首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brown midrib sorghum × sudangrass is attracting attention in the north‐eastern USA because of its ability to produce acceptable forage yields on marginal corn ground. Other potential advantages include conservation of soil on highly erosive ground, the possibility to spread manure mid‐summer (after first cutting) when runoff risk is minimal, greatly reduced needs for herbicides and the potential to reduce the importation of phosphorus onto the farm. Best management practices need to be developed to take full advantage of the crop in the north‐east. Seven field studies were conducted from 2000 to 2002 in four different agricultural regions in New York to determine the time of harvest optimum for yield and quality in one‐ to three‐cut management systems. Yield, rather than a change in forage quality indicators, was the key determining factor for estimated milk production. However, to prevent the shift from vegetative to reproductive growth (and associated decline in quality) and to better manage the amount of water at harvest, we recommend that in the north‐eastern USA brown midrib sorghum sudangrass be managed using a two‐cut system with harvest taking place when stand heights are about 125 cm or less.  相似文献   

2.
Cereal rye (Secale cereale L.) is an important forage crop in the USA for stocker cattle (Bos sp.) production, thus making forage yield an important breeding objective for the crop. However, little information is known about the repeatability for forage yield in this crop. The objectives of this research were to: (i) estimate variance components for forage yield from long‐term variety trials, (ii) estimate the repeatability for forage yield and (iii) relate this to breeding strategies for increased forage yield in rye. Trials were conducted over 14 years where 97 USA open‐pollinated varieties (OPVs) were evaluated. Repeatability ranged from 0.57 to 0.86 when the data were analysed by year for the 3 years with significant genotype main effects. Possible explanations for the lack of significant genotype main effects are discussed. Practical implications of these findings indicate that the development of improved cultivars with greater forage yield will require improved methods of selection based on family performance rather than the current methods based primarily on single plant visual selection.  相似文献   

3.
Intercrops of pea (Pisum arvense L.), a popular legume used in intercropping systems with winter cereals for forage and silage production, with wheat (Triticum aestivum L.), rye (Secale cereale L.), and triticale (× Triticosecale Wittmack) in two seeding ratios (60:40 and 80:20) were compared with monocrops of pea and cereals for two growing seasons. Growth rate, dry matter yield, and N uptake were determined in each intercropping system. Furthermore, several indices were used to evaluate the intercropping systems and analyze the competition and the interrelationships between mixture components. Growth rate of cereals was lower in the mixtures than in the monocrops. Dry matter yield was higher in triticale monocrop, followed by its two intercrops, and the pea–wheat 80:20 intercrop. Moreover, triticale monocrop, pea–triticale intercrops, and pea–wheat 80:20 intercrop showed the highest crude protein yield and N uptake. The land equivalent ratio (LER), relative crowding coefficient (K), actual yield loss (AYL), and system productivity index (SPI) values were greater for the pea–triticale mixtures and the pea–wheat and pea–rye mixtures (80:20), indicating an advantage of intercropping. In most intercrops, the values of partial K, AYL, aggressivity, and competitive ratio (CR) indicated that the cereal was more competitive than pea. The highest values of monetary advantage index (MAI) and intercropping advantage (IA) were recorded for the pea–triticale and the pea–wheat mixtures (80:20). Overall, pea–triticale and pea–wheat mixtures (80:20) were more productive and produced better forage quality than the other mixtures and thus could be adopted by the farmers as alternative options for forage production.  相似文献   

