首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple model of depletion by a grazing ruminant was tested at high depletion levels and for different sizes of feeding station. The model divides an initially uniform sward profile into grazing horizons, dependent on bite depth, and assumes a constant within-horizon bite area.
Two grazing experiments were conducted using cattle. Uniform areas of oats and alfalfa herbage were grazed individually to a high level of depletion (≈150 bites m–2). Feeding station areas were 0·16, 0·30 and 0·53 m2. Initial sward heights were 10 and 20 cm in oats and 20 cm in alfalfa. Size of area did not significantly affect the observed number of bites removed per square metre, the mean residual herbage height or mass, or the proportion of each grazing horizon depleted, derived from the frequency distribution of residual heights. The mean residual height for all treatment combinations could be explained by assuming a 'take half' rule for mean bite depth, and allowing for the derived proportion of the area of each grazing horizon depleted.
A simple bite placement simulator was used to generate, for a single grazing horizon and for a given maximum potential area of a bite, the expected relationship among mean effective area of a bite, the proportion of the area of the horizon grazed and the number of bites removed per unit area. The simulator mimics a loosely systematic grazing style. The observed bite numbers and the derived proportions of grazing horizon depleted can be reconciled if the within-horizon mean effective bite area is not constant but declines as predicted by the bite placement simulator. The implications for the shape of the gain function within a feeding station are discussed.  相似文献   

2.
A model that describes the utilization of herbage by cattle in a rotational grazing system is presented. The model considers swards as being structured into two phases: a long phase associated with old dung patches, and a short phase. Both phases are treated as consisting of a series of horizontal strata corresponding in depth to a bite depth. The sward is divided into feeding stations consisting of either the long or the short phase. In each, only the surface stratum is available for grazing at each time step. At any time step, the individuals of a herd of cattle, distributed at random, encounter the entire range of strata. The rate of intake of each member of the herd depends on the intake properties of the stratum that it has encountered. The number of cattle that encounter each stratum type is variable so that the mean intake per member of the herd is the weighted mean. The core feature of the model is the simulation of the change over time in the frequency distribution of exposed stratum types and the distribution of grazing across this range of strata. The members of the herd are assumed to select a feeding station based on preference for leafiness of the encountered stata and the phase. The decision to graze or not is based on the comparison between the current vs. the previous feeding station. Model parameter values were based on published data. The proportion of leaf and bulk density of a phase or the strata were determined from an analysis of a sample of sward profiles. Using bite dimension, bite weight, biting rate, search time, feeding station area and selective behaviour, it was possible to simulate sward depletion that is very similar to the observed data from grazed paddocks in experiments in south‐east Ireland. The model of herbage utilization adequately described the changes in intake and sward structure during grazing and it was concluded that it was suitable for use as part of a simulation of a grazing system.  相似文献   

3.
The effect of sward structure of four temperate grass species on the bite mass of cattle was evaluated. Micro‐swards (79 cm × 47 cm; approximately the area of a feeding station) of orchardgrass (Dactylis glomerata L.), quackgrass [Elymus repens (L.) Gould], meadow fescue [Schedonorus pratensis (Huds.) P. Beauv] and reed canarygrass (Phalaris arundinacea L.) were offered to Holstein dairy cows in short‐term grazing sessions in 2006 and 2007 using a 4 × 4 Latin square design. Cows were allowed to take fifty bites in each session. Bite mass was calculated by dividing the adjusted change in weight of the micro‐sward by the number of bites. Sward surface height, bulk density and distribution of herbage dry matter (DM) in the canopy were measured pre‐ and post‐grazing. Sward structure differed among the grass species within years but bite mass (on a fresh or DM basis) was not affected. Higher surface heights and bulk densities in 2006 compared with 2007 (averaged across grass species) resulted in greater bite masses of DM in 2006. Values were 25·7 cm vs. 17·0 cm for surface height; 1219 g m?3 vs. 926 g m?3 for bulk density; and 1·05 g DM bite?1 vs. 0·50 g DM bite?1 for 2006 and 2007 respectively. Within the context of this study, differences between years in bite mass, associated with greater changes in sward structure, were more important than differences among grass species.  相似文献   

