首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
研究制备了两种稳定的20%盐酸多西环素注射液,按10 mg/kg的剂量分别给猪肌肉注射,观察两个制剂在猪体内单剂量肌注的药代动力学特征.结果表明,多西环素在猪体内的药物动力学特征均符合一级吸收二室开放模型,其主要的药物代谢动力学参数:消除半衰期(T1/2β)分别为(3.246±1.04)和(9.631±1.12)h,药时曲线下面积(AUC)为(10.462±0.28)和(17.525±0.14)(μg/mL)*h,达峰时间(Tpeak)及达峰浓度(Cmax)分别为(1.427±0.16)h、(1.465±0.20) μg/mL和(1.694±0.15)h、(1.058±0.09) μg/mL.其中制剂一的血药浓度在给药2h后迅速降低,为普通注射液;与制剂一相比,制剂二能够缓慢释放药物,为长效缓释盐酸多西环素注射液.  相似文献   

2.
为研究自制盐酸多西环素注射液在猪体内的残留消除规律,以10 mg/kg剂量给健康猪肌内注射盐酸多西环素注射液,每日1次给药,连续三次。在最后一次给药后7、14、21、28和35 d时间点采集肌肉、肝脏、肾脏、脂肪和注射部位肌肉,用UPLC-MS/MS法测定组织中多西环素残留量。结果表明,给药35 d后,肌肉、肝脏、肾脏、脂肪和注射部位肌肉中的多西环素残留量分别为18、24、69、10、59μg/kg,均低于最高残留限量。用WT1.4软件计算休药期,盐酸多西环素注射液在猪肌肉、肝脏、肾脏、脂肪和注射部位肌肉中的休药期分别为33.9、23.8、24.8、0和36.9 d,为保证兽药安全使用、消费者身体健康与食品安全,建议盐酸多西环素注射液在猪的休药期为42 d。  相似文献   

3.
(目的)研究盐酸多西环素片按说明书给药后在猪体内的残留消除规律并确定休药期。(方法)将多西环素片以5 mg/kg体重口服给药,间隔24 h,连续给药5次。最后一次给药之后分别在第0日(12 h)、1日、3日、6日和8日时间点采集猪的肌肉、肝脏、肾脏和脂肪,采用建立并验证的HPLC-VWD法测定猪不同组织中多西环素的含量。(结果)方法学考察结果表明,在0.05-5 μg/mL添加范围内的线性方程和相关系数为Y=0.044x-0.414,R2=0.999。不同组织中的盐酸多西环素的平均回收率在60.32%~116.80%。(结论)为保证兽药使用安全、食品安全与人民健康,建议按照休药期计算结果确定盐酸多西环素片在猪体内的休药期为7日。  相似文献   

4.
盐酸多西环素缓释注射液在猪体内的药物动力学   总被引:2,自引:0,他引:2  
健康猪6头,体质量(17.85±1.3)kg,按拉丁方设计进行单剂量静注、肌注盐酸多西环素注射液(普通制剂)和肌注盐酸多西环素缓释注射液,注射剂量按多西环素计均为20 mg/kg,比较盐酸多西环素缓释注射液和盐酸多西环素注射液在猪体内的药动学特征和生物利用度.用高效液相色谱法测定其血药浓度,试验所得的血药浓度-时间数据采用非房室模型统计矩原理分析处理.猪静注盐酸多西环素注射液的主要药物动力学参数为AUC(108.15±13,25)mg·h·L-1,MRT(5.56±1.08)h,CI(0.19±0.02)L·h-1·kg-1,Vd(ss)(1.04±0.09)L·kg-1,t1/2(4.07±0.65)h.猪肌注盐酸多西环素注射液和盐酸多西环素缓释注射液的主要药物动力学参数分别为MRT(15.18±2.13)h和(22.25±3.49)h;Tmax(1.135±0.44)h和(2.0±0.63)h;Cmax(3.32±0.33)mg·L-1和(3.10±0.29)mg·L-1;AUC(38.91±4.35)mg·h·L-1和(61.72±10.16)mg·h·L-1;F(36.66±7.88)%和(57.66±10.75)%.比较盐酸多西环素注射液和盐酸多西环素缓释注射液的主要药动学参数,除了Cmax以外,MRT、Tmax、AUC、F等主要参数均有显著的统计学意义(P<0.05).这表明盐酸多西环素缓释注射液肌注后吸收缓慢.消除半衰期延长,临床用药48 h给药1次仍能维持对常见病原菌的有效血药浓度.  相似文献   