4.
In recent years, there has been a growing interest in brown midrib (BMR) sorghum (Sorghum bicolor (L.) Moench.) × sudangrass (Sorghum sudanense Piper) hybrids (SxS) as a replacement for silage corn (Zea mays L.) in the north‐eastern USA. Recent studies suggest it is suitable for both rotational grazing and as a hay crop and could compete with corn harvested for silage in years when wet spring conditions prevent the timely planting of corn. However, little is known about its suitability as forage for non‐lactating cows that require low potassium (K) forages to prevent health problems. Our objective was to evaluate the impact of K fertilizer management (0, 112 or 224 kg K2O ha?1 cut?1) under optimum N management (112–168 kg N ha?1 cut?1) on yield, quality and K concentrations of BMR SxS over a 2‐year period. Field trials were established on a fine loamy, mixed, active, mesic Aeric Fragiaquepts with medium K‐supplying capacity and characteristic of a large region in New York. Potassium application did not affect dry matter yields in either of the 2 years. Averaged over 2 years, neutral detergent fibre (NDF) significantly increased with K addition with similar but non‐significant trends observed in each of the years individually. The digestibility of NDF was unaffected by K application. Crude protein (CP) concentrations showed a significant decrease with K application in 2002 and similar trends were observed in 2003, although differences were not significant at P ≤ 0.05. The changes in NDF and CP did not significantly impact forage quality expressed as milk production per megagram of silage. Potassium application increased forage K concentration up to 13 mg K kg?1 dry matter (in the first cut in 2003). Forage Ca and Mg concentrations decreased with K addition except for the first cut in 2002 where differences between 112 and 224 kg K2O ha?1 treatments were not significant. Without K addition in the 2‐year period, K concentrations in the forage decreased from 23 g kg?1 for the first cutting in 2002 to 15 g kg?1 for the second cut in 2003. Low K forage was obtained for all second‐cut forage unless 224 kg K2O ha?1 cut?1 had been added. First‐cut forage was suitable only when no additional K had been applied. These results suggest low K BMR SxS forage can be harvested from initially high K soils without loss in dry matter yield as long as no additional K is added.  相似文献   

5.
Newfoundland's climate is marginal for agricultural production. The availability of locally grown cereal grain and high‐quality forage are major limitations to successful animal agriculture in this region. Here, our overall objective was to compare several spring cereal species for both annual forage and grain production in Newfoundland's cool Maritime climate. Several varieties of barley (Hordeum vulgare L.), wheat (Triticum aesitivum L.), oats (Avena sativa L.) and pea (Pisum sativum L.)–cereal mixtures for forage yield and quality, as well as grain yield and maturity, were compared in field trials on the east and west coasts in both 1999 and 2000. Barley headed earliest, yielded greatest forage dry matter, had lowest forage protein and acid detergent fibre (ADF) percentages, and had neutral detergent fibre (NDF) mean values greater than those of pea–cereal mixtures, but less than those of oats and wheat. Forage harvested from pea–cereal mixtures was similar to that of barley for yield, ADF and NDF, while P and protein percentage were much greater. Barley matured 10–15 days earlier than both wheat and oats. In general terms, all three spring cereals exhibited similar grain yield potential. Oats tillered less, but compensated by producing more kernels spike?1. Days to maturity for cereal grains in western Newfoundland were roughly similar to those reported for the Maritime provinces of Canada. Yield and maturity results for both forage and grain production suggest that eastern Newfoundland is a unique agro‐ecoregion in North America, and agronomic recommendations specific to other regions may not be applicable in this region.  相似文献   

6.
The spatial variability of yields and optimal N rates is well documented for several crops and the benefit of studying site-specific N response seems self-evident. Unfortunately, trials established to examine site-specific N response are mostly quite large and expensive, since those trials usually cover nearly the whole field. Selecting only small subareas of a field to host an N fertilization trial will reduce costs and therefore possibly allow more trials on different locations. On the other hand, the evaluation of small trials can become difficult, resulting from a low number of observations compared to the number of parameters that need to be estimated. Aim of this study was to develop a framework that allows evaluating yield response from small site-specific trials by reducing the number of parameters of the response curves.The framework was tested on a data-base of a two-year site-specific N fertilization trial in northern Germany. Three different types of N response curves were evaluated individually for each subarea: Linear plus plateau (LP), quadratic (Q) and quadratic plus plateau (QP). In a second step an alternative parameterization that includes a shape parameter was introduced. For each type of response curve, this shape parameter was set to a common value for all subareas within a field and year, thus reducing the number of parameters that need to be estimated. Results show that the reduction of parameters did not reduce the goodness of fit when describing yield response, since the yield response of each subarea still depends on different maximum yields and different N amounts to attain their maximum yield. It turned out that the models using a common shape parameter allowed to evaluate even subareas with separately indetermined parameter values. Furthermore, agronomically meaningful correlations of the estimated response curves to the empirically observed characteristics of their respective subareas were improved.  相似文献   

