首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Few studies have demonstrated soil redistribution under upslope tillage (UT) rather than downslope tillage (DT) and its impact on soil organic carbon (SOC) redistribution in long‐term agricultural practices in hillslope landscapes. We selected two neighbouring sites from the Sichuan Basin, China, one under DT and the other under UT, to determine the pattern of soil and SOC redistribution under a long‐term UT practice. DT caused soil loss at upper slope positions and soil accumulation at lower slope positions. However, UT resulted in soil accumulation at upper slope positions and soil loss at lower slope positions. The total erosion rate decreased by 60.5% after 29 years of UT compared with DT. Having the same direction of soil movement by tillage and water exaggerated total soil loss, whereas having the two movements in the contrasting direction of soil for the two reduced it. SOC stocks at positions from summit to downslope were much larger (33.8%) and at toe‐slope positions were only slightly greater (4.5%) in the UT soils than comparable values for the DT site. The accumulation rate of SOC at the UT site increased by 0.26 Mg/ha/year compared with that at the DT site. It is suggested that soil movement by water and tillage erosion occurred in the same direction accelerates the depletion of SOC pools, whereas the opposite direction of soil movement for the two can increase SOC accumulation. Our results suggest that UT has significant impacts on soil redistribution processes and SOC accumulation on steeply sloping land.  相似文献   

2.
This study investigated long‐term effects of soil management on size distribution of dry‐sieved aggregates in a loess soil together with their organic carbon (OC) and their respiratory activity. Soil management regimes were cropland, which was either abandoned, left bare fallow or cropped for 21 yr. Abandonment increased the abundance of macroaggregates (>2 mm) in the surface soil layer (0–10 cm) and reduced that of microaggregates (<0.25 mm) relative to Cropping, whereas the Fallow treatment reduced the abundance of macroaggregates at depths of 0–10 and 10–20 cm. All treatments yielded similar aggregate size distributions at a depth of 20–30 cm. The SOC content of aggregate size fractions in the surface soil from the Abandoned plots was greater (by 1.2–4.8 g/kg) than that of the corresponding fractions from the Cropped plots, but the opposite trend was observed in the subsurface soils. Conversely, the Fallow treatment reduced the SOC content of every aggregate size fraction. Smaller aggregates generally exhibited greater cumulative levels of C mineralization than larger ones. However, the bulk of the SOC losses from the soils via mineralization was associated with aggregates of >2 mm. Abandonment significantly increased the relative contribution of macroaggregates (>2 mm) to the overall rate of SOC loss, whereas the Fallow treatment significantly reduced the contribution of 0.25–2 mm aggregates to total SOC loss in the surface soil while substantially increasing their contribution in the subsurface soil.  相似文献   

3.
In rainfed semi‐arid agroecosystems, soil organic carbon (SOC) may increase with the adoption of alternative tillage systems (e.g. no‐tillage, NT). This study evaluated the effect of two tillage systems (conventional tillage, CT vs. NT) on total SOC content, SOC concentration, water stable aggregate‐size distribution and aggregate carbon concentration from 0 to 40 cm soil depth. Three tillage experiments were chosen, all located in northeast Spain and using contrasting tillage types but with different lengths of time since their establishment (20, 17, and 1‐yr). In the two fields with mouldboard ploughing as CT, NT sequestered more SOC in the 0–5 cm layer compared with CT. However, despite there being no significant differences, SOC tended to accumulate under CT compared with NT in the 20–30 and 30–40 cm depths in the AG‐17 field with 25–50% higher SOC content in CT compared with NT. Greater amounts of large and small macroaggregates under NT compared with CT were measured at 0–5 cm depth in AG‐17 and at 5–10 cm in both AG‐1 and AG‐17. Differences in macroaggregate C concentration between tillage treatments were only found in the AG‐17 field at the soil surface with 19.5 and 11.6 g C/kg macroaggregates in NT and CT, respectively. After 17 yr of experiment, CT with mouldboard ploughing resulted in a greater total SOC concentration and macroaggregate C concentration below 20 cm depth, but similar macroaggregate content compared with NT. This study emphasizes the need for adopting whole‐soil profile approaches when studying the suitability of NT versus CT for SOC sequestration and CO2 offsetting.  相似文献   