5.
长效盐酸多西环素注射液在猪体内残留的消除规律   总被引:1,自引:0,他引:1  
在常规饲养条件下,对35头健康成年猪按10 mg/kg体质量的剂量肌肉注射10%长效盐酸多西环素注射液,给药2次,给药间隔时间为48 h。第2次给药后12 h及2、5、9、14、192、5 d分别屠宰5头猪,分别采取每头猪的肌肉、肝脏、肾脏、皮肤+脂肪和注射位点肌肉等5种组织,用高效液相色谱法进行残留量测定。结果表明:在第2次给药后19 d,多西环素在各组织均能检测到,且残留均低于残留限量。多西环素残留浓度大小顺序:注射部位(肾脏(肝脏(皮脂(肌肉。采用WT1.4软件制定的统计方法来处理猪组织中药物浓度-时间数据,以制定休药期。  相似文献   

6.
盐酸多西环素主要通过抑制细菌蛋白质的合成而起到抗菌作用,在兽医临床上使用有许多的优点,且对于敏感菌所致的畜禽细菌性疾病的治疗,效果显著,因此在肉鸡和蛋鸡养殖中存在着一定的需求,本研究使用高效液相色谱-串联质谱法对多西环素在蛋鸡用药后的肌肉及鸡蛋中的残留情况进行了测定,结果表明,多西环素在蛋鸡体内肌肉中分布迅速,消除较快...  相似文献   

7.
为研究自制盐酸多西环素注射液在猪体内的药代动力学-药效学,对10头健康猪单次肌内注射盐酸多西环素注射液,采用UPLC法测定血浆中药物浓度,利用药代动力学软件WinNonlin进行数据处理。结果显示,主要药代动力学参数:消除半衰期t1/2为(31.3±9.2)h,达峰时间Tmax为(0.80±0.7)h,峰浓度Cmax为(4132±2475)μg/L,药时曲线下面积AUC为(88378±88095)(μg/L)·h,平均滞留时间MRT为(20.5±2.5)h;PK/PD参数T〉MIC为24h,AUC/MIC〉50。试验表明该制剂以10mg/kg剂量肌内注射,给药间隔两天一次为宜。  相似文献   

8.
目的:探究盐酸多西环素治疗猪喘气病的效果。方法:将大地养猪场24头喘气病猪纳入研究实验,随机双盲将上述研究对象分为两组,对照组接受恩诺沙星治疗,治疗组接受盐酸多西环素治疗,比较两组实验对象治疗有效率、平均体重、日均增重等指标。结果:治疗组治疗有效率(91.7%)显著高于对照组(75.0%),差异具有统计学意义(P0.05);治疗组治疗后平均体重(39.9±6.7)kg显著高于对照组(34.0±6.0)kg,差异具有统计学意义(P0.05);治疗组日均增重(0.6±0.1)kg显著高于对照组(0.5±0.1)kg,差异具有统计学意义(P0.05)。结论:盐酸多西环素治疗猪喘气病的效果显著,能有效改善病猪临床体征,安全、可靠,值得广泛推广。  相似文献   

9.
旨在确定盐酸多西环素片按照给药说明给药后在羔羊体内的残留消除规律及休药期.将盐酸多西环素片根据体重以5 mg·kg-1内服给药,间隔24h,连续给药5次.在最后1次给药后,分别在第0(12小时)、1、2、3、5、7和9天时间点采集羔羊脂肪、肌肉、肝和肾,采用建立并验证的HPLC-VWD方法测定组织中多西环素的含量.结果...  相似文献   

10.
猪喘气病是一类慢性呼吸道接触性传染病,哺乳期的仔猪患病率较高。加强猪喘气病的防治,是降低发病率、提升养殖户养殖效益的有效方法。本文主要对盐酸多西环素长效注射液和恩诺沙星在该病治疗中的应用情况做出论述。  相似文献   