7.
Recovery of fertilizer nitrogen (N) applied to winter wheat crops at tillering in spring is lower than that of N applied at later growth stages because of higher losses and immobilization of N. Two strategies to reduce early N losses and N immobilization and to increase N availability for winter wheat, which should result in an improved N use efficiency (= higher N uptake and/or increased yield per unit fertilizer N), were evaluated. First, 16 winter wheat trials (eight sites in each of 1996 and 1997) were conducted to investigate the effects of reduced and increased N application rates at tillering and stem elongation, respectively, on yield and N uptake of grain. In treatment 90‐70‐60 (90 kg N ha?1 at tillering, 70 kg N ha?1 at stem elongation and 60 kg N ha?1 at ear emergence), the average values for grain yield and grain N removal were up to 3.1 and 5.0 % higher than in treatment 120‐40‐60, reflecting conventional fertilizer practice. Higher grain N removal for the treatment with reduced N rates at tillering, 90‐70‐60, was attributed to lower N immobilization (and N losses), which increased fertilizer N availability. Secondly, as microorganisms prefer NH4+ to NO3? for N immobilization, higher net N immobilization would be expected after application of the ammonium‐N form. In a pot experiment, net N immobilization was higher and dry matter yields and crop N contents at harvest were lower with ammonium (ammonium sulphate + nitrification inhibitor Dicyandiamide) than with nitrate (calcium nitrate) nutrition. Five field trials were then conducted to compare calcium nitrate (CN) and calcium ammonium nitrate (CAN) nutrition at tillering, followed by two CAN applications for both treatments. At harvest, crop N and grain yield were higher in the CN than in the CAN treatment at each N supply level. In conclusion, fertilizer N use efficiency in winter wheat can be improved if N availability to the crops is increased as a result of reduced N immobilization (and N losses) early in the growth period. N application systems could be modified towards strategies with lower N applications at tillering compensated by higher N dressing applications later. An additional advantage is expected to result from use of nitrate‐N fertilizers at tillering.  相似文献   

8.
In the colder parts of the United States (north of 32° N latitude and east of 92° W longitude), in late winter after disappearance of snow cover, red clover (Trifolium pratense) is often broadcast seeded into forage legume-depleted grass pastures to increase pasture forage quality. This method of establishment is referred to as frost seeding. However, in an estimated 30–40% of frost seeded pastures in Wisconsin, USA the legumes fail to establish. In this study 40 red clover halfsib families from one breeding population and ten check populations were evaluated for spring frost-seeded establishment in three environments. Seedling establishment counts and plant heights were measured 3 months after frost-seeded planting. One of the three environments experienced a stand establishment failure. Narrow sense heritability estimates on a halfsib family basis for stand counts and heights were 0.07 and 0.63, respectively. Seedling counts were greatly affected by environment with micro-environmental effects contributing to low heritability. Additive by environment genetic variance was large, again leading to low seedling count heritabilities. These results, based on one population, suggest that it may be difficult to select for increased frost-seeded seedling establishment and that many test environments are needed to achieve genetic gains for this trait. In comparison, seedling height was very heritable with relatively small additive by environment genetic variances. The genetic correlation between seedling count and height using frost-seeded establishment was r A = 0.42.  相似文献   

9.
For the long‐term sustainability of the dairy industry in the Northeastern USA, manure nutrient application rates should not exceed crop nutrient removal once above‐optimum soil fertility levels are reached. Dairy producers have shown a growing interest in brown midrib (BMR) forage sorghum (Sorghum bicolor (L.) Moench.) × sudangrass (Sorghum sudanense Piper) hybrids (S × S) as a more environmentally sound alternative to maize (Zea mays L.) but data on S × S nutrient removal rates are scant. Our objectives were to determine N, P, K, Ca and Mg removal with harvest as impacted by N application rate, using six N rate studies in New York. One of the six sites had a recent manure history. Although site‐to‐site differences existed, N application tended to decrease P and K and increase N, Ca and Mg concentrations in BMR S × S forage. Nutrient removal and yield were highly correlated for all sites except one location that showed a K deficiency. The crop removed large amounts of P and K in the manured site, suggesting that BMR S × S is an excellent scavenger of these nutrients. If manure is applied mid‐season, forage K levels are likely too high for feeding to non‐lactating cows.  相似文献   

