首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of experiments was conducted in the laboratory and greenhouse of the Subtropical Field Science Center, University of the Ryukyus, Japan, from April to October 2015 to assess the allelopathic potential of 50 indigenous Bangladeshi rice varieties by using the donor–receiver bioassay, equal compartment agar method (ECAM), plant residue extract method and pot culture method. Lettuce (Lactuca sativa L.), cress (Lepidium sativum L.), radish (Raphanus sativus L.), barnyard grass (Echinochloa crus‐galli L. Beauv.) and jungle rice (Echinochloa colona L.) were used as the test plants. The highest inhibition effect was given by Boterswar, while the stimulating effect was given by Kartikbalam and Panbira in the donor–receiver bioassay and ECAM tests. Boterswar, Goria, Biron and Kartiksail were selected as the highest allelopathic‐potential varieties by the donor–receiver bioassay and ECAM. In the methanol extract test, Boterswar gave the strongest inhibitory effect on both barnyard grass and jungle rice, while Kartiksail gave the highest inhibitory effect on the jungle rice shoot. The growth parameters and total dry matter of barnyard grass in the greenhouse pot experiment were significantly reduced as a result of the application of aqueous extracts of the selected rice varieties, which was similar to the results of the laboratory experiments. The varieties of Boterswar, Goria, Biron and Kartiksail were selected as the most allelopathic among the 50 indigenous Bangladeshi rice varieties. These rice varieties could be used for the isolation and identification of allelochemicals and to further develop new varieties that are tolerant to weeds.  相似文献   

2.
Barnyardgrass (Echinochloa crus‐galli) proliferation seriously threatens rice production worldwide. Whole‐plant bioassays were conducted in order to test the sensitivity to penoxsulam of 52 barnyardgrass populations and the resistance of six penoxsulam‐resistant populations to 12 other herbicides that are commonly used in rice fields. Among the 48 populations that had escaped penoxsulam control in the rice fields, 8.3% showed a very high level of resistance, 58.3% showed a high level of resistance and 10.4% showed a moderate level of resistance. Multiple resistance was confirmed in all six penoxsulam‐resistant populations that were tested further. They exhibited at least a moderate level of resistance; that is, to 6–10 of the total of 13 herbicides that was tested. Most of the six penoxsulam‐resistant populations showed at least a moderate level of resistance to bispyribac‐sodium, quinclorac, metamifop, cyhalofop‐butyl and oxadiazon, three populations held at least a moderate level of resistance to oxyfluorfen and pretilachlor, two populations also held at least a moderate level of resistance to pyrazosulfuron‐ethyl, pyribenzoxim and fenoxaprop‐P‐ethyl, but the resistance indices of the six populations to pendimethalin were all low. This study has confirmed resistance to pretilachlor and oxadiazon in weeds for the first time.  相似文献   

3.
BACKGROUND: In spite of increasing knowledge of allelopathic rice as an efficient component involved in paddy weed management, relatively little is known about its reproduction in response to competing weeds. Reproduction allocation of individual allelopathic rice plants in relation to monoculture and mixed culture with competing barnyardgrass in a paddy field was studied, along with analyses of soil nutrients and microbial communities to understand the potential mechanism. RESULTS: At a 1:1 barnyardgrass and rice mixture proportion identified from a replacement series study, biomass, grain yield and major parameters of individual allelopathic rice plants at the mature stage were increased by competing barnyardgrass. There was no difference in allelopathic rice root‐zone soil ammonium N and Olsen P between monoculture and mixed culture. However, mixed culture altered soil microbial biomass C and communities. When mixed with barnyardgrass, allelopathic rice root zone had an 87% increase in soil microbial biomass C. Phospholipid fatty acid (PLFA) profiling indicated that the signature lipid biomarkers of bacteria, actinobacteria and fungi were affected by mixed culture. Principal component analysis clearly identified differences in the composition of PLFA in different soil samples. CONCLUSION: Allelopathic rice specific changes in soil microbial communities may generate a positive feedback on its own growth and reproduction in the presence of competing barnyardgrass in a given paddy system. Copyright © 2012 Society of Chemical Industry  相似文献   