11.
研究诺氟沙星盐酸小檗碱在眼斑拟石首鱼体内的药代动力学和残留消除规律。在水温28±2℃、盐度28条件下,将诺氟沙星(Norfloxacin,NFLX)盐酸小檗碱(Berberine hydrochloride,BBH)预混剂按450 mg/kg的剂量口灌眼斑拟石首鱼后,其血浆、肌肉、肝脏和肾脏中的药物浓度采用HPLC-MS/MS测定,药时数据用DAS3.0软件分析。结果显示:单剂量口灌给药后,眼斑拟石首鱼血浆中NFLX和BBH的药时数据均符合一级吸收二室模型;血药达峰时间(tp)分别为1.20、1.79 h,血药浓度峰值(Cmax)分别为358.40、144.89μg/L,药时曲线下面积(AUC0-∞)分别为8252.80、6454.52μg/(L·h),消除半衰期(t1/2β)分别为43.26、27.30 h;NFLX和BBH在鱼体各组织中的分布较广,灌服给药后,肌肉、肝脏和肾脏中NFLX和BBH的Cmax分别为418.05、230.76μg/kg;1745.94、901.09μg/kg;1143.45、997.09μg/kg,tp分别为1.5和1.5 h、1.5和2.0 h、1.5和2.0 h,AUC0-∞分别为7682.00、5596.30μg/(kg·h);31236.90、19096.85μg/(kg·h);22593.93、37509.17μg/(kg·h);NFLX和BBH在眼斑拟石首鱼体内消除速度较慢,灌服给药后肌肉、肝脏和肾脏的t1/2β分别为33.41、61.81 h;20.44、15.04 h;30.28、23.43 h。按450 mg/kg剂量连续5 d口灌给药后,眼斑拟石首鱼血浆、肌肉、肝脏、肾脏中的NFLX和BBH残留消除半衰期(t1/2)分别为30.24、33.33 h;40.76、61.60 h;38.68、36.96 h;43.77、59.40 h。以10μg/kg为最高残留限量,肌肉作为食用靶组织,在本试验条件下,建议休药期不得少于12 d。  相似文献   

12.
13.
The distribution and some pharmacokinetic parameters of ivermectin in pigs   总被引:4,自引:0,他引:4  
Ivermectin was injected subcutaneously into five pigs at the usual dose rate of 300 µg/kg and found to distribute well to all tissues and body fluids which were sampled 24 h post-injection. Ivermectin was detected in the contents and mucus at all levels of the gastrointestinal tract. The drug was excreted in bile, with high concentrations of the drug in the intestines and faeces. High concentrations of ivermectin were measured in skin, ears and ear wax, suggesting that the drug should be effective in the treatment of ectoparasitic infestations, particularly ear mites. The high lipid solubility of the drug may explain the high concentrations found in ear wax and skin. Ivermectin was also detected in the body fluids and tissues of an untreated pig penned with the treated animals. Direct contact appeared to be necessary for transfer of ivermectin from the treated to the untreated pig but coprophagia or urine drinking is a possible explanation.The pharmacokinetics of ivermectin administered subcutaneously at a dose rate of 300 µg/kg to six pigs were studied. There was marked individual variation in the pharmacokinetics of ivermectin. In one pig the area under the plasma concentration-time curve was particularly high. This may reflect individual variation in uptake and excretion of the drug. The mean elimination half-life of the drug was 35.2 h, suggesting that the drug is cleared slowly from pigs with drug detectable in plasma for 6–10 days. This persistence should allow a short period of protection before re-infection with parasites.  相似文献   

14.
ObjectiveTo investigate the pharmacokinetics of carprofen after a single intravenous (IV) dose and multiple oral doses administered to pigs undergoing electroporation of the pancreas.Study designProspective experimental study.AnimalsA group of eight female pigs weighing 31.74 ± 2.24 kg (mean ± standard deviation).MethodsCarprofen 4 mg kg?1 was administered IV after placement of a central venous catheter during general anaesthesia with isoflurane. Blood samples were collected 30 seconds before and 5, 10, 20, 30 and 60 minutes and 2, 4, 6, 8, 12 and 24 hours after carprofen administration. Subsequently, the same dose of carprofen was administered orally, daily, for 6 consecutive days and blood collected at 36, 48, 60, 72, 96, 120, 144 and 168 hours after initial carprofen administration. Plasma was analysed using liquid chromatography with mass spectrometry. Standard pharmacokinetic parameters were calculated by compartmental analysis of plasma concentration–time curves. Data are presented as mean ± standard error.ResultsThe initial plasma concentration of IV carprofen was estimated at 54.57 ± 3.92 μg mL?1 and decreased to 8.26 ± 1.07 μg mL?1 24 hours later. The plasma elimination curve showed a bi-exponential decline: a rapid distribution phase with a distribution half-life of 0.21 ± 0.03 hours and a slower elimination phase with an elimination half-life of 17.31 ± 3.78 hours. The calculated pharmacokinetic parameters were as follows: the area under the plasma concentration–time curve was 357.3 ± 16.73 μg mL?1 hour, volume of distribution was 0.28 ± 0.07 L kg?1 and plasma clearance rate was 0.19 ± 0.009 mL minute?1 kg?1. The plasma concentration of carprofen, administered orally from days 2 to 7, varied from 9.03 ± 1.87 to 11.49 ± 2.15 μg mL?1.Conclusions and clinical relevanceCarprofen can be regarded as a long-acting non-steroidal anti-inflammatory drug in pigs.  相似文献   

