首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
原位酶谱技术分析旱地长期覆盖下根际酶活性空间分布   总被引:1,自引:1,他引:1  
根与土壤微生物产生的酶是土壤有机质分解的主要生物驱动因素,对土壤养分循环具有重要意义。该研究利用原位酶谱技术在不破坏作物根系的同时,研究了渭北旱塬长期覆盖春玉米根际土壤酶活性空间分布。田间试验于2020年6月在中国科学院长武黄土高原农业生态试验站进行。以春玉米\  相似文献   

2.
为了探讨以土壤结构体为单元的耕层构造定量方法,该文利用犁耕生成的土壤结构体2D图像计算其质量-径级分布。分别以30°、45°、60°及90°拍摄获取土壤结构体的数字图像,计算土壤结构体各径级区间的几何指标,拟合质量-径级分布模型。结果表明土壤结构体的棱角性和形状指数随径级增大而增加,但矩形度随之减小;以60°拍摄所得的土壤结构体质量-投影面积关系的拟合精度最高,各粒径区间R2均不低于0.89;数字图像筛分与手工测量所得的土壤结构体质量-径级分布无显著差异(P0.05),表明数字图像筛分是从2D投影面信息获取土壤结构体质量-径级分布的准确方法;相对于Weibull和Rosin-Rammler模型,用Gaudin-Schuhmann模型拟合获得的土壤结构体质量-径级分布效果较优,用该模型拟合数字图像筛分所得的土壤结构体质量-径级分布,R2为0.98;相对于干筛法,数字图像筛分方法的划分的径级区间更精细,所得的模型拟合精度更高。  相似文献   

3.
4.
基于高光谱的ASTER影像土壤盐分模型校正及验证   总被引:2,自引:4,他引:2  
快速准确地获取土壤盐分信息是监测和治理土壤盐渍化现象的重要前提。该文以新疆维吾尔自治区典型盐渍化区域--艾比湖流域为研究区,analytical spectral devices(ASD)光谱仪采集的土壤高光谱数据和advanced space borne thermal emission and reflection radiometer(ASTER)影像为数据源,结合实测土壤盐分含量信息,对遥感定量反演土壤盐渍化现象进行研究。再经过光谱反射率数学变换后,结合相关性分析,利用多元回归方法分别建立基于重采样后的高光谱和影像光谱的土壤含盐量估算模型,对遥感影像光谱盐分估算模型进行校正,以提高遥感定量监测盐渍化土壤的精度。结果表明:ASTER影像光谱反射率二阶导数变换和ASD重采样光谱的对数的二阶导数变换所建立的盐分估算模型最佳,决定系数R2分别为0.59和0.82。经ASD重采样光谱模型校正后的ASTER影像光谱的盐分估算模型精度R2为0.91,有效地提高大尺度条件下土壤盐渍化反演精度。研究为大尺度土壤盐分定量遥感监测提供了一种有效方法。  相似文献   

5.
One way to study the state in which stabilized extracellular enzymes persist and are active in the soil is by extraction from the soil, with subsequent fractionation of enzyme–organomineral complexes and characterization of such complexes. In order to investigate the location and characteristics of soil β‐glucosidase, three soil fractions were obtained both from real (undisturbed) soil aggregates and from structural (dispersed in water and physically disrupted) aggregates using two different granulometric procedures. The β‐glucosidase activity of the fraction was then assayed. When the aggregates were dispersed, more than 73% of activity was in the soil microaggregates with diameters of less than 50 μm (SF50). These aggregates were associated with strongly humified organic matter. Solutions of diluted pyrophosphate at neutral pH liberated active β‐glucosidase from all fractions, although the efficacy of extraction varied according to the type of fraction. The SF50 fraction and aggregates of 2000–100 μm obtained by sieving (SF2000) showed the greatest β‐glucosidase activity (34.5 and 36.0%, respectively). Micro‐ and ultrafiltration of SF50 extracts increased the total β‐glucosidase activity, whereas these procedures, applied to the RF2000 fraction, decreased it. Humus–β‐glucosidase complexes in the SF50 fraction, between 0.45 μm and 105 nominal molecular weight limit ( nmwl ) (SF50II) and < 105nmwl (SF50III) showed an optimum pH at 5.4, and in the SF50I fraction (> 0.45 μm) the optimum was 4.0. The stability of β‐glucosidase in the aggregates of the smallest size SF50II and SF50III decreased at acid pHs. The presence of two enzymes (or two forms of the same enzyme) catalysing the same reaction with different values of Michaelis constant and maximum velocity was observed in all but one of the β‐glucosidase complexes extracted and partially purified from the SF50 aggregates.  相似文献   