4.
Soil organic carbon (SOC) plays an essential role in the sustainability of natural and agricultural systems. The identification of sensitive SOC fractions can be crucial for an understanding of SOC dynamics and stabilization. The objective of this study was to assess the effect of long‐term no‐tillage (NT) on SOC content and its distribution between particulate organic matter (POM) and mineral‐associated organic matter (Min) fractions in five different cereal production areas of Aragon (north‐east Spain). The study was conducted under on‐farm conditions where pairs of adjacent fields under NT and conventional tillage (CT) were compared. An undisturbed soil nearby under native vegetation (NAT) was included. The results indicate that SOC was significantly affected by tillage in the first 5 cm with the greatest concentrations found in NT (1.5–43% more than in CT). Below 40 cm, SOC under NT decreased (20–40%) to values similar or less than those under CT. However, the stratification ratio (SR) never reached the threshold value of 2. The POM‐C fraction, disproportionate to its small contribution to total SOC (10–30%), was greatly affected by soil management. The pronounced stratification in this fraction (SR>2 in NT) and its usefulness for differentiating the study sites in terms of response to NT make POM‐C a good indicator of changes in soil management under the study conditions. Results from this on‐farm study indicate that NT can be recommended as an alternative strategy to increase organic carbon at the soil surface in the cereal production areas of Aragon and in other analogous areas.  相似文献   

5.
Quantifying the sensitivity of soil organic matter decomposition (SOM) to global warming is critical for predict future impacts of climate change on soil organic carbon stocks (SOC) and soil respiration, especially in semi‐arid regions such as north‐eastern Brazil, where SOC stocks are naturally small. In this study, the responses of the labile and recalcitrant carbon components and soil respiration dynamics were evaluated in three different soil types and land use systems (native vegetation, cropland and pasture) of the Brazilian semi‐arid region, when submitted to temperature increase. After 169 days of incubation, the results showed that an increase of 5°C generated an average increase in CO2 emission of 12.0%, but which could reach 28.1%. Overall, the labile carbon (LC) in areas of native vegetation showed greater sensitivity to temperature than in cropland areas. It was also observed that recalcitrant carbon (RC) was more sensitive to warming than LC. Our results indicate that Brazil's semi‐arid region presents a substantial vulnerability to global warming, and that the sensitivity of RC and of LC in areas of native vegetation to warming can enhance SOC losses, contributing to positive feedback on climate change, and compromising the productive systems of the region. However, further studies evaluating other types of soil and texture and management systems should be carried out to consolidate the results obtained and to improve the understanding about SOM decomposition in the Brazilian semi‐arid region.  相似文献   

6.
The impacts of tillage and cropping sequences on soil organic matter and nutrients have been frequently reported to affect the uppermost soil layers, but there is little published information concerning effects at greater depth. This article reports results on the distribution of soil organic carbon (SOC), active carbon (AC), N, Olsen‐P and extractable K within 100 cm in short (4 yr) and long (16 yr) term experiments under different tillage systems. Short (TT4) and long (TT16) traditional tillage are compared with conservation tillage, reduced (RT16) and non‐tillage (NT4). The results show more accumulation of SOC in the near‐surface under RT16 and NT4 in both experiments compared with traditional tillage. Moreover, greater C content occurs to 40 cm depth in the long‐term experiment. The results demonstrate the importance of time on C accumulation, not only in near‐surface layers but also at greater depths. Active C is an indicator of the increase in soil quality in the long‐term experiment. This trend is only apparent for the first 10 cm in the short‐term experiment. Patterns in N, Olsen‐P and extractable K are similar to that of SOC. However, only extractable K is significantly greater in soil under conservation tillage (RT16 and NT4) after short and long periods. Potassium availability is a good indicator of the changes caused by tillage. Our results indicate that studies of soils at depth could be very useful in long‐term experiments to demonstrate the effect of conservation tillage on C and nutrient distribution.  相似文献   

