻米中钙及铜、锰、镁、铁、锌积累和品质的影响。试验结果表明,五种钙增效剂对稻米的钙含量都有增加效果,其中活性钙-S钙增效剂的处理稻米中Ca的含量最高,比对照增加54.5%,而且360mg/kg施用浓度效果最好;稻米中的微量元素含量测定表明,不同种类钙增效剂的叶面喷施对稻米中微量元素积累的效果不尽相同,五种钙增剂叶面喷施对稻米中Fe、Mg和 Zn含量有明显增加,而稻米中Mn和Cu的含量反而降低的趋势;经多元回归分析表明,Ca积累与Fe和Mn积累最为密切,呈正相关;Ca含量与稻米中直链淀粉(AC)呈显著正相关、与CPV、SBV、CVS、PAT呈显著负相,其他微量元素与部分品质性状的参数有着密切相关。  相似文献   

8.
云南栽培稻生态型矿质元素含量的多样性   总被引:5,自引:0,他引:5  
用ICP-AES测定了新平县相同生态条件下种植653份云南稻资源糙米8种矿质元素含量,并按丁颖的栽培稻生态型对其遗传多样性进行了研究。结果表明,云南水稻改良品种糙米P、Fe和Zn含量比地方稻种分别下降10.53%、14.76%和35.16%,但改良品种特别是粳稻Ca含量比地方种高, 8种矿质元素以Ca的多样性指数最大;糙米P、Ca、Mg、Fe、Zu、Cu和Mn平均含量以粳稻的Mg、Fe和Zn,水稻的P、K和Mg,陆稻的Fe和Zn,糯稻的K和Fe,早稻的Mg和Fe相对较高。8种矿质元素平均遗传多样性指数依次为粳>籼,陆>水,粘>糯,早中稻>晚稻和地方种>改良种,且P>K>Mn>Mg>Cu>Zn>Fe>Ca;其变异系数依次为Fe>Ca>Cu>Zn>Mn>K>Mg >P。  相似文献   

9.
The introduction of new hybrids and integrated crop-soil management has been causing maize grain yield to increase. However, less attention has been paid on the nutrient concentration of the grain; this aspect is of great importance to supplying calories and nutrients in the diets of both humans and animals worldwide. Increasing the retranslocation of nutrients from vegetative organs to grain can effectively increase the nutrient concentration of grain and general nutrient use efficiency. The present study involved monitoring the dynamic change of macro- and micronutrients in different organs of maize during the grain filling stage. In addition, the mobility of different elements and their contribution to grain nutrient content were evaluated in a 2-year experiment under low (LN, no N supplied) and high N (HN, 180 kg N ha−1) supply. Under HN supply, the net remobilization efficiency (RE) of the vegetative organs as a whole (calculated as nutrient remobilization amount divided by nutrient content at silking) of N, P, K, Mn, and Zn were 44%, 60%, 13%, 15%, and 25%, respectively. The other nutrients (Mg, Ca, Fe, Cu, and B) showed a net accumulation in the vegetative organs as a whole during the grain filling stage. Among the different organs, N, P, and Zn were remobilized more from the leaves (RE of 44%, 51% and 43%, respectively) and the stalks (including leaf sheaths and tassels) (RE of 48%, 71% and 43%, respectively). K was mainly remobilized from the leaves with RE of 51%. Mg, Ca, Fe, Mn, and Cu were mostly remobilized from the stalks with the RE of 23%, 9%, 10%, 42%, and 28%, respectively. However, most of the remobilized Mg, Ca, Fe, Mn, Cu, and Zn were translocated to the husk and cob, which seemingly served as the buffer sink for these nutrients. The REs of all the nutrients except for P, K, and Zn were vulnerable to variations in conditions annually and were reduced when the grain yield and harvest index were lower in 2014 compared with 2013. Under LN stress, the RE was reduced in P and Zn in 2013, increased in Cu and unchanged in other nutrients. The concentration of these nutrients in the grain was either unchanged (P, K, Ca, Zn, and B) or decreased (N, Mg, Fe, Mn, and Cu). It is concluded that grain N, P, K, Mn, and Zn, but not Mg, Ca, Fe, Cu, and B concentration, can be improved by increasing their remobilization from vegetative organs. However, enhancing the senescence of maize plant via LN stress seems unable to increase grain mineral nutrient concentration. Genetic improvement aiming to increase nutrient remobilization should take into account the organ-specific remobilization pattern of the target nutrient.  相似文献   