4.
BACKGROUND: Gene transfer from weeds to crops could produce weedy individuals that might impact upon the evolutionary dynamics of weedy populations, the persistence of escaped genes in agroecosystems and approaches to weed management and containment of transgenic crops. The present aim was to quantify the gene flowrate from weedy red rice to cultivated rice, and evaluate the morphology, phenology and fecundity of resulting hybrids. Field experiments were conducted at Stuttgart and Rohwer, Arkansas, USA. Twelve red rice accessions and an imazethapyr‐resistant rice (Imi‐R; Clearfield?) were used. RESULTS: Hybrids between Imi‐R rice × red rice were 138–150 cm tall and flowered 1–5 days later than the rice parent, regardless of the red rice parent. Hybrids produced 20–50% more seed than the rice parent, but had equivalent seed production to the majority of red rice parents. Seeds of all hybrids were red, pubescent and dehisced at maturity. For the majority of hybrids, seed germination was higher than that of the red rice parent. The gene flowrate from red rice to rice was 0.01–0.2% and differed by red rice biotype. The hybrids had higher fecundity and potential competitive ability than the rice parent, and in some cases also the red rice parent. CONCLUSIONS: Red rice plants are vectors of gene flow back to cultivated rice and other weedy populations. The progeny of red rice hybrids from cultivated rice mother plants have higher chances of persistence than those from red rice mother plants. Gene flow mitigation strategies should consider this scenario. Copyright © 2009 Society of Chemical Industry  相似文献   

5.
6.
杂草稻造成栽培稻产量的损失主要表现为叶片间的相互竞争。争夺空间、争夺光照矛盾突出。杂草稻主茎叶片多于栽培稻,最大叶片长于栽培稻,最大叶片宽于栽培稻,叶片披散,形似杂交稻叶。如果在667 m2旱直播稻田接种2.5 kg粳性杂草稻籽,栽培稻上部全被杂草稻稻叶覆盖,栽培稻植株瘦黄、弱小,茎、蘖逐步退化消亡,造成基本绝产。  相似文献   

7.
丙草胺防治直播稻田杂草稻的技术研究   总被引:2,自引:0,他引:2  
为了探寻对栽培稻安全的杂草稻防除技术,采用整株测定法研究了丙草胺对杂草稻的毒力及解草啶减轻丙草胺对栽培稻药害的应用技术,并通过田间试验检验了这一技术的安全性。结果表明:丙草胺在450g/hm2时,可显著抑制杂草稻和栽培稻的生长;采用30mg/L解草啶浸种48h,可显著减轻丙草胺对栽培稻的药害,随着丙草胺施药量的增加,解草啶的保护作用逐渐减弱。田间试验结果说明:用30mg/L解草啶浸种栽培稻48h,丙草胺的施药剂量在450~675g/hm2时对栽培稻安全;当丙草胺剂量为900g/hm2时,栽培稻产量显著下降。  相似文献   

8.
杂草稻研究现状及利用展望   总被引:1,自引:0,他引:1  
王黎明  陈勇 《植物保护》2009,35(5):14-17
杂草稻作为一种稻田伴生杂草,严重影响了水稻的产量和稻米品质。尤其是近年来随着直播稻的推广和机械化程度的提高,杂草稻的危害有加重的趋势。同时,杂草稻的抗逆性非常强,与水稻的亲缘关系也非常近,是一个极有利用价值的天然基因库,是水稻育种的宝贵资源。本文就杂草稻的生物学特性、分布、起源、分类、防除等方面的研究做了概述,并对其利用前景进行展望,提出了有待进一步深入研究的问题。  相似文献   

9.
Precise hill‐direct‐seeded rice, which is both cost‐ and labor‐saving, is based on the direct seeding of rice by using a precision rice hill‐drop drilling machine. Weedy rice (Oryza sativa f. spontanea), also known as “red rice”, is a major weed in precise hill‐direct‐seeded rice, causing an ≤80% yield loss and a reduction in grain quality. The aim of this study was to evaluate the control efficiency of weedy rice by pretilachlor (a pre‐emergence herbicide) and fenclorim (a safener) and their safety for precise hill‐direct‐seeded rice in two consecutive years. The amount of rice seed germination was accelerated by soaking the seeds in the safener at 0.67 g ai L?1 for 1 h before sowing. The pre‐emergence pretilachlor treatments were applied 2 days after sowing cultured rice. The inhibition of the shoot fresh weight of the cultured rice was reduced by 3.3, 6.4 and 7.4% with 450, 900 and 1350 g ai ha?1 of pretilachlor at 32 days after sowing (DAS) and that of the root fresh weight was reduced by 2.6, 4.9 and 8.1%, respectively. With fenclorim and pretilachlor in a precise hill‐direct‐seeded rice field in 2010 and 2011, the weedy rice control efficiency at 32 DAS was reduced by 100 and 98.0%, respectively. The pre‐emergence pretilachlor treatments that were applied at 2 DAS were much more efficient in the weedy rice control and less inhibitory to the cultured rice growth. The rice yield was increased by 26.1–26.7% in the mechanical precise hill‐direct‐seeded rice, relative to the manual‐seeding rice, with the application of fenclorim and pretilachlor.  相似文献   

