首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A relationship between increasing water temperature and amoebic gill disease (AGD) prevalence in Atlantic salmon (Salmo salar) has been noted at fish farms in numerous countries. In Scotland (UK), temperatures above 12°C are considered to be an important risk factor for AGD outbreaks. Thus, the purpose of this study was to test for the presence of an association between temperature and variation in the severity of AGD in Atlantic salmon at 10 and 15°C. The results showed an association between temperature and variation in AGD severity in salmon from analysis of histopathology and Paramoeba perurans load, reflecting an earlier and stronger infection post‐amoebae exposure at the higher temperature. While no significant difference between the two temperature treatment groups was found in plasma cortisol levels, both glucose and lactate levels increased when gill pathology was evident at both temperatures. Expression analysis of immune‐ and stress‐related genes showed more modulation in gills than in head kidney, revealing an organ‐specific response and an interplay between temperature and infection. In conclusion, temperature may not only affect the host response, but perhaps also favour higher attachment/growth capacity of the amoebae as seen with the earlier and stronger P. perurans infection at 15°C.  相似文献   

2.
Proliferative kidney disease (PKD) of salmonids caused by Tetracapsuloides bryosalmonae causes high mortalities of wild brown trout (Salmo trutta fario) and farmed rainbow trout (Oncorhynchus mykiss) at elevated water temperatures. Here the aim was to compare the temperature‐dependent modulation of T. bryosalmonae in the two salmonid host species, which display different temperature optima. We used a novel experimental set‐up in which we exposed brown trout and rainbow trout to an identical quantified low concentration of T. bryosalmonae for a short time period (1 hr). We followed the development of the parasite in the fish hosts for 70 days. PKD prevalence and parasite kinetics were assessed using qPCR. Exposures were performed at temperatures (12°C and 15°C) that reflect an environmental scenario that may occur in the natural habitat of salmonids. T. bryosalmonae infection was confirmed earliest in brown trout kept at 15°C (day 7 post‐exposure) while, in all other groups, T. bryosalmonae was not confirmed until day 15 post‐exposure. Moreover, significantly greater infection prevalence and a faster increase of parasite intensity were observed in brown trout kept at 15°C than in all other groups. These results indicate that PKD is differentially modulated by water temperature in related host species.  相似文献   

3.
An enzootic disease characterized by granulomas in internal organs occurred in cage‐farmed large yellow croaker, Larimichthys crocea (Richardson), in April and November 2010, in Ningbo, Zhejiang Province. One bacterial strain, named XSDHY‐P, was isolated from the diseased fish and identified by biochemical characterization, fatty acid methyl ester (FAME) analysis and multilocus sequence analysis (MLSA). According to the results obtained from the biochemical tests, FAME analysis and phylogenetic analysis derived from 16S ribosomal RNA, gyrB, oprF, oprI, oprL and rpoD gene sequencing, the bacterial isolate, XSDHY‐P, was identified as Pseudomonas plecoglossicida. Moreover, lethal dose, 50% trials were carried out to demonstrate the virulence of XSDHY‐P in large yellow croaker when administered at 2.13 × 105 colony‐forming units per fish. Visceral granulomas were found in the experimentally infected fish as well as in the naturally infected fish, indicating that P. plecoglossicida is another bacterial pathogen that causes granulomatosis in Lcrocea.  相似文献   

4.
In order to clarify the respiratory responses strategy of Amur sturgeon Acipenser schrenckii exposed to water temperature changes, respiratory parameters of the fish were studied under two temperature regimes: fish acclimated at 13°C for Group I, temperature was increased to 16°C, 19°C, 22°C and 25°C and then returned stepwise to 22°C, 19°C, 16°C and 13°C; and fish acclimated at 25°C for Group II, the water temperature was reduced in steps to 22°C, 19°C, 16°C and 13°C, subsequently, returned to 16°C, 19°C, 22°C and 25°C. The results showed that the respiratory frequency (fR), oxygen consumption rate (VO2) and gill ventilation (VG) of the fish were directly dependent on the acute temperature in both acclimation groups (p < .05). The initial 25°C VO2 in Group II was significantly higher than the initial 13°C VO2 in Group I (p < .05), but was significantly lower than that at 25°C in Group I (p < .05). In Group I, respiratory stroke volume (VS.R) of fish significantly increased or decreased with the acute temperature increases or decreases, respectively (p < .05); oxygen consumption efficiencies (EO2) of fish did not significantly show differences when temperature increased to 25°C from 13°C (p > .05), but the EO2 significantly declined while returning to acclimation temperature (p < .05). In Group II, the VS.R of the fish did not significantly change with acute temperature fluctuations between 25 and 13°C (p > .05), while the EO2 increased with acute temperature increases (p < .05). The Q10 values for fR, VO2, VS.R, VG and EO2 were 1.53–1.72, 1.92–2.06, 1.07–1.60, 1.78–2.44 and 1.11–1.65 at 13–25°C of temperature interval respectively. Amur sturgeon showed partial metabolic compensation to temperature changes. The study results suggest that the ability of Amur sturgeon to regulate metabolism in response to acute temperature changes makes this species good adaptability in the aquaculture rearing.  相似文献   