10.
昭通植烟土壤养分丰缺状况及施肥对策   总被引:5,自引:1,他引:4  
对昭通市8个产烟县(区)采集605个植烟耕层土壤进行分析。结果表明:全市植烟土壤平均PH=6.64,有机质2.629%,全氮0.131%,速效氮107.28mg.kg-1,全磷0.081%,速效磷15.235mg.kg-1,全钾1.636%,速效钾140.98mg.kg-1,交换性钙0.381%,交换性镁319.32mg.kg-1,速效硼0.259mg.kg-1,速效锌2.479mg.kg-1,速效锰24.444mg.kg-1,速效钼0.289mg.kg-1,速效铁35.453mg.kg-1,速效铜2.544mg.kg-1,水溶性氯离子11.783mg.kg-1。对烤烟生产来说,昭通烟区土壤的磷偏低,钾不足,硼、氯普遍缺乏,初步提出了稳氮、增磷钾,普遍补充硼、氯,局部补充镁、钼、锌的施肥建议。  相似文献   

11.
明确不同粒色小麦籽粒铁锌含量和生物有效性及其对氮磷肥配施的响应, 对小麦高产优质高效生产具有重要意义。本文以6个不同粒色(白粒、红粒和黑粒)小麦品种为材料, 在大田条件下研究了不同氮磷肥配比(N1: 90 kg N hm -2; N2: 240 kg N hm -2; P1: 60 kg P2O5 hm -2; P2: 209 kg P2O5 hm -2)对小麦产量、籽粒铁锌含量及其生物有效性的影响。结果表明, 不同品种籽粒铁锌含量和积累量存在年际间差异, 黑粒小麦具有较高的铁锌生物有效性。小麦籽粒产量、铁锌含量及积累量在N2P1处理下最高; 铁锌生物有效性在N2P2或N2P1处理下最高, 两处理之间没有显著差异。红粒小麦扬麦15和扬麦22在N2P1水平下籽粒铁锌含量及其积累量最高, N2P2次之; 黑粒小麦周黑麦1号和紫麦1号在N2P2水平下铁含量及其积累量最高, N2P1次之; 不同品种的铁锌生物有效性多数在N2P1或N2P2水平下最高, 表明适量增施氮肥, 有利于提高籽粒产量、铁锌含量及其生物有效性。在本试验条件下综合考虑产量和效率, N2P1 (240 kg N hm -2、60 kg P2O5 hm -2)处理对提高产量、增加籽粒铁锌含量及其生物有效性效果最佳。  相似文献   

12.
Element concentration in wheat grains is an important objective of plant breeding programs. For this purpose, synthetic hexaploid lines (Triticum durum ×Aegilops tauschii) have been identified as potential sources of high element concentration in grains. However, it is not known if these lines reach higher element concentrations in grains as the consequence of a dilution effect due to lower grain yield. In addition, most of the studies carried out with these lines did not evaluate above-ground element uptake. The objective of this study was to improve understanding of grain element concentrations as a function of grain yield, element uptake and biomass and element partitioning to grains in synthetic and conventional cultivars of wheat. One experiment with two standard sowing dates was carried out under field conditions. Biomass, grain yield, and macronutrient(Ca, Mg, K, P and S) and micronutrient (Cu,Fe, Mn and Zn) concentrations in grains and vegetative tissues were measured in two cultivars and one synthetic (chosen from ten lines). The synthetic showed higher element concentration in grains, e.g. between 25 and 30% for Fe, Mn and Zn across sowing dates, than cultivars while grain yield was similar or lower, depending on the sowing date. On the contrary, the synthetic showed lower concentration of Cain grains. This line showed also higher uptake of Fe, Mn, K and P than cultivars. The superior grain element concentration of the synthetic line was not only due to a dilution effect but also to a higher uptake efficiency. Therefore, synthetics would bea valuable source of germplasm for increasing element grain concentration, at least in this case for Fe, Mn, K and P. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Phytate (inositol-hexa-phosphate) has an important role in plants but it also may have anti-nutritional properties in animals and humans. While there is debate within the plant breeding and nutrition communities regarding an optimum level in grain, there appears to be little information at the molecular level for the genetics of this trait, and its association with important trace elements, in particular, Fe and Zn. In this preliminary study, quantitative trait loci (QTL) for grain phytates, Zn and Fe in glasshouse-grown rice lines from an IR64 × Azucena doubled haploid population were identified. Correlations between phytate and essential nutrients were also studied. Transgressive segregation was found for most traits. Phytate and total P concentrations had one QTL in common located on chromosome five with the (high concentration) allele contributed from Azucena. There were significant positive correlations between phytate and inorganic phosphorus (P), total P, Fe, Zn, Cu and Mn concentrations for both grain concentration and content. However, the QTLs of phytate were not located on the same chromosomal regions as those found for Fe, Zn and Mn, suggesting that they were genetically different and thus using molecular markers in breeding and selection would modify the phytate level without affecting grain micronutrient density.  相似文献   