6.
水土保持监测中SPOT5遥感图像几何精校正方法研究   总被引:3,自引:0,他引:3  
杨蕾 《水土保持研究》2008,15(3):266-267
为探索空间分辨率为2.5 m的SPOT5遥感图像用于水土保持监测的可行性,须进行遥感图像几何精校正。在理论分析遥感图像校正模型的基础上,通过实例计算,详细研究各种可能的几何精校正方法及实际精度状况。综合考虑几何位置变换精度、灰度重采样精度,确定适合水土保持监测的SPOT5遥感图像的几何精校正方法。  相似文献   

7.
为提高耕后棉田分层施肥开沟覆土过程离散元仿真模拟的准确性,采用EDEM离散元软件对分层施肥作业土壤的堆积和滑落过程进行仿真模拟,来标定土壤接触参数。通过通用旋转中心组合试验,采用 Design-Expert 软件对试验数据进行回归分析,以实测土壤休止角、土壤与65 Mn钢滑动摩擦角为优化目标,获得最优的离散元接触参数组合为:土壤间恢复系数0.48、土壤间滚动摩擦系数0.56、土壤间静摩擦系数0.24、土壤与65 Mn钢间恢复系数0.5、土壤与65 Mn钢间滚动摩擦系数0.1、土壤与65 Mn钢间静摩擦系数0.31。为验证标定优化的离散元模型参数的准确性,对土壤堆积试验和滑落试验进行仿真试验与实际试验对比,两者相对误差分别为1.7%和2.5%;并在最优标定参数组合条件下,采用离散法仿真模拟分层施肥装置的开沟覆土过程,获得分层施肥装置5、6和7 km/h作业速度下,仿真试验和田间试验的工作阻力相对误差分别为10.2%、7.95%、7.04%,误差在可接受范围内。仿真试验和田间试验开沟覆土效果基本一致,验证了土壤参数标定的准确可靠,可为后期分层施肥装置减阻研究提供理论基础和技术支持。  相似文献   

8.
The prediction accuracy of visible and near‐infrared (Vis‐NIR) spectroscopy for soil chemical and biological parameters has been variable and the reasons for this are not completely understood. Objectives were (1) to explore the predictability of a series of chemical and biological properties for three different soil populations and—based on these heterogeneous data sets—(2) to analyze possible predictive mechanisms statistically. A number of 422 samples from three arable soils in Germany (a sandy Haplic Cambisol and two silty Haplic Luvisols) of different long‐term experiments were sampled, their chemical and biological properties determined and their reflectance spectra in the Vis‐NIR region recorded after shock‐freezing followed by freeze‐drying. Cross‐validation was carried out for the entire population as well as for each population from the respective sites. For the entire population, excellent prediction accuracies were found for the contents of soil organic C (SOC) and total P. The contents of total N and microbial biomass C and pH were predicted with good accuracy. However, prediction accuracy for the other properties was less: content of total S was predicted approximately quantitatively, whereas Vis‐NIR spectroscopy could only differentiate between high and low values for the contents of microbial N, ergosterol, and the ratio of ergosterol to microbial biomass C. Contents of microbial biomass P and S, basal respiration, and qCO2 could not be predicted. Prediction accuracies were greatest for the entire population and the Luvisol at Garte, followed by the Luvisol at Hohes Feld, whereas the accuracy for the sandy Cambisol was poor. The poor accuracy for the sandy Cambisol may have been due to only smaller correlations between the measured properties and the SOC content compared to the Luvisols or due to a general poor prediction performance for sandy soils. Another reason for the poor accuracy may have been the smaller range of contents in the sandy soil. Overall, the data indicated that the accuracy of predictions of soil properties depends largely on the population investigated. For the entire population, the usefulness of Vis‐NIR for the number of chemical and biological soil properties was evident by markedly greater correlation coefficients (measured against Vis‐NIR predicted) compared to the Pearson correlation coefficients of the measured properties against the SOC content. However, the cross‐validation results are valid only for the closed population used in this study.  相似文献   