7.
Over the past 20 years, conservation tillage has been used on the loess plateau of north‐west China to improve the sustainability of local agriculture. There had been particular concern about loss of soil organic matter associated with traditional tillage. We examined the influence of four tillage treatments: conventional tillage (CT), subsoiling tillage (SST), rotary tillage (RT) and no‐tillage (NT), with two straw residue management treatments (return and removal) on the distribution with soil depth (0–20 cm, 20–40 cm) of total organic carbon, labile organic carbon (KMnO4‐C) and bound organic carbon. The study was carried out on a Loutu soil (Earth‐cumuli‐Orthic Anthrosol) over seven consecutive years of a winter wheat (Triticum aestivum L.)–summer maize (Zea mays L.) crop rotation. By the end of this period, conservation tillage (SST, RT and NT) led to greater storage of soil organic carbon (SOC) (22.7, 14.9 and 16.3% with straw return in contrast to 21.4, 15.8 and 12.3% with no straw return, respectively) compared with CT in the surface soil (0–20 cm). The reduced tillage treatments (SST and RT) both increased significantly the highly labile organic carbon (HLOC) content of the surface soil (50% in both SST and RT) and mildly labile organic matter (MLOC) (49.4 in SST and 53.5% in RT) when straw was removed. The largest pool of bound carbon was observed in the Humin‐C pool, and the smallest in the free humic acids C (FHA‐C) in each tillage treatment. Conservation tillage led to an increased content of FHA‐C and CHA‐C. Results from correlation analyses indicate that SOC enrichment might have resulted from the increase in HLOC, MLOC, FHA‐C and CHA‐C over a short period. Labile organic carbon was associated with the organic carbon that was more loosely combined with clay (FHA‐C and CHA‐C). We conclude that both SST and RT are effective in maintaining or restoring organic matter in Loutu soils in this region, and the effect is greater when they are used in combination with straw return.  相似文献   

8.
A calcareous and clayey xeric Chromic Haploxerept of a long‐term experimental site in Sicily (Italy) was sampled (0–15 cm depth) under different land use management and cropping systems (CSs) to study their effect on soil aggregate stability and organic carbon (SOC). The experimental site had three tillage managements (no till [NT], dual‐layer [DL] and conventional tillage [CT]) and two CSs (durum wheat monocropping [W] and durum wheat/faba bean rotation [WB]). The annually sequestered SOC with W was 2·75‐times higher than with WB. SOC concentrations were also higher. Both NT and CT management systems were the most effective in SOC sequestration whereas with DL system no C was sequestered. The differences in SOC concentrations between NT and CT were surprisingly small. Cumulative C input of all cropping and tillage systems and the annually sequestered SOC indicated that a steady state occurred at a sequestration rate of 7·4 Mg C ha−1 y−1. Independent of the CSs, most of the SOC was stored in the silt and clay fraction. This fraction had a high N content which is typical for organic matter interacting with minerals. Macroaggregates (>250 µm) and large microaggregates (75–250 µm) were influenced by the treatments whereas the finest fractions were not. DL reduced the SOC in macroaggregates while NT and CT gave rise to higher SOC contents. In Mediterranean areas with Vertisols, agricultural strategies aimed at increasing the SOC contents should probably consider enhancing the proportion of coarser soil fractions so that, in the short‐term, organic C can be accumulated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
10.
The study was based on data from selected long-term field trials established at the Experimental Fields of the Institute of Field and Vegetable Crops, Novi Sad (Serbia). The effect of tillage systems on SOC concentration and SOC stock was most pronounced at 0–10 cm depth. In a 0–40 cm soil layer, in a 7-year period, no-till (NT) sequestrated 863 kg SOC ha?1 yr?1 more compared to moldboard plow tillage (PT), while the effects of disc tillage (DT) and chisel tillage (CT) were not significantly different. Unfertilized three-crop rotation (CSW) compared to two-crop rotation (CW) enhanced SOC storage in a 0–30 cm soil layer by 151 kg C ha?1 yr?1 in a 56-year period. Within fertilized treatments, SOC concentration was highest under continuous corn (CC). Mineral fertilization (F) non-significantly increased the SOC stock compared to no fertilization in corn monoculture in a 32-year period. The incorporation of mineral fertilizers and harvest residues (F + HR) and mineral fertilizers and farmyard manure (F + FYM) sequestered 195 and 435 kg C ha?1 yr?1 more than the unfertilized plot, respectively, in a 0–30 cm soil layer, in a 35-year period. Irrigation did not significantly affect SOC sequestration.  相似文献   