10.
Effects of Long-term Fertilizer N Reduction on Winter Grain and Sugar Beet Yields
The results of recent field experiments concerning the effect of long-term N-reduction on the yield and quality of sugar beet, winter wheat and winter barley on plots which had previously had received ample amounts of N are studied in this paper.
The yield and quality of crops harvested on plots where N-dressings had been reduced for 6–8 years were similar to those of crops grown on plots where N-application had been reduced for only 1 year. Grain yield of winter wheat and winter barley grown without any N-application decreased to about 60 % of amounts normally harvested under local conditions with recommended N dressings, whereas the white sugar yield still remained at 90 %. The yields decreased slightly with an increase in the duration of the experiments. Yields of both cereals and beets remained constant within each level of fertilization, even 6 years after inition of trials with 50, 75 and 125 % of locally recommended N dressings.
On plots that did not receive nitrogen fertilization, N-contents of grain were between 1.5 and 1.7 % for winter wheat and 1.0 and 1.6 % N for winter barley. These contents remained constant over a trial period of 6 years. The amount of annual export of 55–91 kg N/ha also remained constant. Limited N availability causes a decrease in grain protein content rather than in grain yield.
Compared to winter grain species, sugar beet (with 74–117 kg N/ha in the beet body) could realize the highest annual export of nitrogen from the plot. Differences in annual N export existing between the various locations of the plots cannot be explained by differences in soil quality. Continuous high yields that were found even without any N-dressings may be explained by asymbiotic N-fixation, deposition of atmospheric N and a progressive decrease in soil N with 17–56 kg N/ha removed from soil resources annually.  相似文献   

11.
Nitrogen (N) deficiency and weed infestation are main factors limiting yield and yield stability in organic wheat. Organic fertilizers may be used to improve crop performance but off-farm input costs tend to limit profitability. Instead, forage legumes may be inserted into the crop rotation to improve the N balance and to control weed infestation. In opposition to simultaneous cropping, relay intercropping of legumes in organic winter wheat limits resource competition for the legume cover crop, without decreasing the performance of the associated wheat.The aim of this study is to evaluate the effect of spring organic fertilization on the performance of intercropped legumes and wheat, and on services provided by the legume cover.Two species of forage legumes (Trifolium pratense L. and Trifolium repens L.) were undersown in winter wheat (Triticum aestivum L. cv Lona) in five organic fields during two consecutive crop seasons. Organic fertilizer was composed of feather meal and applied on wheat at legume sowing. The cover crop was maintained after the wheat harvest and destroyed just before sowing maize.Spring organic nitrogen fertilization increased wheat biomass (+35%), nitrogen (+49%), grain yield (+40%) and protein content (+7%) whatever the intercropping treatment. At wheat harvest, red clover biomass was significantly higher than white clover one (1.4 vs. 0.7 t ha−1). Nitrogen fertilization decreased forage legume above-ground biomass at wheat harvest, at approximately 0.5 t ha−1 whatever the specie. No significant difference in forage legume biomass production was observed at cover killing. Nitrogen accumulation in legume above-ground tissues was significantly higher for white clover than for red clover. Both red and white clover species significantly decreased weed infestation at this date. Nitrogen fertilization significantly increased weed biomass whatever the intercropping treatment and decreased nitrogen accumulation in both clover species (−12%).We demonstrated that nitrogen fertilization increased yield of wheat intercropped with forage legume while the performance of legumes was decreased. Legume growth was modified by spring fertilization whatever the species.  相似文献   