5.
6.
7.
The purpose of this study was to investigate variations of glucose content, activities of enzymes involved in glycolysis and HSP70 in Litopenaeus vannamei subjected to one constant temperature (25°C) and four daily cyclical temperature change regimes (25 ± 1°C, 25 ± 2°C, 25 ± 3°C and 25 ± 4°C; max 12 am min 12 pm ). Both the glucose and HSP70 in treatment 25°C had a day/night rhythm city (L14:D10), but it gradually disappeared with the increase in temperature fluctuating amplitude. The PK activities varied more and more acutely with the increasing temperature fluctuating amplitude, especially, that in treatment 25 ± 4°C. HK activities were affected by the flux of glucose and the process of glycolysis, which tended to be stable with the increasing temperature fluctuating amplitude. Besides, the variations of PK activities were very abrupt at 25 ± 4°C, which might be unfavourable to the growth of shrimps. The temperature fluctuations affect metabolic adjustments and change the day/night rhythmicity of some physiological indicators.  相似文献   

8.
This study investigated short‐term effects of increasing water temperature from 27 to 41°C on survival and feed consumption of Penaeus indicus at three different ages: PL25 (postlarvae 25 days old), PL50 and PL90. For each age group, water temperature was maintained at 27°C in the control, but increased to 32, 35, 38 and 41°C at a rate of 1°C every eight hours. The temperature was then kept stable until the end of the 7‐day experiment. Results showed that increasing water temperature affected both survival and feed consumption of the experimental shrimps (p < .01). Survival was highest at 32 and 35°C ranging from 93.8% to 100%, but significantly reduced to 40.0%–81.6% at 38°C. No shrimp survived the 41°C treatment. PL25 were more tolerant to 38–41°C than PL50 and PL90 in terms of survival. Increasing water temperature had no effects on feed consumption of PL25 (p > .05). For PL50 and PL90, feed consumption significantly increased at 38 and 41°C (p < .01) and was similar within the range of 27–35°C. This study suggests that P. indicus in tropical areas can tolerate water temperatures of at least 35°C and should be considered for farming during the summer time.  相似文献   

9.
The physiological responses of the juvenile Crassostrea nippona in terms of filtration, oxygen consumption and ammonia excretion to changes in temperature (16–32°C), salinity (15–35 psu) and body size (small, medium and large) were investigated. In this study, the values of filtration rate (FR), oxygen consumption rate (OCR) and ammonia excretion rate (AER) increased with temperature rising from 16°C to 24°C, reaching the highest values at 24°C and 28°C; with any further increase in temperature above this limit, these values decrease drastically (p < .05). The highest Q10 coefficients were 2.75 for large, 3.54 for medium at 16–20 and 3.47 for small size at 20–24°C respectively. Moreover, the responses of FR and OCR were found to be influenced significantly by salinity, tending to increase concomitantly with salinity up to 25–30 psu, though the values of these parameters were diminished dramatically (p < .05) above this level, showing a reverse pattern from that observed in AER, which firstly decreased to the lowest level at 25 and 30 psu, and then severely (p < .05) increased to the highest level at 35 psu. In addition, the low O:N ratios of all sizes of C. nippona at 16°C and 30–35 psu were indicative of a protein‐dominated catabolism, whereas the O:N ratios of large size at 20–32°C and all sizes at 20–30 psu, indicating that the metabolic energy from protein diminished and lipid and carbohydrate were used as the energy substrates. Physiological rates of C. nippona were well correlated with its size. The average values of mass exponents (b‐values) estimated in the present study were 0.657 for OCR and 0.776 for AER at different temperatures, and 0.647 for OCR and 0.767 for AER at varying salinities, signifying that physiological process of C. nippona becomes relatively slower with increasing body size regardless of temperature or salinity. Finally, our results confirm that the optimal temperature and salinity for juvenile C. nippona lie within 24–28°C and 25–30 psu respectively. The results of physiological traits in response to environmental factors of this species are informative in site selection for the cultivation.  相似文献   