4.
The impact of manipulating ruminal fill (RF) on intake rate of herbage and grazing dynamics was measured with three rumen‐cannulated beef heifers grazing Bermudagrass pastures individually. The treatments compared were removal of proportions of rumen contents of 0 (treatment RF0), 0·33 (treatment RF33), 0·66 (treatment RF66) and 1·00 (treatment RF100). Treatments were randomly applied in a 3 × 4 Youden‐square design. The rumens were emptied before and after planned grazing sessions (30 min) to set up the treatments, and to estimate intake rate and bite mass, respectively. Measurements were made of bite rate, bites per feeding station, feeding stations per minute, intake per feeding station, time per feeding station, eating and searching step rates and times. Apparent bite area and area grazed per feeding station were calculated. Ruminal fill affected short‐term intake rate and changed grazing dynamics. As RF increased, step rates, searching times, bite mass, apparent bite area, bites per feeding station, area grazed per feeding station, time per feeding station and intake per feeding station decreased (P < 0·01) while step times, eating step rates and bite depth increased (P < 0·01). The results of the present study indicate that RF is an important factor governing the intake characteristics and behaviour of grazing beef heifers.  相似文献   

5.
A framework for managing rotationally grazed pastures for dairy cattle which enables the cows’ energy and protein requirements to be met while simultaneously limiting the amount of N excreted in order to reduce N losses is described. The first objective is achieved by ensuring that lamina mass and the N concentration of herbage do not limit herbage intake or feeding value. The second objective is achieved by limiting N fertilizer supply or increasing the interval between defoliations to reduce the N concentration of herbage. Lower and upper thresholds for the N concentration of herbage and lamina mass were estimated from published data. The method is illustrated using two vegetative regrowths (beginning and end of spring) in a cutting experiment with two fertilizer treatments, 0 or 120 kg N ha?1 (?N and +N), and early or late cutting. Decreasing N supply led to a reduction in grazing management flexibility, i.e. the defoliation interval ranges which were compatible with the required sward characteristics (minimum lamina mass and N concentration of lamina) for herbage intake and to meet the protein requirements of dairy cows. Aiming for the upper threshold N concentration of herbage increased the minimum interval between defoliations only for the +N treatments. Nevertheless, grazing management flexibility remained the highest for the +N treatments.  相似文献   

6.
GrazeIn is a model for predicting herbage intake and milk production of grazing dairy cows. The objectives of this paper are to test its robustness according to a planned arrangement of grazing and feeding scenarios using a simulation procedure, and to investigate the precision of the predictions from an external validation procedure with independent data. Simulations show that the predicted effects of herbage allowance, herbage mass, herbage digestibility, concentrate supplementation, forage supplementation and daily time at pasture are consistent with current knowledge. The external validation of GrazeIn is investigated from a large dataset of twenty experiments representing 206 grazing herds, from five research centres within Western Europe. On average, mean actual and predicted values are 14·4 and 14·2 kg DM d?1 for herbage intake and 22·7 and 24·7 kg d?1 for milk production, respectively. The overall precision of the predictions, estimated by the mean prediction error, are 16% (i.e. 2·3 kg DM d?1) and 14% (i.e. 3·1 kg d?1) for herbage intake and milk production, respectively. It is concluded that the GrazeIn model is able to predict variations in herbage intake and milk production of grazing dairy cows in a realistic manner over a wide range of grazing management practices, rendering it suitable as a basis for decision support systems.  相似文献   