11.
The objective of this study was to investigate differences in organic matter fractions, such as dissolved organic carbon and humic substances, in soils under different land uses. Soil samples were collected from the upper layer of arable lands and grasslands. Humic substances (HS) were chemically fractionated into fulvic acids (FA), humic acids (HA) and humins (HUM), and based on the separated fractions, the humification index (HI) and the degree of HS transformation (DT) were calculated. Dissolved organic carbon (DOC) was determined by cold (CWE) and hot water (HWE) extractions. Regardless of land use, the results indicated significant differences in soil organic carbon (SOC) and HS composition, with HA and HUM as the dominant fractions. Total SOC was higher in grassland (median = 17.51 g kg?1) than arable soils (median = 9.98 g kg?1); the HI and DT indices did not differ significantly between land uses (HI = 0.3–10.3 and DT = 0.2–6.2 for grasslands, > 0.05; HI = 0.3–3.9 and DT = 0.2–20.1 for arable lands, > 0.05). This indicates the relatively high stability of organic carbon and efficient humification processes in both land uses. Additionally, in arable soils lower CWE‐C (0.75 g kg?1) and higher HWE‐C (2.59 g kg?1) than in grasslands (CWE‐C = 1.13 g kg?1, HWE‐C = 1.60 g kg?1) can be related to farming practice and application of soil amendments. The results showed that both labile and humified organic matter are better protected in grassland soils and are consequently less vulnerable to mineralization.  相似文献   

12.
有机物料碳和土壤有机碳对水稻土甲烷排放的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
基于30年水稻土长期施肥定位试验,在保证原有定位试验正常开展的前提下,将部分化肥处理变更为有机肥处理(或反之),通过观测一年水稻轮作周期内不同处理甲烷(CH_4)排放通量季节性变化,探讨不同肥力水稻土中外源有机碳及土壤有机碳含量对田间CH_4排放的影响。结果表明:施化肥处理和有机肥处理,水稻土全年CH_4累积排放量范围分别为1.73~4.72和35.09~86.60 g·m~(-2)。有机肥处理改施化肥后,田间土壤CH_4的排放量显著降低;化肥处理改施有机肥或有机肥处理增施有机肥后,田间土壤CH_4的排放量显著提高。外源有机碳的输入量是田间土壤CH_4年排放量的决定性因素,外源有机碳输入量(x)与水稻土CH_4年累积排放量(y)之间满足直线方程:y=0.087 7 x+3.265 7(R~2=0.965 9,n=21)。土壤有机碳同样也是影响稻田CH_4排放的因素,在不同有机碳水平的水稻土上施用等量相同化肥或有机肥,土壤有机碳含量高的水稻土都更有利于CH_4的产生。单施化肥稻田土壤CH_4排放的最主要碳源是土壤有机碳,有机碳含量(x)和水稻土CH_4年累积排放量(y)之间的指数方程:y=0.162 4 e~(0.162 2 x)(R~2=0.940 6,n=9)。有机肥可促进土壤有机碳分解释放CH_4,土壤有机碳含量相同的条件下,高量有机肥比常量有机肥的土壤有机碳分解比率高0.65%,等量相同有机肥但土壤有机碳含量不同的条件下,土壤有机碳分解比率无显著差异;同样,土壤有机碳也可促进有机物料碳分解释放CH_4,在常量有机肥或高量有机肥处理中,土壤有机碳含量高者比低者的有机物料碳分解比率分别多出3.57%和2.34%。  相似文献   