9.
A field calibration experiment was carried out on salt‐affected clayey soil in Syria, to compare the sensitivity to soil electrical conductivity (ECe), and bulk density (ρb) of two instruments for estimating soil moisture: the neutron probe (NP) and the Diviner 2000 capacitance probe (CP). The results showed that the values of the correlation coefficient of the calibration were decreased when the ECe and ρb values increased; this decrease was more pronounced for the Diviner 2000, indicating that it was more sensitive to ρb and ECe than the NP. When only scaled frequency was used in the fitted equation, the Diviner 2000 in wet soil underestimated soil water content significantly at all depths, but especially in the top layer, by up to 0.09 cm3/cm3 compared with gravimetric determinations. However, in dry soil, the Diviner 2000 overestimated the volumetric water content by up to 0.05 cm3/cm3 in the top 15 cm, and by 0.03 cm3/cm3 at 30‐45 cm depth. The performance of the neutron probe was better overall; using a factory calibration curve no significant differences were observed between NP estimates and the gravimetric values. Including both ρb and ECe in the calibration equations improved the fits, although the regression coefficient (R2) for the Diviner 2000 remained low.  相似文献   

10.
The set‐up and characterisation of an indoor nozzle‐type rainfall simulator (RS) at Wageningen University, the Netherlands, are presented. It is equipped with four Lechler nozzles (two nr. 460·788 and two nr. 461·008). The tilting irrigation plot is 6 m long and 2·5 m wide. An electrical pump supplies the constant flow during the experiments. The spatial distribution of the rainfall was measured with 60 rain gauges equally distributed on the experimental plot. Thies® Laser Precipitation Monitor was used to measure the size and falling velocity of the raindrops. Four different flow rates were applied (Q1–4). From the collected data, spatial rainfall intensity and spatial kinetic energy distribution maps were created; Christiansen uniformity coefficient was calculated for each flow rate. The results of the experiments revealed that the rainfall parameters (spatial rainfall intensity, kinetic energy, raindrop size distribution and fall velocity) in the RS are not homogeneous (Christiansen uniformity ranges from 68·5% to 83·2%). Accordingly, the whole plot can only be irrigated irregularly applying a wide range of intensities and rainfall energies. The RS offers a good opportunity to study great variety of process intensities such as splash erosion, runoff generation, soil aggregate stability, organic matter migration and scaled landscape development. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
This review provides current state of the art of compound‐specific stable‐isotope‐ratio mass spectrometry (δ13C) and gives an overview on innovative applications in soil science. After a short introduction on the background of stable C isotopes and their ecological significance, different techniques for compound‐specific stable‐isotope analysis are compared. Analogous to the δ13C analysis in bulk samples, by means of elemental analyzer–isotope‐ratio mass spectrometry, physical fractions such as particle‐size fractions, soil microbial biomass, and water‐soluble organic C can be analyzed. The main focus of this review is, however, to discuss the isotope composition of chemical fractions (so‐called molecular markers) indicating plant‐ (pentoses, long‐chain n‐alkanes, lignin phenols) and microbial‐derived residues (phospholipid fatty acids, hexoses, amino sugars, and short‐chain n‐alkanes) as well as other interesting soil constituents such as “black carbon” and polycyclic aromatic hydrocarbons. For this purpose, innovative techniques such as pyrolysis–gas chromatography–combustion–isotope‐ratio mass spectrometry, gas chromatography–combustion–isotope‐ratio mass spectrometry, or liquid chromatography–combustion–isotope‐ratio mass spectrometry were compared. These techniques can be used in general for two purposes, (1) to quantify sequestration and turnover of specific organic compounds in the environment and (2) to trace the origin of organic substances. Turnover times of physical (sand < silt < clay) and chemical fractions (lignin < phospholipid fatty acids < amino sugars ≈ sugars) are generally shorter compared to bulk soil and increase in the order given in brackets. Tracing the origin of organic compounds such as polycyclic aromatic hydrocarbons is difficult when more than two sources are involved and isotope difference of different sources is small. Therefore, this application is preferentially used when natural (e.g., C3‐to‐C4 plant conversion) or artificial (positive or negative) 13C labeling is used.  相似文献   