7.
The main objective of this study was to determine to what extent grazing pressure and timing modulate the seasonal progression of herbage quality in hilly Mediterranean grassland systems. The study was conducted during six consecutive years between 2003 and 2008 at the Karei Deshe experimental farm, in eastern Galilee, Israel, dominated by rich hemicryptophytic grassland. Treatments included two different grazing intensities, heavy and moderate, with 1·1 and 0·55 cows ha?1, respectively, and management that included a continuous and a seasonal stocking system that was divided at both intensities into early and late grazing. Herbage samples were analysed for digestibility, crude protein, neutral detergent fibre and acid detergent fibre contents. Significant differences in herbage quality were found between seasons and years. Herbage quality was significantly higher in paddocks grazed continuously or early in the season. Herbage quality increased with increasing grazing intensity as younger herbage and continued re‐growth were maintained during the green season. The greater difference between herbage qualities was found at the peak of the growing season. The significant differences found in herbage quality emphasize the importance of the decision‐making process aimed at improving cattle grazing management in Mediterranean rangelands and its consequences for the sustainability of the system.  相似文献   

8.
Decision support tools to help dairy farmers gain confidence in grazing management need to be able to predict performance of grazing animals with easy‐to‐obtain variables on farm. This paper, the second of a series of three, describes the GrazeIn model predicting herbage intake for grazing dairy cows. The model of voluntary intake described in the first paper is adapted to grazing situations taking account of sward characteristics and grazing management, which can potentially affect intake compared to indoor feeding. Rotational and continuously stocked grazing systems are considered separately. Specific effects of grazing management on intake were quantified from an extensive literature review, including the effect of daily herbage allowance and pre‐grazing herbage mass in rotational grazing systems, sward surface height in continuously stocked grazing systems, and daily time at pasture in both grazing systems. The model, based on iterative procedures, estimates many interactions between cows, supplements, sward characteristics and grazing management. The sensitivity of the prediction of herbage intake to sward and management characteristics, as well as the robustness of the simulations and an external validation of the GrazeIn model with an independent data set, is presented in a third paper.  相似文献   

9.
Reduction of grazing intensity and the use of traditional instead of commercial breeds has frequently been recommended to meet biodiversity and production goals in sustainable grazing systems in Europe. To test the impact of such practices across a range of contrasting grassland types, integrated measurements of foraging behaviour, agronomic production and botanical, structural and invertebrate biodiversity were made over three years on four sites in the UK, Germany, France and Italy. The sites in the UK and Germany were mesotrophic grassland with high productivity and low to moderate initial levels of plant diversity, and were grazed by cattle. The French site was a semi‐natural, species‐rich grassland grazed by cattle. The Italian site contained a wider range in plant diversity, from species‐rich to mesotrophic grassland, and was grazed by sheep. The treatments were: MC, moderate grazing intensity with a commercial breed – this was designed to utilize herbage growth for optimum livestock production; LC, lenient grazing intensity with a commercial breed – this was designed to increase biodiversity by not fully utilizing herbage growth; and LT, lenient grazing intensity with a traditional breed – this was also designed to increase biodiversity. Neither fertilizers nor pesticides were applied. The nutritive value of the herbage and the performance of the livestock were measured. Mean stocking rates were proportionately 0·30–0·40 lower and mean sward heights and herbage mass on offer were 0·30–0·50 higher on the LC and LT treatments compared with the MC treatment. The proportion of live and dead material, and leaves and stems in the herbage, its chemical composition and nutritive value were little affected by the treatments. Individual livestock performance, measured as liveweight gain, showed no consistent response to treatment. In Germany, performance on the MC treatment was slightly lower than on the LC and LT treatments but no such difference was found on the sites in the other countries. Livestock breed did not have a strong effect on livestock performance. In the UK and France the traditional breeds had a lower performance but this was not the case in Germany or Italy. Livestock performance per ha of the LC and LT treatments was up to 0·40 lower than of the MC treatment. It is concluded that biodiversity‐targeted extensive grazing systems have potential to be integrated into intensive livestock production systems because the individual livestock performance reaches a similar level compared to a moderate grazing intensity. Traditional breeds did not have a production advantage over commercial breeds on extensively managed pastures.  相似文献   