13.
Knowledge on short‐term and long‐term availability of nitrogen (N) after application of organic fertilizers (e.g., farmyard manure, slurry, sewage sludge, composts) provides an important basis to optimize fertilizer use with benefits for the farmer and the environment. Nitrogen from many organic fertilizers often shows little effect on crop growth in the year of application, because of the slow‐release characteristics of organically bound N. Furthermore, N immobilization after application can occur, leading to an enrichment of the soil N pool. However, this process finally increases the long‐term efficiency of organic fertilizers. Short‐term N release from organic fertilizers, measured as mineral‐fertilizer equivalents (MFE), varies greatly from 0% (some composts) to nearly 100% (urine). The most important indicators to be used for predicting the short‐term availability of N are total and NH ‐N contents, C : N ratio (especially of the decomposable organic fraction), and stability of the organic substances. Processing steps before organic fertilizers are applied in the field particularly can influence N availability. Composting reduces mineral‐N content and increases the stability of the organic matter, whereas anaerobic fermentation increases NH ‐N content as well as the stability of organic matter, but decreases the C : N ratio remarkably, resulting in a product with a high content of directly available N. Nevertheless, long‐term effects of organic fertilizers rather slowly releasing N have to be considered to enable optimization of fertilizer use. After long‐term application of organic fertilizers, the overall N‐use efficiency is adequate to a MFE in the range of 40%–70%.  相似文献   

14.
The Humboldt‐University of Berlin conducts several long‐term field trials designed to assess the effects of tillage methods, crop rotations, organic fertilization, mineral nitrogen, phosphorus, and potassium fertilizers, liming, irrigation, and weather conditions. On silty sand soils shallow ploughing resulted in a distinct accumulation of soil organic matter and phosphorus in the tilled soil layer while potassium and pH values were unaffected. On average shallow ploughing increased yields, with a tendency for higher yields in spring crops and lower yields in winter cereals. Different amounts of organic and mineral fertilizers applied over 30 years resulted in a great differentiation in soil organic matter content. In the following 32 years this variation stayed more or less unchanged, but with an overall reduction in the carbon content. In variants in which phosphate and potassic fertilizers were omitted, 16 kg ha—1 P and 15 kg ha—1 K per year were still being mobilized in the soil after 60 years. In treatments with mineral fertilization, the phosphorus is nearly balanced whilst only 60 % of the potassium is withdrawn from the soil. Additional organic fertilizers, given as farm yard manure, led to a nutrient surplus of 19 kg ha—1 a—1 P and 99 kg ha—1 a—1 K. Omitted liming caused an acidification of the soil to such an extent that crop production became impossible.  相似文献   

15.
The impact of land‐use intensity is evaluated through changes in the soil properties in different areas of the traditional central Spanish landscape. Soil organic carbon (SOC) content, bulk density, aggregate stability and water‐holding capacity (WHC) in the topsoil of active and abandoned vineyards, livestock routes (LR) and young Quercus afforested areas were analysed. These different types of land use can be interpreted as having a gradient of progressively less impact on soil functions or conservation. As soil use intensity declines, there is an increase in SOC content (from 0.2 to 0.6%), WHC (from 0.2 to 0.3 g H2O per g soil) and aggregate stability (from 4 to 33 drop impacts). Soils beneath vines have lost their upper horizon (15 cm depth) because of centuries‐old tillage management of vineyards. Except for an increase in bulk density (from 1.2 to 1.4 g/cm3), there were no differences in soil characteristics 4 yr after the abandonment of vine management. LR can be considered sustainable uses of land, which preserve or improve soil characteristics, as there were no significant differences between topsoil from LR and that from a 40‐yr‐old Quercus afforested area. SOC content, one of the main indicators for soil conservation, is considered very low in every case analysed, even in the more conservative uses of land. These data can be useful in understanding the slow rate of recovery of soils, even after long‐term cessation of agricultural land use.  相似文献   

16.
17.
The effects of tillage on soil organic carbon (SOC) and nutrient content of soil aggregates can vary spatially and temporally, and for different soil types and cropping systems. We assessed SOC and nutrient levels within water‐stable aggregates in ridges with no tillage (RNT) and also under conventional tillage (CT) for a subtropical rice soil in order to determine relationships between tillage, cation concentrations and soil organic matter. Surface soil (0–15 cm) was fractionated into aggregate sizes (>4.76 mm, 4.76–2.00 mm, 2.00–1.00 mm, 1.00–0.25 mm, 0.25–0.053 mm, <0.053 mm) under two tillage regimes. Tillage significantly reduced the proportion of macroaggregate fractions (>2.00 mm) and thus aggregate stability was reduced by 35% compared with RNT, indicating that tillage practices led to soil structural change for this subtropical soil. The patterns in SOC, total N, exchangeable Ca2+, Mg2+ and total exchangeable bases (TEB) were similar between tillage regimes, but concentrations were significantly higher under RNT than CT. This suggests that RNT in subtropical rice soils may be a better way to enhance soil productivity and improve soil C sequestration potential than CT. The highest SOC was in the 1.00–0.25 mm fraction (35.7 and 30.4 mg/kg for RNT and CT, respectively), while the lowest SOC was in microaggregate (<0.025 mm) and silt + clay (<0.053 mm) fractions (19.5 and 15.7 mg/kg for RNT and CT, respectively). Tillage did not influence the patterns in SOC across aggregates but did change the aggregate‐size distribution, indicating that tillage affected soil fertility primarily by changing soil structure.  相似文献   