10.
As a crucial step in developing a bioenergetics model for Pacific Chub Mackerel Scomber japonicus (hereafter chub mackerel), parameters related to metabolism, the largest dissipation term in bioenergetics modelling, were estimated. Swimming energetics and metabolic data for nine chub mackerel were collected at 14°C, a low temperature within the typical thermal range of this species, using variable‐speed swim‐tunnel respirometry. These new data were combined with previous speed‐dependent metabolic data at 18 and 24°C and single‐speed (1 fork length per second: FL/s) metabolic data at 15 and 20°C to estimate respiration parameters for model development. Based on the combined data, the optimal swimming speed (the swimming speed with the minimum cost of transport, Uopt) was 42.5 cm/s (1.5–3.0 FL/s or 2.1 ± 0.4 FL/s) and showed no significant dependence on temperature or fish size. The daily mass‐specific oxygen consumption rate (R, g O2 g fish?1 day?1) was expressed as a function of fish mass (W), temperature (T) and swimming speed (U): R = 0.0103W?0.490 e(0.0457T) e(0.0235U). Compared to other small pelagic fishes such as Pacific Herring Clupea harengus pallasii, Pacific Sardine Sardinops sagax and various anchovy species, chub mackerel respiration showed a lower dependence on fish mass, temperature and swimming speed, suggesting a greater swimming ability and lower sensitivity to environmental temperature variation.  相似文献   

11.
12.
Herpesviral haematopoietic necrosis (HVHN), caused by cyprinid herpesvirus‐2 (CyHV‐2), has affected the commercial production of the goldfish Carassius auratus and gibelio carp Carassius auratus gibelio. High water temperature treatments are reported to reduce the mortality rate of infected goldfish and elicit immunity in the survivors. To define the mechanism by which this intervention induces resistance, clonal ginbuna Carassius auratus langsdorfii, which is closely related to both species and has been used in fish immunology, may represent a promising model species. In this study, we investigated the susceptibility of clonal ginbuna strains to CyHV‐2 and the effect of high water temperature treatment on infected ginbuna and goldfish. Experimental intraperitoneal infection with CyHV‐2 at 25 °C caused 100% mortality in ginbuna strains, which was accompanied by histopathological changes typical of HVHN. Both infected ginbuna S3n strain and goldfish, exposed to high temperature for 6 days [shifting from 25 °C (permissive) to 34 °C (non‐permissive)], showed reduced mortalities after the 1st inoculation, and subsequent 2nd virus challenge to 0%, indicating induction of immunity. It was concluded that ginbuna showed a similar susceptibility and disease development in CyHV‐2 infection compared to goldfish, suggesting that ginbuna can be a useful fish model for the study of CyHV‐2 infection and immunity.  相似文献   

13.
Australian bass Macquaria novemaculeata were challenged by immersion with nervous necrosis virus (NNV) at different ages and under controlled conditions to investigate factors affecting disease expression. Fish challenged at 3 weeks of age with 103 TCID50/ml and higher doses developed clinical disease; a lower dose of 102 TCID50/ml resulted in incidence below 100% and 101 TCID50/ml was insufficient to cause infection. Additionally, fish were challenged at 5, 6 and 13 weeks of age at 17 and 21°C to assess the role of the age of the host and water temperature on disease expression. Although Australian bass challenged at all ages had evidence of replication of NNV, only those challenged at 3 weeks of age (20 and 24 days post?hatch [dph]) developed clinical disease. Higher water temperature had an additive effect on disease expression in larvae challenged at 24 dph, but it did not affect the disease outcome in older fish. Finally, isolates of NNV derived from fish with clinical or subclinical disease presentations caused similar cumulative mortality and clinical signs when larvae at 24 dph were challenged, suggesting that agent variation was not responsible for variation in clinical presentation in these field outbreaks of NNV infection.  相似文献   