14.
武兴德  薛颖 《华北农学报》1992,7(4):137-141
本文用ICPS-1000Ⅱ型等离子光谱仪,分别测定了苋菜、油菜、芹菜中的钾、钠、钙、镁、磷、铜、铁、锌、锰、锶十种元素的含量,标准曲线浓度与强度的相关系数(r=0.999)。在几种蔬菜中苋菜铁的含量高,苋菜5个品种中棠东红最高,而且锌、铜、钙、镁等也比较高。测定的7种油菜中,徐州苔菜锌铜比、锰铜比及锌铜锰总量高于其它品种。  相似文献   

15.
采用防雨池栽方法研究了不同灌溉条件下两种栽培类型燕麦白燕7号皮燕麦(Avena sativa L.)和内农大莜一号裸燕麦(Avena nuda L.)籽粒植酸、总磷、蛋白质、钙、镁、钾、锌、铁、铜、锰含量变化特征。随灌水次数和灌水量的增加,内农大莜一号裸燕麦籽粒总磷和铜含量呈线性变化,籽粒产量、植酸、钙、镁、钾、锌、锰含量变化呈二次函数;白燕7号皮燕麦籽粒(去壳)锌和铁含量呈线性变化,植酸、总磷、粗蛋白、钙、镁含量呈二次函数变化。  相似文献   

16.
施氮量对豫北冬小麦产量及子粒主要矿质元素含量的影响   总被引:1,自引:1,他引:0  
以兰考矮早8、豫麦49-198和平安8号为材料,设置5个氮素水平(0、120、180、240、360kg/hm 2),研究不同施氮量对豫北冬小麦子粒产量及其N、P、K、Ca、Mg、Fe、Mn、Cu、Zn、B等矿质元素含量的影响。结果表明:子粒中N与B(r=0.879)、N与Mg(r=0.858)、Mg与Zn(r=0.871)、Mg与B(r=0.877)含量间相关系数较高。施氮显著提高了子粒N、Ca、Fe、Cu、Zn、B含量,K、Mg含量受施氮量影响较小,但P和Mn含量明显下降。兰考矮早8子粒中各种矿质元素(除B外)含量明显高于平安8号,豫麦49-198介于二者之间。施氮在提高小麦子粒产量的同时降低了P/Ca、P/Mg、P/Fe和P/Zn的值,增强了Ca、Mg、Fe、Zn的生物有效性。此外,研究发现施氮量达到180kg/hm 2后,继续增施氮肥小麦产量难以提升。可见,合理的氮肥管理可以提高豫北地区冬小麦产量及子粒中微量元素的含量;过量施氮不仅难以提高子粒产量,还会降低子粒P和Mn的含量。  相似文献   