12.
In years 1982–1985 flag leaf area, concentration of chlorophyll and macronutrients (N, P, K, Ca, Mg, Na) and also their correlations to grain yield in static field experiment were studied. The main experimental plots comprised crop rotations containing 50, 75, 100% cereals. Treatments with or without irrigation were subplots and nitrogen levels (0, 60, 120, 180 kg N/ha) were sub-sub-plots.
The cultivation of winter wheat in rotations containing more than 50% cereals affected the drop of winter wheat grain yield, which was especially high on the plots without nitrogen fertilization or with low N level. The dose of 120 kg N/ha gave the highest grain yield in each rotation and, at the same time, decreased to minimum the differences between them, although wheat grown in the full cereal rotation yielded much less. The response of wheat grain yield to previous crop was affected by photosynthetic potential of a plant, which was constituated by flag leaf area and concentration of chlorophyll. The deteriorating nutrient economy in wheat plants grown in rotations containing more than 50% cereals decreased the photosynthetic potential of wheat. In addition, in these rotations the importance of macronutrients concentration in the flag leaf at anthesis as a source of nutrients for the developing grain is visible.  相似文献   

13.
In intensive farming systems, farmers split up and apply the N fertilization to winter cereals and oilseed rape (OSR) at several dates to meet the need of the crop more precisely. Our objective was to determine how prior fertilizer N application as slurry and/or mineral N affects contributions of fertilizer‐ and soil‐derived N to N uptake of barley (1997), oilseed rape (OSR; 1998) and wheat (1999). In addition, residual fertilizer N effects were observed in the subsequent crop. Since autumn 1991, slurry (none, slurry in autumn, in spring, in autumn plus in spring) and mineral N fertilizer (0, 12 and 24 g N m−2) were applied annually. Each year, the treatments were located on the same plots. In 1997–1999, the splitting rates of the mineral N fertilization were labelled with 15N. Non‐fertilizer N uptake was estimated from the total N uptake and the fertilizer 15N uptake. All three crops utilized the splitting rates differently depending on the time of application. Uptake of N derived from the first N rate applied at the beginning of spring growth was poorer than that from the second splitting rate applied at stem elongation (cereals) or third splitting rate applied at ear emergence or bud formation (all three crops). In contrast, N applied later in the growing season was taken up more quickly, resulting in higher fertilizer N‐use efficiency. Mineral N fertilization of 24 g N m−2 increased significantly non‐fertilizer N uptake of barley and OSR at most of the sampling dates during the growing season. In cereals, slurry changed the contribution of non‐fertilizer N to the grain N content only if applied in spring, while OSR utilized more autumn slurry N. In OSR and wheat, only small residual effects occurred. The results indicate that 7 years of varying N fertilization did not change the contribution of soil N to crop N uptake.  相似文献   

14.
Growing barley (Hordeum vulgare L.) in the year of forage establishment is a common agronomic practice in marginal growing regions, but is often not recommended to growers. We examined the effect of silage barley production over an establishing timothy (Phleum pratense L.)‐clover (Trifolium pratense L.; Trifolium hybridum L.) forage sward in a 4‐year study near St. John's, Newfoundland, Canada. The experiment compared two barley varieties differing in plant height (semidwarf Chapais and Leger), three barley seeding rates and the effect of a forage understorey on forage (barley) production in the establishment year and forage (timothy‐clover) production in the subsequent year. The taller Leger yielded similar forage biomass to Chapais in the year of forage establishment, which (when planted at 375 plants m?2) was roughly twice that of a pure‐stand timothy‐clover mix. Increasing the barley seeding rate from 125 to 375 plants m?2 resulted in a linear increase in forage yield in the year of planting. The production of barley forage in the establishment year resulted in reduced timothy‐clover forage yield in the year following barley planted at 125 and 375 seeds m?2, but not for barley planted at 250 seeds m?2. Companion planting also altered forage species composition in that higher barley seeding rates resulted in 12–18 % less timothy and 2–4 % lower fibre levels in the year following planting. Barley seeded at rates of 250–375 seeds m?2 and undersown with a timothy‐clover mixture (harvested at mid‐milk) resulted in greater forage yield of poorer quality than pure‐stand timothy‐clover in the planting year, and a barley seeding rate of 250 seeds m?2 did not impede forage production in the subsequent year.  相似文献   