14.
Renibacterium salmoninarum is a significant pathogen of salmonids and the causative agent of bacterial kidney disease (BKD). Water temperature affects the replication rate of pathogens and the function of the fish immune system to influence the progression of disease. In addition, rapid shifts in temperature may serve as stressors that reduce host resistance. This study evaluated the effect of shifts in water temperature on established R. salmoninarum infections. We challenged Chinook salmon with R. salmoninarum at 12 °C for 2 weeks and then divided the fish into three temperature groups (8, 12 and 15 °C). Fish in the 8 °C group had significantly higher R. salmoninarum‐specific mortality, kidney R. salmoninarum loads and bacterial shedding rates relative to the fish held at 12 or 15 °C. There was a trend towards suppressed bacterial load and shedding in the 15 °C group, but the results were not significant. Bacterial load was a significant predictor of shedding for the 8 and 12 °C groups but not for the 15 °C group. Overall, our results showed little effect of temperature stress on the progress of infection, but do support the conclusion that cooler water temperatures contribute to infection progression and increased transmission potential in Chinook salmon infected with R. salmoninarum.  相似文献   

15.
One of the major problems involved in the controlled cultivation of Patagonian red octopus (Enteroctopus megalocyathus) is its long embryonic period ranging between 150–176 days, after which the hatching of planktonic paralarvae is achieved. The effect of temperature on the incubation of E. megalocyathus eggs was studied with the aim of establishing if a temperature higher than 12°C is effective to accelerate the embryonic development without altering their morphological and physiological conditions. Fertilized eggs obtained under controlled conditions at 11°C ± 0.1 were randomly distributed in 12 water baths of 30 L at 4 temperatures: 12, 14, 15 and 16°C ± 0.1°C. The experiment lasted until egg hatching occurred.The embryo growth rate was accelerated at 15–16°C, so the time spent in embryonic development can be reduced in 15% when compared with embryo development obtained from eggs incubated at 12°C. The embryos showed no significant differences in the final survival and were morphometrically similar in all stages of development at all temperatures. The increase in temperature from 12 to 16°C, even if it allowed a better growth, had high metabolic costs for embryos of E. megalocyathus. The activities of lipases and proteases were affected by interaction between temperature and the embryo stage, with high lipase activity observed in embryos of stage XV incubated at high temperatures and the highest levels of trypsin and chymotrypsin in stage XX at 14°C. The results suggest that 15°C could be the limit temperature to increase growth.  相似文献   

16.
Visceral white nodules disease (VWND) caused by Pseudomonas plecoglossicida is a common disease in cage-farmed large yellow croaker (Larimichthys crocea) in China. VWND usually occurred at water temperature of 16–19℃, resulting in high mortality in farmed large yellow croaker. Now, P. plecoglossicida as its pathogen has been considered nonpathogenic at 7–12℃. During February 2019, an infectious disease outbreak was observed in cage-farmed large yellow croaker at a water temperature of 12℃ in Ningde, China. This disease is characterized by white granulomatous lesions in internal organs of the diseased fish, which was similar with the symptoms of the VWND in large yellow croaker. Then, we isolated a bacterial strain named PQLYC4 from visceral lesions of the diseased fish. The experimental infection studies demonstrated that the strain PQLYC4 was the pathogen of the disease, which was further identified as P. plecoglossicida by the analysis of morphology, 16s rRNA gene homology and average nucleotide identity based on the whole genome sequence. Our results revealed that P. plecoglossicida strain PQLYC4 could cause the outbreak of the VWND at 12℃, a water temperature lower than that reported previously, thus providing new knowledges of prevalence and prevention of the VWND in large yellow croaker.  相似文献   