12.
GLEAMS模型在我国东南地区模拟硝氮淋失的检验   总被引:1,自引:0,他引:1  
利用我国东南亚热带地区农业小流域不同土地利用方式的硝氮渗漏淋失实测数据检验了GLEAMS(Groundwater Loading Effects of Agricultural Management Systems)模型在该地区的适用性。通过现场试验和实地调查并结合模型手册,获取模型所需的水文和营养盐参数,参考模型参数的敏感性分析结果对模型进行调试。结果表明模型对水稻田除外的其它土地利用方式的硝氮渗漏淋失模拟效果较好。水稻田渗漏模拟效果差的主要原因在于模型的水分平衡方程不能反应水稻田长期淹水的实际情况。模型模拟结果的精度可以接受,从而验证了GLEAMS模型在该流域的适用性。  相似文献   

13.
土壤入渗性能对水资源转换利用、农业水管理等方面有着十分重要的作用。该文运用机器视觉及数字图像处理技术,开发了一套以线源入流方法为基础的土壤入渗性能自动测量系统。完成了对该系统的硬件设计、组集和系统软件的开发。利用数字摄像头对表征土壤入渗性能变化过程的线源水流在地表的推进过程进行实时采集截取图片,并对图片进行处理和分析,提取水流在地表推进过程中的湿润面积。根据测量土壤入渗性能的线源入流方法中的数学模型自动计算土壤水入渗率,并实时显示入渗性能曲线的变化过程。采用该系统进行了土壤入渗性能的室内验证试验,取得很好的效果,系统实现了实时测量、后台计算、实时显示土壤入渗性能曲线,结果表明测量误差为5.27%,说明了该测量系统的合理性和准确性。为土壤入渗性能的高效、自动化测量提供了工具。  相似文献   

14.
Rheological methods are applied whenever flow behavior of substances needs to be investigated on a particle‐to‐particle scale executed by a parallel‐plate rheometer. Under oscillation, mechanical effects due to trafficking or vibrations caused by agricultural and forest machinery can be simulated by conducting amplitude‐sweep tests. Hooke's law of elasticity, Newton's law for ideal fluids (viscosity), Mohr‐Coulomb's equation, and, finally, Bingham's yielding are well‐known relationships and parameters in the field of rheology. This paper aims to introduce rheometry as a suitable method to determine the mechanical behavior of salt‐affected soils when subjected to external stresses. Potassium‐treated loamy sand from Halle and loamy silt from Kassel, both sites located in Germany, as well as loess from Israel, saturated with NaCl solutions in several concentrations were analyzed. From the stress‐strain–relationship parameters like the storage modulus G′ and the loss modulus G″, yield stress τy and the linear viscoelastic (LVE)–deformation range including the deformation limit γL, i.e., the transition from an elastic to a viscous state, were determined and calculated, respectively. With respect to salt effects, amplitude‐sweep tests on originally CaCO3‐rich Avdat Loess show an increasing stability if saturated with higher NaCl concentrations. Comparable tests with K+‐rich substrates from Halle and Kassel evinced similar tendencies including the phenomenon of a critical K+ content, which becomes more obvious in case of the drained (–60h Pa) loamy‐silt samples from Kassel. Nevertheless, a higher microstructural stability is given in both substrates from Halle and Kassel, affected by different water contents, in general, which influence the exchange and availability of cations. The results verify that oscillatory tests are applicable for retracing salt‐induced effects, beside those ones, which are influenced by texture, current water content, and/or further chemical parameters.  相似文献   