15.
Oat (Avena sativa L.) is one of the most important forage crops in the Southern Great Plains of the United States. However, it is more sensitive to cold stress than other small grains. In this study, diverse oat germplasm was evaluated for winter survival across multiple years and locations in the region. Field screening started with an observation trial of 1,861 diverse genotypes in the 2012–2013 season and was followed by four seasons of replicated trials from 2013 to 2017. Selection of good winter survivors was started in 2014–2015 season. All trials were laid out in randomized complete blocks with replications of two in 2013–2014 and 2014–2015, four in 2015–2016, and three in 2016–2017. Winter survival was scored in a 1‐to‐9 scale. Data were analysed for each year and location separately. Additive main effects and multiplicative interaction (AMMI) analysis were carried out on combined data of 35 genotypes that were commonly grown in each year and location. Highly significant (p < 0.001) variations were observed among genotypes, environments and genotype‐by‐environment interaction (GEI). The first three interaction principal components (IPCs) were highly significant (p < 0.001), explaining 96% of GEI. Broad sense heritability ranged from 46% to 93%, while heritability for all environments combined was relatively low (24.6%). At the end of the two cycles (2014/2015‐to‐2016/2017) of selection, mean winter survival was improved by more than 38% per cycle compared with the base population mean. Genotypes CIav 4390, CIav 6909 and CIav 7618 showed significantly higher winter survival than the standard checks Okay and Dallas. Genotypes CIav 4390 showed 20% and 35% improvement over the standard checks Okay and Dallas, respectively. Winter survival improvement in oat will remain a difficult task because of high GEI and low heritability. The identified superior genotypes will be used as crossing parents to transfer cold tolerance genes to other elite lines.  相似文献   

16.
Molecular marker technologies may provide a tool to overcome the forage yield plateau in timothy (Phleum pratense L.). Therefore, a study was designed to investigate the relationship between marker‐based genetic distance (GD) estimates and yield. Genetic distances were estimated using Dice coefficients framed by 28 simple sequence repeat markers. In Experiment 1, parents with high general combining ability (GCA) from two contrasting first‐generation synthetic strains (exhibiting high and low yields) were compared. Average GDs of each strain were 0.74 (high) and 0.68 (low). These differences indicated that GD may be partially the basis for contrasting yields. In Experiment 2, GDs among 40 parents of a polycross were used for calculating general genetic distance (GGD), which is indicative of their allelic complementation. Analyses revealed a significant (P < 0.01) moderate correlation (r) between GGD and GCA for yield (= 0.45) and a significant (P < 0.01) residual mean square for the regression of yield on GGD, suggesting that considerable non‐additive effects were associated with GCA. The results are indicative of the potential use of GD estimation for yield improvement in timothy.  相似文献   

17.
Optimum plant population densities are a key means of achieving higher seed yield in soya bean [Glycine max (L.) Merr.]. Limited information is available on yield‐density relation of glyphosate‐resistant soya beans in north‐eastern USA. The objective of this research was to determine the appropriate populations for glyphosate‐resistant soya beans, and if the yield potential of glyphosate‐resistant soya bean produced in light‐enriched conditions was affected by populations. Eight glyphosate‐resistant soya bean cultivars with three populations (300 000, 500 000 and 800 000 plants ha−1) were grown under both ambient and light‐enriched conditions in 2002 and 2003. Yield of all cultivars responded to density linearly. As density increased, grain yield was increased by up to 92 % among cultivars. Light enrichment increased yield for all cultivars across the 2 years, although some cultivars were more sensitive. Harvest index either remained unchanged or declined slightly at higher density in 2002, and there was no difference among treatments in 2003. Both pod number and seed number per plant were significantly decreased with the increase of density across the 2 years, while seeds per pod declined slightly or remained unchanged. Greater seed size was obtained in higher density with varied degree depending on cultivars across the 2 years except for those cultivars with relatively larger seed. The increase in seed size by light enrichment was cultivar and density dependent, and varied between years. 800 000 plants ha−1 could be a suitable practice in producing higher yield in north‐east USA for glyphosate‐resistant soya bean. Maintaining the mass of an individual seed is an important strategy in achieving high yield at high population. Establishing mechanisms responsible for the greatest yields via high population under light‐enriched conditions, may provide insights for management and phenotypic improvement.  相似文献   