17.
Nineteen wild emmer wheat [Triticum turgidum ssp. dicoccoides (Körn.) Thell.] genotypes were evaluated for the grain concentrations of phosphorous (P), potassium (K), sulfur (S), magnesium (Mg), calcium (Ca), zinc (Zn), manganese (Mn), iron (Fe) and cooper (Cu) under five different environments in Turkey and Israel. Each mineral nutrient has been investigated for the (1) genotype by environment (G × E) interactions, (2) genotype stability, (3) correlation among minerals and (4) mineral stability. Among the macronutrients analyzed, grain concentrations of Ca (range 338–2,034 mg kg?1) and S (range 0.18–0.43%) showed the largest variation. In the case of micronutrients, the largest variation was observed in the grain Mn concentration (range 13–87 mg kg?1). Grain concentrations of Fe and Zn also showed important variation (range 27–86 and 39–115 mg kg?1, respectively). Accessions with higher nutrient concentrations (especially Zn and Fe) had also greater grain weight, suggesting that higher grain Zn and Fe concentrations are not necessarily related to small grain size or weight. Analysis of variance showed that environment was the most important source of variation for K, S, Ca, Fe, Mn and Zn, explaining between 44 and 78% of the total variation and G × E explained between 20 and 40% of the total variation in all the minerals, except for S and Zn where its effect accounted for less than 16%. Genotype was the most important source of variation for Cu (explaining 38% of the total variation). However, genotype effect was also important for Mg, Mn, Zn and S. Sulfur and Zn showed the largest heritability values (77 and 72%, respectively). Iron exhibited low heritability and high ratio value between the G × E and genotype variance components \( \left( {\sigma_{\text{GE}}^{2} /\sigma_{G}^{2} } \right) \), suggesting that specific adaptation for this mineral could be positively exploited. The wild emmer germplasm tested in the current study revealed some outstanding accessions (such as MM 5/4 and 24-39) in terms of grain Zn and Fe concentrations and environmental stability that can be used as potential donors to enhance grain micronutrient concentrations in wheats.  相似文献   

18.
对牛肺管这一副产物进行了常规营养成分,包括灰分、水分、蛋白和脂肪等含量的测定,应用紫外分光光度法进行了胶原蛋白含量测定,采用电感耦合等离子体质谱法进行矿物质元素Ca,Fe,Mg,Al,Cu,Zn等含量测定分析。结果表明,胶原蛋白的含量(18.81±0.12)%,灰分1.57%,水分66.89%,粗蛋白20.83%,脂肪9.42%,矿物质元素Ca,Fe,Mg,Al,Cu,Zn,Pb的含量分别为1 197.267 9,46.976 7,341.904,15.106 4,0.746 3,8.156 9,3.262 4 mg/kg。  相似文献   

19.
为了明确燕麦种质资源矿质元素含量的多样性,采用原子吸收分光光度法测定了燕麦种质铜(Cu)、铁(Fe)、锌(Zn)、镁(Mg)和钙(Ca)元素的含量,进行遗传变异、聚类和相关分析。结果表明:供试材料的Cu、Fe、Zn、Mg和Ca元素含量具有丰富的多样性,平均多样性指数为2.022,平均变异系数为29.775%。筛选到Cu含量高的种质有休眠燕麦、加5、坝莜1号、YS0404、v5和v18;Fe含量高的种质有太丰、夏莜麦、9418、蒙燕2号和shadow;Zn含量高的种质有ハヤテ和坝莜9号;Mg含量高的种质有ハヤテ和莜麦4400;Ca含量高的种质有v18、鉴19和白燕7号。Zn、Fe、Mg的含量均较高的种质有ハヤテ、6518、加9、MARION、坝莜8号、晋燕2004、坝莜9号和品五。燕麦种质Cu与Zn含量呈显著正相关,Ca与Fe含量间呈极显著负相关。  相似文献   

20.
Drought stress and zinc (Zn) deficiency are serious abiotic stress factors limiting crop production in Turkey, especially in Central Anatolia. In this study, the effects of Zn deficiency and drought stress on grain yield of 20 wheat cultivars (16 bread wheat, Triticum aestivum; four durum wheat, Triticum durum cultivars) were investigated over 2 years under rainfed and irrigated conditions in Central Anatolia where drought and Zn deficiency cause substantial yield reductions. Plants were treated with (+Zn: 23 kg Zn ha−1, as ZnSO4·7H2O) and without (−Zn) Zn under rainfed and irrigated conditions. Both Zn deficiency and rainfed treatments resulted in substantial decreases in grain yield. Significant differences were determined between both bread wheat and durum wheat cultivars in terms of drought stress tolerance. Considering drought sensitivity indices over 2 years, the bread wheat cultivars Yayla‐305, Gerek‐79, Dagdas‐94 and Bolal‐2973 were found to be more drought‐tolerant than the other cultivars under both −Zn and +Zn treatments. Especially the durum wheat cultivars Cakmak 79 and Selcuklu 97 showed much greater drought susceptibility under Zn deficiency, and irrigation alone was not sufficient to obtain satisfying grain yield without Zn application. The results indicate that sensitivity to Zn deficiency stress became more pronounced when plants were drought‐stressed. The effect of irrigation on grain yield was maximized when Zn was adequately supplied, leading to the suggestion that efficient water use in Central Anatolia seems to be highly dependent on the Zn nutritional status of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号