15.
A bioavailability and pharmacokinetics study of doxycycline was carried out on 30 healthy ostriches after a single intravenous (IV), intramuscular (IM) and oral dose of 15 mg/kg body weight. The plasma doxycycline concentration was determined by HPLC/UV at 0 (pretreatment), 0.08, 0.25, 0.5 1, 2, 4, 6, 8, 12, 24 and 48 h after administration. The plasma concentration-time curves were examined using non-compartmental methods based on the statistical moment theory for only the higher dose. After IV administration, the elimination half-life (t1/2β), mean residence time (MRT), volume of distribution at the steady-state (Vss), volume of distribution (Vdarea) and total body clearance (ClB) were 7.67 ± 0.62 h, 6.68 ± 0.86 h, 0.86 ± 0.16 l/kg, 1.67 ± 0.52 l/kg and 2.51 ± 0.63 ml/min/kg, respectively. After IM and oral dosing, the mean peak plasma concentrations (Cmax) were 1.34 ± 0.33 and 0.30 ± 0.04 µg/ml, respectively, which were achieved at a post-administration time (tmax) of 0.75 ± 0.18, 3.03 ± 0.48 h, respectively. The t1/2β, Vdarea and ClB after IM administration were 25.02 ± 3.98 h, 23.99 ± 3.4 l/kg and 12.14 ± 1.71 ml/min/kg, respectively and 19.25 ± 2.53 h, 61.49 ± 7 l/kg and 40.19 ± 3.79 ml/min/kg after oral administration, respectively. The absolute bioavailability (F) of doxycycline was 5.03 and 17.52% after oral and IM administration, respectively. These results show that the dose data from other animals particularly mammals cannot be extrapolated to ostriches. Therefore, based on these results along with those reported in the literature, further studies on the pharmacokinetic/pharmacodynamic, in vitro minimum inhibitory concentration values and clinical applications of doxycycline in ostriches are required.  相似文献   

16.
那西肽对生长肥育猪的作用效果及其在产品中的残留   总被引:7,自引:0,他引:7  
选择32头30kg左右健康的二元杂交生长猪, 随机分为4组, 每组8头, 个体饲喂, 4组均喂相同的基础饲粮, 但添加不同饲用抗生素,分别是低、高剂量那西肽(10mg/kg、50mg/kg)、盐霉素(30mg/kg) 和对照。猪体重达90kg时, 分别按0、3和7d停药后屠宰, 检测那西肽在样品各器官中的残留量。结果表明: 那西肽可显著提高生长肥育猪的采食量和日增重(P<0 05), 但是对料重比的改善作用不明显; 当检测灵敏度为0 01mg/kg时, 在低、高剂量那西肽组猪的心脏、肝脏、肾脏和背最长肌中, 均未检出那西肽。  相似文献   

17.
Half-life and apparent specific volume of distribution of hexobarbital, sulphadimidine and chloramphenicol were investigated in newborn, 1, 3, 5 and 8 weeks old pigs. Hexobarbital sleeping time and plasma concentration of hexobarbital at recovery were measured in the same age groups. The half-life of hexobarbital and chloramphenicol was long in newborn pigs but decreased fast during the first week after birth. From 1 to 8 weeks after birth the decrease was less pronounced. The half-life of sulphadimidine increased during the first 3 weeks of life, but in 1 and 3 weeks old pigs the amount of N4-acetylated sulphadimidine in plasma at 200 min. after the injection was higher than in the newborn pigs.The apparent specific volume of distribution of hexobarbital, sulphadimidine and chloramphenicol was changed in different ways from birth to 8 weeks of age.The hexobarbital sleeping time was very long in the newborn pigs and decreased until 3 weeks of age. The concentration of hexobarbital in plasma at recovery was unchanged from birth to 8 weeks of age.The concentration of chloramphenicol metabolites in plasma 100 min. after the injection increased very fast during the 8 weeks of observation. The concentration of N4-acetylated sulphadimidine in plasma at 200 min. after the injection increased from birth to 1 week of age, then it decreased.The data are stressing that the neonatal pig is a convenient model for pharmacokinetic testing of drugs used as pharmacotherapeutics in neonatal life.  相似文献   