10.
Bite depth was measured in four experiments in which grazing cows were offered, individually, patches of perennial ryegrass swards, typically 0·9 m × 0·9 m, of contrasting structural composition within linear sequences of eighteen to twenty‐seven patches. Bite depths were analysed in relation to the independent effects of pseudo‐stem height, re‐growth depth, stubble height and sward height. In vegetative swards comprising predominantly leaf, with re‐growth and stubble strata of vegetative origin, bite depth was strongly related to sward height. However, when the leaf–stem contrast between strata increased, bite depth was strongly correlated with the depth of re‐growth. Cows were observed to penetrate into a mature stubble stratum with increasing sward height, indicating that stubble height is only a partial regulator of bite depth. In an experiment designed to investigate the independent effects of pseudo‐stem and sward height, pseudo‐stem was only a partial regulator of bite depth. Evidence to support the concept that bite depth is a fixed proportion of sward height across swards of different structure was inconsistent, but there was evidence of a maximum bite depth of 0·70 of sward height. There were also indications that bite depth was conditioned by the number of bites removed. This suggested that cows initially took a cautious approach to grazing, building up bite depth with feedback over the first 20–30 bites in a new patch. Behaviour at the current patch was not affected by the characteristics of the preceding or succeeding patch in sequence.  相似文献   

11.
Four intermediate‐heading perennial ryegrass (Lolium perenne L.) varieties, which in previous studies had been associated with high‐ or low‐intake characteristics when swards containing them had been continuously stocked with sheep, were sown as monocultures. They were rotationally grazed, using 1‐d paddocks, with core groups of four yearling Simmental × Holstein beef heifers in 2002 and 2003 and ingestive and ruminative behaviour, and sward factors, were measured. There were two diploid (Belramo and Glen) and one tetraploid (Rosalin) perennial ryegrass varieties and one tetraploid hybrid (Lolium × boucheanum Kunth) (AberExcel) variety. Intake rate (IR) was significantly higher in August 2003 for heifers grazing Glen than those grazing Belramo [27·5 vs. 20·6 g dry matter (DM) min?1; P = 0·019], but there were no significant differences between varieties in two other measurement periods. This is in contrast to previous results with sheep when IR were significantly higher for Glen than Belramo and for AberExcel than Rosalin. Total jaw movement rates during grazing were significantly higher for heifers on the tetraploid swards than those on the diploid swards (87·7 vs. 83·6 jaw movements min?1; P = 0·023) in September 2002. Ruminating time was significantly lower for heifers on the tetraploid swards than those on the diploid swards (453 vs. 519 min 24 h?1; P = 0·012) in July 2002. Digestibility of grass snips was significantly higher on the tetraploid than the diploid swards [697 vs. 680 g digestible organic matter (DOM) kg?1 DM; P = 0·042] in September 2003 and, within diploids, was significantly higher for Glen than Belramo (696 vs. 663 g DOM kg?1 DM; P = 0·014). There were significant differences in sheath tube and leaf lengths and in the population density of tillers between and within ploidies, which might have been expected to have influenced intake characteristics, but this was not generally found under rotational grazing with cattle. In order to separate the effects of defoliation interval from those of grazing style of the different ruminant species, it is suggested that grass variety evaluations using continuously stocked cattle swards are required.  相似文献   

12.
To define the best grazing management strategy, it is important to assess animals' responses to variations in the structure and composition of tropical forages. This 2-year study evaluated animal response to Marandu palisadegrass (Urochloa brizantha)-calopo (Calopogonium mucunoides) mixed pastures managed under rotational grazing. Treatments consisted of three defoliation frequencies defined by rest periods interrupted at 90% (90LI), 95% (95LI) and 100% (100LI) of photosynthetically active radiation interception (LI). The stubble post-grazing height target was 15 cm. Statistical difference was declared at p < .10. The 100LI had lowest crude protein (CP) and in vitro dry matter digestibility (IVDDM) for the Marandu palisadegrass (p = <.001 both) and calopo (p = .003 and p = .067, respectively). Also, the OM digestibility decreased 7.0% in the 100LI condition than 90LI and 95LI treatment (p = .005). There was no difference in forage, grass, and legume intakes between the treatments (p > .10). The 100LI treatment decreased CP intake from grass in 33.3% (p = <.001) compared to other treatments. Greatest production of microbial N (p = .093) occurred with the 90LI treatment. The CP/digestible organic matter (DOM) ratio, urinary N excretion and retained N were lowest in the 100LI treatment (p = <.001, p = .007 and p = .014, respectively). The recommendation for grazing between 90 and 95% of LI is recommended because of greater CP intake and N utilization for the animals and improved the nutritive value of Marandu palisadegrass and calopo mixed pastures.  相似文献   