10.
11.
Weedy rice (Oryza spp.) is a notorious weed in direct-seeding paddy fields. Because it has anatomical and physiological traits similar to those of cultivated rice, no selective herbicide is effective in controlling weedy rice growing among conventional rice cultivars. Imidazolinone (IMI)-resistant rice lines JD372 and JJ818 have been planted with imazamox to control weedy rice in Jiangsu and Shanghai, China. Whole-plant dose–response analysis showed that imazamox exhibited high efficacy against three populations of weedy rice. The ED90 of weedy rice populations FN-5, GY-8, and HY-3 were 46.87, 61.43, and 52.17 g a.i. ha−1, respectively, close to the recommended field dose (50 g a.i. ha−1) of imazamox. Conversely, the ED10 values of JD372 and JJ818 were slightly lower than 50 g a.i. ha−1. These findings indicate that imazamox can control weedy rice production in JD372 and JJ818 fields. The acetolactate synthase (ALS) sensitivity of JD372 in vitro was 1714.89-fold lower to imazamox than was that of FN-5. ALS gene sequencing revealed a Ser653Asn point mutation—a common mutation that confers resistance to IMI herbicides in JD372. In addition, higher ALS expression levels in JD372 were found at 24 and 72 h after imazamox treatment. ALS overexpression might partially compensate for the ALS activity of JD372 that was suppressed by imazamox.  相似文献   

12.
Oryza sativa (weedy red rice), the same species as cultivated rice, is a serious problem in rice production worldwide. Seed dormancy contributes to its persistence. We determined the effect of germination temperature and after‐ripening period on germination capacity (GC) of red rice seeds from Arkansas rice fields in three production zones. We also determined the gene diversity (GD) of dormancy‐linked loci among selected populations. The germination behaviour was evaluated at three temperatures (1°C, 15°C and 35°C) and four after‐ripening periods (0, 30, 60 and 90 days) in two independent experiments. Germination response to temperature and after‐ripening time differed among and within populations in each production zone. Overall, populations from the Delta and Grand Prairie were more dormant than those from White River. Regardless of ecotype or production zone, incubation at 35°C (mean GC = 84–100%) favoured the germination of seeds after‐ripened for 60 days. Germination of these seeds was most variable at suboptimal temperature (15°C), with mean GC ranging from 44 to 97%; at 1°C, none of the seeds germinated. Primary dormancy was released in the majority of populations after 90 days of after‐ripening. Blackhull populations generally had lower mean GC than strawhull populations, regardless of temperature, and required longer after‐ripening time to release dormancy. They also showed a higher inter‐ and intrapopulation variation in germination and after‐ripening than strawhulls and had the highest gene diversity (GD = 0.55–0.58) among test populations. Non‐dormant strawhulls were most distant (D = 0.63) from dormant blackhulls. Ecotype influenced genotypic clustering more than the dormancy trait.  相似文献   

13.
BACKGROUND: Studies of hybrid fitness, of which agronomic performance may be an indicator, can help in evaluating the potential for introgression of a transgene from a transgenic crop to wild relatives. The objective of this study was to assess the agronomic performance of reciprocal hybrids between two transgenic glufosinate‐resistant rice lines, Y0003 and 99‐t, and two weedy rice accessions, WR1 and WR2, in the greenhouse. RESULTS: F1 hybrids displayed heterosis in height, flag leaf area and number of spikelets per panicle. The agronomic performance of F1 between WR1 and Y0003 was not affected by crossing direction. The tiller and panicle numbers of F1 individuals were higher than their F2 counterparts. However, these traits did not change significantly from the F2 to the F3 generation or in hybrids with weedy rice as maternal or paternal plants. For all hybrids, the in vitro germination rates of fresh pollen were similar and significantly lower than those of their parents, seed sets were similar to or of lower value than those of weedy rice parents and seed shattering characteristics were partially suppressed, but the survival of hybrids over winter in the field was similar to that of weedy rice parents. All F1, F2 and F3 hybrids had similar composite agronomic performance to weedy rice parents. CONCLUSION: There was no significant decrease in the composite agronomic performance of any of the hybrids compared with weedy rice. This implies that gene flow from transgenic cultivated rice to weedy rice could occur under natural conditions. Copyright © 2011 Society of Chemical Industry  相似文献   