15.
The current enzymatic assay approach (AACC International Approved Method 32‐23) for the measurement of mixed‐linkage β‐glucan in small grains was modified to a cost‐efficient and high‐throughput format without compromising the accuracy of the results. Ten barley (Hordeum vulgare L.) genotypes used in the study represented a wide range of β‐glucan content levels. A reduced reaction volume is used in the new protocol to adapt to a 96‐well plate format. The volume of key components lichenase and β‐glucosidase were reduced to 25% of the volume required in the original protocol and the cost per sample was reduced to 22% of that in the original protocol. Labor cost was also decreased to 25% of the original protocol as a result of format changes. The accuracy of the measurement from the modified protocol was comparable to the current standard enzymatic procedure. β‐Glucan measurement accuracy of the modified and original protocols were also compared using 21 oat (Avena sativa L.) samples. The results indicated that the new protocol consistently produced accurate measurements in both barley and oat.  相似文献   

16.
Soil structure is very important in agriculture since it affects soil and plant root attributes, such as root system distribution, soil water and nutrient transport, and heat transfer. Degraded soil structures may be repaired by wetting and drying cycles due to changes in the soil pore system. Gamma-ray computed tomography (CT) was used as a tool to evaluate the effect of wetting/drying cycles on soil structure repair, using samples collected in aluminum cylinders. A first-generation tomograph with an 241Am source and a 7.62 cm × 7.62 cm NaI(Tl) scintillation crystal detector coupled to a photomultiplier tube were employed. Image analysis and tomographic unit profiles showed that CT can provide an insight into sample structure in order to evaluate repairs and so improves the use of this tool in relation to the judgement of the quality of measured soil physical properties.  相似文献   

17.
18.
We studied short‐scale variation in the total concentration of copper and its fractions in a soil vineyard. Soil samples were collected at a depth of 0–20 cm between plant rows (1), between individual plants (2) and at their base (3) in a vine‐grown plot in NW Spain. The mean total content in Cu (Cut) in the soil was found to be 97 mg kg−1 and that of potentially available Cu (CuEDTA) 34 mg kg−1. Copper bound to organic matter (CuOM) and to non‐crystalline inorganic soil components (CuIA) were the dominant fractions and accounted for 34% of total copper each. The contents in exchangeable (Cue), pyrophosphate‐extractable (Cup), oxalic/oxalate‐extractable (Cuo) and total copper (Cut) exhibited statistically significant correlations with pH, sum of base cations (S), cation‐exchange capacity (CEC) and exchangeable calcium (Cae). Both total and fractional copper contents were higher in plant rows than between them, particularly in the centre of the plot. Also, CuOM and CuIA were higher in planting rows than between rows. These copper results may have been influenced by the vine‐growing practices of the area and also by the distribution of plants and their pruning. This variability pattern for Cu distribution is crucial with a view to minimising potential adverse effects of fungicides and optimising any reclamation treatments needed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
轴向漩涡流动是研究液力偶合器能量损耗的重要基础。该文基于粒子图像测速技术采集制动工况下液力偶合器轴向漩涡流场图像,通过图像处理技术识别并提取液力偶合器外壁面上特殊几何结构所呈现的光学特征,完成流动图像动态标定。利用霍夫变化直线检测算法识别泵轮轴向流场流速方向,通过图像互相关算法并采用查询窗口偏移技术提取涡轮轴向漩涡流场结构,应用误矢量识别算法检测错误流速矢量并予以剔除,获得优化的流动图谱。研究结果表明:泵轮轴向流场中液流是一种复合加速运动;涡轮轴向流场中液流是一种多尺度漩涡流动,主流区域上流速值为0.2~0.4 m/s,叶片与壁面组成的角隅区域上形成小尺度涡旋,角隅区域上流速值为0.6~1.1 m/s。上侧叶片与泵轮、涡轮交界面处的角隅区域上存在与主流循环流动方向相同的小尺度涡旋,涡量数值为?8 s?1,此处涡旋将促进液力能量的传递与转换,其他3个角隅区域上的涡旋方向与此相反,涡量数值分别为13、15和20 s?1,由于该局部区域小尺度涡与主循环涡的相互混合作用,引起流动迟缓,造成能量损耗。试验研究结果将为液力偶合器轴向漩涡流动现象提供有价值的参考依据。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号