13.
The objective of this study, which was part of a larger grazing‐systems experiment, was to investigate the cumulative impact of three levels of grazing intensity on sward production, utilization and structural characteristics. Pastures were grazed by rotational stocking with Holstein–Friesian dairy cows from 10 February to 18 November 2009. Target post‐grazing heights were 4·5 to 5 cm (high; H), 4 to 4·5 cm (intermediate; I) and 3·5 to 4 cm (low; L). Detailed sward measurement were undertaken on 0·08 of each farmlet area. There were no significant treatment differences in herbage accumulated or in herbage harvested [mean 11·3 and 11·2 t dry matter (DM) ha?1 respectively]. Above the 3·5 cm horizon, H, I and L swards had 0·56, 0·62 and 0·67 of DM as leaf and 0·30, 0·23 and 0·21 of DM as stem respectively. As grazing severity increased, tiller density of grass species other than perennial ryegrass (PRG) decreased (from 3,350 to 2,780 and to 1771 tillers m?2 for H, I and L paddocks respectively) and the rejected area decreased (from 0·27 to 0·20 and to 0·10 for H, I and L paddocks respectively). These results indicate the importance of grazing management practice on sward structure and quality and endorse the concept of increased grazing severity as a strategy to maintain high‐quality grass throughout the grazing season. The findings are presented in the context of the need for intensive dairy production systems to provide greater quantities of high‐quality pasture over an extended grazing season, in response to policy changes with the abolition of EU milk quotas.  相似文献   

14.
A comparative study of grazing behaviour, herbage intake and milk production of three strains of Holstein‐Friesian dairy cow was conducted using three grass‐based feeding systems over two years. The three strains of Holstein‐Friesian cows were: high production North American (HP), high durability North American (HD) and New Zealand (NZ). The three grass‐based feeding systems were: high grass allowance (MP), high concentrate (HC) and high stocking rate (HS). In each year seventy‐two pluriparous cows, divided equally between strains of Holstein‐Friesian and feeding systems were used. Strain of Holstein‐Friesian cow and feeding system had significant effects on grazing behaviour, dry matter (DM) intake and milk production. The NZ strain had the longest grazing time while the HD strain had the shortest. The grazing time of cows in the HC system was shorter than those in both the HS and MP systems. There was a significant strain of Holstein‐Friesian cow by feeding system interaction for DM intake of grass herbage and milk production. The NZ strain had the highest substitution rate with the HP strain having the lowest. Hence, response in milk production to concentrate was much greater with the HP than the NZ strain. Reduction in milk yield as a consequence of a higher stocking rate (MP vs. HS system) was, however, greater for the HP and HD strains compared with the NZ strain. The results suggest that differences in grazing behaviour are important in influencing DM intake and milk production.  相似文献   