18.
Winter beet roots and shoots might be a favorable substrate for biogas production in Central Europe. However, detailed information about the attainable yield of this crop is lacking. Thus, the impact of plant density, genotype and environmental conditions on total dry matter yield of winter beet crops that bolt after winter was investigated. A significant increase of the dry matter yield (esp. shoot) was expected by harvesting the 1st shoot after flowering in June followed by a final harvest of the whole plant in July. In 2009/10, 2010/11 and 2011/12, three series of field trials with (i) 3 target plant densities (148, 246, 370 thousand plants ha−1) and (ii) 3 different sugar beet genotypes were conducted at Göttingen (Lower Saxony, GER) and Kiel (Schleswig-Holstein, GER); (iii), additional field trials with 5 different sugar beet genotypes cultivated at 2 target plant densities (148, 246 thousand plants ha−1) were conducted in 2011/12, to investigate the relation between maximum taproot diameter and the shoot and taproot yield of bolting winter beet. The total dry matter yield considerably varied between 4 and 23 t ha−1. It was predominantly affected by the environment and to a substantially lower extent by plant density. Increasing plant densities increased the total dry matter yield, resulting in a significantly higher total dry matter yield at plant densities ≥300,000 plants ha−1 compared with lower plant densities. Genotypic differences in total dry matter yield were negligibly small. Pruning in June substantially increased the total dry matter yield in July by ca. 8 t ha−1 only in one out of three environments.Final yield in June (without pruning) and July (pruning in June) was positively related with cumulated temperature and global radiation, but also with taproot dry matter yield before winter. The taproot, shoot (1st, 2nd) and total plant yield were positively correlated with maximum taproot diameter.In conclusion, high dry matter yields close to yields of established energy crops grown over winter were obtained with winter beet roots and shoots only under very favorable conditions (climate, single plant size). High yields can be achieved after good pre-winter development. However, for sufficient frost tolerance the taproot size of plants must be rather small. Hence, the cultivation of bolting winter beet under Central European climate conditions has to face a severe conflict of goals concerning winter survival and yield formation.  相似文献   

19.
小黑麦生物产量高,适应能力强,且抗病、抗寒、耐盐碱,整个生长期内很少发生虫害,不需要喷洒农药,能实现绿色优质的饲料生产,是一种具有较高营养价值的饲草作物。在我国北方冬闲盐碱耕地种植饲用小黑麦,能很好地解决粮作、经作、饲作争地问题。以6个小黑麦品种为试验材料,通过生育期、抗倒性、产量和品质等方面的比较,可知冀饲2号和小黑麦3241生育期适宜冬闲种植,在饲草产量、品质和抗倒性方面表现好,适宜在黄河三角洲冬闲盐碱耕地种植。  相似文献   

20.
Nitrogen (N) mineralization and soil mineral N contents were measured at 2-week intervals over a 2-year period (June 1994–May 1996) on two different sites in the North West region of Portugal. The experiment was established in fields, which had for many years been under a double-cropping forage system with maize from May to September and a winter crop (mixture of cereals and Italian ryegrass) during the rest of the year. In addition to N fertilizers, dairy-cattle slurry was applied regularly at the sowing of each crop. On this intensive forage system, quantification of N released from slurry, crop residues and soil organic matter becomes important when better N use efficiency and reduced environmental impact from agricultural practices are required. Net N mineralization rates of the 0–10 cm soil layer fluctuated considerably between consecutive incubation periods and ranged from −0.88 to 1.87 mg N kg−1 day−1 with annual average rates of between 0.41 and 0.65 mg N kg−1 day−1. The total N mineralized in the 10 cm depth soil layer reached values between 122 and 224 kg N ha−1 year−1, showing that mineralization was a very important N source for the crops. The amounts of N released during the cold season (November–February) were equivalent to 27–48% of the yearly total. Regression analysis indicated that seasonal variation in N mineralization was only poorly explained by soil moisture and temperature. The changing balance during the year between soil moisture and temperature will contribute to the relatively constant N mineralization rates. Soil mineral N contents during the maize crop were high and exceeded the nutrient requirements for the optimum yield of this crop. Under the climatic conditions of the region and due to the poor development of the winter crop plants at the time, the mineral N left in the soil after the maize crop and released by mineralization during the cold season is particularly vulnerable to nitrate leaching losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号