14.
15.
Abstract

Two morphological variants of Echinochloa crus‐galli were collected from rice fields of an area in Greece where rice has been grown for over a decade and growers have recently been complaining about reduced effectiveness of propanil. Seedling response of the two variants to propanil was compared with that of E. crus‐galli collected from vegetable fields in another area where rice has never been grown. Initial contact toxicity of propanil was similar in all collections. Growth inhibition thereafter was clearly different, resulting in death of the E. crus‐galli from vegetables but not of the E. crus‐galli from rice. The latter could overcome initial toxicity and resume growth at 8 kg/ha of propanil, whereas the former was killed at 2–4 kg/ha. Prevalence of E. crus‐galli forms of higher tolerance resulting from selection through rice husbandry and/or repeated use of propanil may account for the reduced effectiveness of propanil in the area of intensive rice growing.  相似文献   

16.
中国北方杂草稻幼苗对干旱胁迫的生理响应   总被引:2,自引:0,他引:2  
以杂草稻heb07-2、wr04-6及巴西陆稻IAPAR9为研究材料,采用人工气候箱培养幼苗,利用20%聚乙二醇6000(PEG-6000)模拟干旱条件,研究了杂草稻及巴西陆稻幼苗叶片和根系生理特性标的变化。结果表明:干旱胁迫下,杂草稻heb07-2幼苗的叶片与根系具有较高的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活力;杂草稻heb07-2的可溶性糖含量、可溶性蛋白含量高于其它材料。杂草稻heb07-2细胞膜系统保持完整,膜质过氧化程度小于其它材料,表明干旱胁迫对杂草稻heb07-2伤害较小,具有较强苗期抗旱性。  相似文献   

17.
Echinochloa crus‐galli (L.) Beauv. var. formosensis Ohwi (2n = 6x = 54, AABBCC genomes) and Echinochloa oryzicola (Vasinger) Vasinger (2n = 4x = 36, AABB) are major paddy weeds in East and Southeast Asia. E. oryzicola has been generally considered to be a paternal genome donor of E. crus‐galli s. l., which includes E. crus‐galli var. formosensis based on cpDNA sequences. Thus, molecular characterization using polymerase chain reaction‐restriction fragment length polymorphism analysis of cpDNA has been proposed as a reliable method for discriminating between the two species. In this study, we report that four accessions of E. crus‐galli var. formosensis from Okinawa, Nagasaki, Shizuoka and Tokyo had similar cpDNA sequences to E. oryzicola and had been misidentified as E. oryzicola using molecular methods. In addition, our results demonstrated that these accessions likely inherited their chloroplast genomes from E. oryzicola and not from an anonymous diploid species during polyploidization. Our findings provide new insights into the evolution of E. crus‐galli s. l. and suggest that identification using the cpDNA molecular method alone is not an appropriate approach to differentiate E. crus‐galli var. formosensis and E. oryzicola.  相似文献   

18.
19.
20.
杂草稻苗期强竞争性的生理机制   总被引:2,自引:1,他引:2  
为揭示杂草稻比栽培稻苗期生长迅速的机制,随机选择均匀分布于江苏省6个市的杂草稻样品和典型粳稻品种日本晴(Nipponbare),比较了其连续7 d的种子萌发率以及在14、21、28、35 d的幼苗株高变化和光合作用原初反应指标之间的差异。结果表明,江苏省6个市的杂草稻样品均比栽培稻提早2 d萌发,且均未表现出休眠性。杂草稻苗期株高在第35天时,均显著高于栽培稻。在播种后14、21、28和35 d,杂草稻光合作用原初反应的7个指标均高于栽培稻,说明杂草稻苗期具有强光合性能。研究表明,江苏省杂草稻比栽培稻早2 d萌发,至少播种后14 d苗期光合效能开始高于栽培稻,播种后28 d左右株高开始显著高于栽培稻。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号