15.
The effect of the structure of a tropical pasture, based on Dichanthium spp., on the ingestive behaviour, in vivo digestibility of the diet and herbage intake by eight Creole tethered heifers was studied. Two levels of nitrogen fertilizer (0 and 50 kg ha?1) were applied to plots after each grazing cycle and there were 28 d between each of the three grazing cycles. Four heifers grazed individual subplots daily on each plot for 14 d in each of the successive grazing cycles. Simultaneous measurements of bite depth, bite mass, biting rate, short‐term intake rate and daily grazing time were made in two 4‐d periods at the end of each 14‐d period. The in vivo organic matter digestibility (OMD) and daily herbage organic matter intake (OMI, expressed on a kg LW0·75 basis) were also measured at the same times. Relationships among pasture characteristics and ingestive behaviour were similar to those reported in other short‐term studies: pasture height was highly correlated with bite depth, bite mass and biting rate (r = 0·91, r =0·79 and r = ?0·68, respectively, P < 0·001). Pasture variables had lower correlations with grazing time and short‐term intake rate than with bite depth, bite mass and biting rate. Pasture structure was more highly correlated with OMD than OMI: leaf mass and length and also the extended tiller length were highly correlated with OMD (r = 0·77, r = 0·76 and r = 0·72, respectively, P < 0·001) whereas the crude protein concentration of the herbage was correlated with OMI and digestible OMI (r = 0·50 and r = 0·69, respectively, P < 0·001). Ingestive behaviour variables, as well as OMD, were correlated more with pasture characteristics than was OMI.  相似文献   

16.
Patch selection by grazing dairy cows in response to simultaneous variation in combinations of sward structural characteristics was examined in three experiments in which four mature dairy cows were offered a choice of patches (typically 0.9 m × 0.9 m) of perennial ryegrass (Lolium perenne) presented in a linear arrangement. Treatments involved combinations of variations in sward height, stubble height and/or depth of regrowth, prepared by preliminary cutting treatments. They were arranged in balanced sets of four to nine treatments, which were arranged in linear sequences of eighteen to twenty‐seven patches. Within experiments, sequences were balanced across replicate sets of patches, which were grazed separately by individual cows. The number of bites removed and the residence time for each patch were highly correlated in all three experiments, and the results are reported using number of bites per patch as an estimator of foraging behaviour. In the first experiment, with vegetative swards, cows preferentially selected the tallest swards. When swards comprising reproductive stem were offered in Experiment 2, cows selectively grazed short‐stubble swards rather than tall‐stubble swards, although both offered a similar depth of regrowth. Cows did not exhibit preference for swards comprising the greatest quantity of leaf mass, indicating that the spatial distribution of plant components assumed greater importance. In the third experiment, the number of bites removed increased with increasing depth of regrowth, and was negatively correlated with sward height. The three patch‐appraisal cues investigated were broadly ranked in order of importance as (i) depth of regrowth, (ii) sward maturity and (iii) sward height. There was no evidence, at least at a short temporal scale, that patch behaviour was influenced by conditions in adjacent patches, suggesting that the cows assessed grazing opportunities on a patch‐by‐patch basis.  相似文献   

17.
The botanical composition, intake and digestibility of the diet consumed by mature lactating and non‐lactating cows grazing a native white grass (Cortaderia pilosa) plant community in the Falkland Islands was measured in four periods between September 1998 and June 1999. Five lactating and five non‐lactating cows were used in the summer, autumn and winter; five non‐lactating cows were used in the spring. Different cows were used in each period. Plant cuticle patterns in the faeces of cattle were used, in conjunction with the patterns of concentrations of n‐alkanes in the faeces, to estimate the botanical composition of the diet and predicted concentrations of C32‐ and C33‐alkanes in the herbage allowed herbage intake and digestibility to be estimated using the n‐alkane technique. White grass, sedges and rushes comprised 0·78, 0·64 and 0·63 of the diet in autumn, winter and spring respectively. Fine grasses, smooth‐stalked meadow grass (Poa pratensis L.), annual meadow grass (Poa annua L.), bent grass (Agrostis capillaris L.), native fescue (Festuca magellanica Lam.), Yorkshire fog (Holcus lanatus L.), wavy hair grass [Deschampsia flexuosa (L) Trin.] and early hair grass (Aira praecox L.), were consumed at the expense of sedges and rushes in summer and this coincided with the period of greatest estimated metabolizable energy and crude protein intakes by cows. Lactating cows suffered substantial liveweight loss during autumn and winter and this reflected the low quality of the diet consumed. Phosphorus intakes were insufficient and there was an estimated deficiency of vitamin D in the winter and early spring in cattle that were grazed with the experimental cows. The nutrient restrictions imposed on cattle by the low quality of native pasture during autumn and winter are likely to impair the reproductive potential of breeding females and methods should be investigated to improve the diet consumed by cows during these critical periods if cattle systems are to become sustainable in the Falkland Islands.  相似文献   