18.
Serious concerns about carbon (C) sequestration capacity and the stabilization of sequestered C in forested soils have emerged in the context of global climate change. The organic C in soil and in soil fractions at four sampling times in Acacia auriculiformis plantations afforested in 1991 were investigated with a combination of density fractionation and acid hydrolysis techniques. The results showed that the accumulation of C in the forested soils had accelerated because the afforestation of wasteland with A. auriculiformis. The C accumulation rates of the surface and subsurface soils averaged 0.38 and 0.17 t C/ha/yr, respectively, during the 19 yr following the afforestation. The percentage of organic C in heavy fraction relative to total soil organic C at the surface soil was 71% in 2003. This value was significantly (< 0.05) higher than that in 2010 (68%). The chemical recalcitrant C index of light fraction was significantly (< 0.05) higher than that of heavy fraction in 2003 regardless of soil depth, but both decreased with time. ca. 58–68% of the newly sequestered C was protected by physical mechanism, and 41–50% was transferred into the acid nonhydrolysable fraction during the 12–19 yr after the trees were planted. The chemical stability of the physically protected C remained lower than that of the unprotected C following the afforestation in the valley‐type savannah. However, both the stability values showed a decline with time.  相似文献   

19.
Abandonment of mountain grassland often changes vegetation composition and litter quantity and quality, but related effects on labile soil organic matter (SOM) are largely unknown. The aim of this study was to investigate the impacts of grassland management and abandonment on soil carbon distribution in light (< 1.6 g cm–3) particulate organic matter (POM) and aggregation along a gradient of management intensity including hay meadows, pastures, and abandoned grasslands. The reduction of management intensity is an interregional phenomenon throughout the European Alps. We therefore selected sites from two typical climate regions, namely at Stubai Valley, Austria (MAT: 3°C, MAP: 1097 mm) and Matsch Valley, Italy (MAT: 6.6°C, MAP: 527 mm), to evaluate effects of land‐use change in relation to climate. Free water‐floatable and free POM (wPOM, fPOM), and an occluded POM fraction (oPOM), were isolated from three water‐stable aggregate size classes (2–6.3 mm, 0.25–2 mm, < 0.25 mm) using density fractionation. Aggregate mean weight diameter slightly decreased with decreasing management intensity. In contrast to absolute POM‐C, fPOM‐C increased in aggregates at both sites with abandonment. Because the oPOM‐C was less affected by abandonment, the ratio of oPOM‐C : fPOM‐C shifted from > 1 to < 1 from meadow to abandoned grassland in aggregates at both sites and thus independent of climate. This suggests that in differently managed mountain grasslands free and occluded POM are functionally different SOM fractions. In bulk soil, the oPOM‐C : fPOM‐C ratio is better suited as an indicator for the response of SOM to management reduction in subalpine grasslands than the total soil C, absolute or relative POM‐C content.  相似文献   

20.
Petrocalcic horizons are frequent in soils of semiarid landscapes. A survey of SIC and SOC contents made in Southern Spain in a pilot area with well defined geomorphological surfaces showed that topsoils overlying petrocalcic horizons are almost twice as rich in SOC as soil of similar depth without petrocalcic horizons. This could be due to impedance to root penetration, changes in redox potential and soil water availability caused by the presence of indurated crust. Soil age, on the contrary, seems not be an essential factor, since only a short time is required to reach a steady state in SOC in comparison to the time span available for soil formation on the different geomorphic surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号