17.
Calanoid copepods, including species of the genus Acartia, are commonly used as larval diets for marine finfish. This study aimed to determine the separate effects of water temperature (18, 22, 24, 28° ± 0.5°C) and photoperiod (24L:0D; 18L:6D; 12L:12D; 8L:18D; 0L:24D) on Acartia grani egg production (EP), hatching rate (EHR) and population growth. Egg production rate was not affected by the two abiotic parameters. A. grani eggs incubated at T24°C and T28°C were the first to achieve 50% hatching rate (23–25 hr), with significant differences at the end of the experiment (48 hr) between T28°C treatment (EHR 88 ± 5%) and T18°C treatment (EHR 65 ± 2%). However, different temperature regimes did not affect final number of individuals in population growth experiment. Still, when eggs were excluded from data, population at lower temperatures (18°C) was mainly composed by the nauplii stage (72%), while at higher temperatures (24°C and 28°C) more than 60% of the population was composed by copepodites and adults. A. grani subjected to long‐day photoperiods had significantly lower EHR (16.7% at 24L:0D; 20.8% at 18L:6D) than at short‐day photoperiods (52.6% at 6L:18D; 50.0% at 0L:24D). In population growth experiment, eggs were the most common life stage after 12‐day culture. Lowest population number was found at constant light conditions (665.0 ± 197.1), suggesting higher metabolic rates and depletion of energy reserves in long‐day conditions. This study expanded knowledge on the biological response of A. grani to separate temperature and photoperiod regimes, and provided ground to improve the culture of this potential life feed species for hatcheries.  相似文献   

18.
The compensatory growth, body composition and energy budget of juvenile tongue sole, Cynoglossus semilaevis (Günther, 1873), subjected to an unfavourable temperature were investigated during 56 days experiment. Fish were divided into four groups including three groups, which were reared at 16°C for 1, 2 and 3 weeks, respectively, then returned to 22°C (recorded as A1, A2 and A3) and a control group (continuously reared at 22°C, C). At the end of the experiment, the body mass was significantly higher in A1 than that in the control (< 0.05), which indicated over compensatory growth occurred in A1 fish. No significant difference was found in body mass among A2, A3 and C fish (> 0.05), which indicated complete compensatory growth occurred in A2 and A3 fish. The underlying mechanisms for compensatory growth could be attributed to an improved energetic efficiency resulting from reduced metabolic expenditure and higher feed efficiency during the period of recovery. Furthermore, the fish exposed to lower temperature for 3 weeks showed hyperphagia. The results suggested that the juvenile C. semilaevis exposed to lower temperature for a suitable period (1–3 weeks) used feed more efficiently. This approach may be a useful rearing strategy for indoor culture of C. semilaevis.  相似文献   

19.
Gonadic conditioning and maturation of queen clam Dosinia ponderosa fed three microalgae (Isochrysis galbana, Tetraselmis suecica and Chaetoceros calcitrans) at three temperatures (20, 25 and 30°C) were assessed. Histological analysis showed six gonadic stages, indicators of maturity. The evaluation included sex proportion, oocyte diameter and frequency of gonadic stages after 22 (middle of trial) and 44 days (end of trial). At day 22, around 60% of females conditioned at 20°C, reached stage III (advances grade of maturation) when fed T. suecica. At day 44, around 50% of females were on stage III, conditioned at 20 and 25°C and fed T. suecica and C. calcitrans. For males, the best combination was C. calcitrans at 20 and 25°C. The temperature of 30°C resulted inadequate for maturation, especially when fed the diatom Isochrysis galbana. High mortalities occurred at that temperature with the three microalgal diets, especially in females. The results permits conclude that T. suecica and C. calcitrans are good sources of feed for D. ponderosa and that the best range of temperature for gonadic development is 22–25°C. These results may be basic for a best management and culture of this clam.  相似文献   

20.
In order to explore the effects of high temperature (HT) and light on the physiological and biochemical aspects of macroalga Ulva prolifera, we cultured this species under two temperatures (20°C: low temperature, LT; 30°C: HT) and two light intensities (80 μmol m?2 s?1: low light, LL; 400 μmol m?2 s?1: high light, HL) for 5 days. It was found that (a) compared to 20°C, the chlorophyll a (Chl a) content was increased at 30°C under LL conditions, the relative growth rate (RGR) was significantly decreased at 30°C; (b) compared to LL treatment, HL significantly increased RGR but significantly decreased Chl a content; (c) LL‐grown U. prolifera at 30°C showed the highest photosynthetic oxygen evolution rate; however, there were no significant effects of temperature and light on the relative electron transport rate; (d) superoxide dismutase activity was significantly decreased by HL, but no significant effects of temperature were observed; and (e) compared to LL, HL significantly increased the soluble sugar content at 20°C, but significantly reduced at 30°C. These results showed that the inhibitory effects of HT can be offset by HL intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号