18.
This study assessed the use of pasture attributes to control daily intake and diet quality during progressive defoliation on pastures of Axonopus catarinensis. Three consecutive 12‐day grazing treatments of progressive defoliation were conducted with Brahman cross‐steers. Daily forage intake and defoliation dynamics were assessed using a pasture‐based method. The treatments differed in initial sward height (33, 44 and 61 cm) and herbage mass (1030, 1740 and 2240 kg ha?1). The post‐grazing residual sward height, at which forage intake decreased, appeared to increase with the initial sward height (12·3, 14·6 and 15·5 cm). Steers grazed up to four distinctive grazing strata in all treatments. The depth and herbage mass content of the top grazing stratum were at least five times higher than the lower grazing strata in all treatments. This explains why forage intake decreased when the top grazing stratum was removed in approximately 93% of the pasture area in all treatments, equivalent to approximately 7% of the pasture area remaining ungrazed. We conclude that the residual ungrazed area of the pasture, rather than residual sward height, can be used to develop grazing management strategies to control forage intake and diet quality in a wide range of pasture conditions.  相似文献   

19.
The aim of this experiment was to study the effect of feeding level (FL) on the digestibility of unconserved forage obtained from two permanent grasslands cut at three different dates during the first cycle of growth. Forage was offered to Texel sheep (wethers), at maintenance level and at ad libitum level. Differences in voluntary intake (VI) between grasslands were also tested. Organic matter digestibility (OMD) measured at ad libitum level and at VI was 13% higher on harvested forage from grassland rich in forbs (GRF) than grassland rich in grasses (GRG) at early herbage growth stages, but these differences were no longer found at later maturity stages. In GRF, there were no differences for OMD, at either FL at the young growth stages, but at the end of the cycle the OMD obtained at ad libitum level (0·56) was higher than that at maintenance level (0·50). However, in GRG, at an early stage of forage maturity, OMD at ad libitum level (0·67) was lower than that at maintenance level (0·70), but this difference was no longer found at the end of the growth cycle. In conclusion, the effect of FL on the digestibility of unconserved forage from permanent grasslands depends on the type of grassland. These differences are mainly explained by the different botanical composition of the grassland types.  相似文献   

20.
The production performance of herbage‐fed animals is affected by herbage voluntary dry‐matter intake (VDMI) and organic matter digestibility. The objective of this study was to determine the effect of herbage mass (HM) on in vivo herbage voluntary intake and digestibility in sheep. The three HM treatments were as follows: 1,100 kg dry matter (DM)/ha (low, L), 2,300 kg DM/ha (medium, M) and 3,700 kg DM/ha (high, H). The study was a Latin square design, repeated on two occasions in 2012: 24 May to 20 July (summer) and 21 July to 5 October (autumn). Twelve Texel wether sheep (individually housed) were offered fresh cut perennial ryegrass herbage for ad libitum consumption. Using the total faecal collection method, the digestibility of dry matter, organic matter, neutral detergent fibre and acid detergent fibre was determined. In summer, L had a similar VDMI to M and both had a higher VDMI than H. In autumn, L had a higher VDMI than both M and H. For dry‐matter digestibility and organic matter digestibility, there was no significant difference between L and M, which were both higher than H. For every 1% increase in neutral detergent fibre digestibility, VDMI increased by 0.03 kg. In the zero‐grazing scenario examined, offering low (1,100 kg DM/ha) HM swards enabled animals to achieve high intakes of highly digestible herbage, which should ensure high animal production performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号