18.
This study aimed to develop one novel meloxicam (MEL) oil suspension for sustained-release and compare the pharmacokinetic characteristics of it with MEL conventional formulation in pigs after a single intramuscular administration. Six healthy pigs were used for the study by a crossover design in two periods with a withdrawal interval of 14 days. Plasma concentrations of MEL were measured by ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS). Pharmacokinetic parameters were calculated by noncompartmental methods. The difference was statistically significant (p < .05) between MEL oil suspension and MEL conventional formulation in pharmacokinetic parameters of mean residence time (6.16 ± 4.04) hr versus (2.66 ± 0.55) hr, peak plasma concentration (Cmax) (0.82 ± 0.12) µg/ml versus (1.12 ± 0.22) µg/ml, time needed to reach Cmax (Tmax) (2.33 ± 0.82) hr versus (0.59 ± 0.18) hr, and terminal elimination half-life (t1/2λz) (3.74 ± 2.66) hr versus (1.55 ± 0.37) hr. The mean area under the concentration–time curve (AUC0–∝) of MEL oil suspension and MEL conventional formulation was 5.35 and 3.43 hr µg/ml, respectively, with a relative bioavailability of 155.98%. Results of the present study demonstrated that the MEL oil suspension could prolong the effective time of drugs in blood, thereby reducing the frequency of administration on a course of treatment. Therefore, the novel MEL oil suspension seems to be of great value in veterinary clinical application.  相似文献   

19.
ObjectiveTo investigate the pharmacokinetics, efficacy and convulsive dose of articaine hydrochloride in goat kids.Study designExperimental prospective study.AnimalsA total of 18 (n = 6 animals per experiment) male Saanen goat kids (2–4 weeks old).MethodsThe study consisted of three experiments. The first determined the pharmacokinetics of articaine following intravenous administration of articaine hydrochloride (8 mg kg–1). The second experiment investigated the anaesthetic efficacy and pharmacokinetics following cornual nerve block using 1.5% articaine hydrochloride. Anaesthesia of horn buds was evaluated using the response to pinprick test. Non-compartmental analysis was used. The final experiment determined the convulsive dose of articaine and its corresponding plasma concentration following intravenous infusion of articaine hydrochloride (4 mg kg–1 minute–1). Data are shown as mean ± standard deviation.ResultsThe mean terminal half-life (t1/2λz), mean volume of distribution at steady state (Vdss) and mean plasma clearance (CL) of articaine following intravenous administration were 0.66 hour, 3.81 L kg–1 and 5.33 L hour–1 kg–1, respectively. After cornual nerve block, the mean maximum plasma concentration of articaine was 587 ng mL–1 at 0.22 hour and its mean t1/2λz was 1.26 hours. Anaesthesia of horn buds was observed within 4 minutes following cornual nerve block. The mean dose required to produce convulsions was 16.24 mg kg–1 and mean convulsive plasma concentrations of articaine and articainic acid were 9905 and 1517 ng mL–1, respectively.ConclusionsIntravenous administration of 8 mg kg–1 of articaine hydrochloride did not cause any adverse effects. Pharmacokinetic data suggest that articaine was rapidly eliminated and cleared. Cornual nerve block using 1.5% articaine hydrochloride alleviated the response to the acute nociceptive stimulus during disbudding.Clinical relevanceArticaine hydrochloride appears to be a safe and effective local anaesthetic for disbudding in goat kids.  相似文献   

20.
The pharmacokinetics of doxycycline was investigated in lactating sheep and lambs after oral administration at a dose of 10 mg/kg. Concentrations in plasma and milk were assayed with HPLC-PDA analysis. Doxycycline penetrates into the milk, and levels (0.38 ± 0.21 μg/ml) were found 0.5 hr after the treatment. The results suggest that the lambs can be exposed to doxycycline by suckling milk from their treated mothers. Population pharmacokinetic analysis showed a positive relationship between age, which reflects the stage of development of rumen function, and clearance. Possible explanations for the observed differences include the undeveloped rumen in lambs, the differences in the feed and liver function as evidenced by the blood biochemical parameters aspartate aminotransferase (AST) and alanine aminotransferase (ALT), which were significantly lower in lambs (62.67 ± 27.83 U/L and 8.50 ± 6.80 U/L) than in sheep (114.33 ± 20.77 U/L and 18.00 ± 3.16 U/L).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号