首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 227 毫秒
1.
Mediterranean ecosystems are characterized by large arid areas where the patchy distribution of trees offers little protection against harsh climate conditions for seedling establishment. Climate change is predicted to result in an increase in these arid regions, with pronounced effects on vegetation. Production of seedlings with developed ectomycorrhizas is a promising strategy for minimizing the initial transplant shock, thereby increasing plant survival and growth during the first, most critical years of a plantation. One important species in the Mediterranean basin is Quercus suber (cork oak), which occurs, together with other evergreen oak species, in an agro-silvo-pastoral system that represents an example of sustainable land use in Europe. In this study, a Pisolithus tinctorius isolate was used for ectomycorrhizal colonization of cork oak nursery seedlings, and the effects on aboveground plant growth and leaf structural and physiological parameters were investigated. Ectomycorrhizal development resulted in a significant increase in leaf area, dry weight, nitrogen content, and photosynthetic pigments, and mycorrhizal plants showed a higher photosynthetic capacity and water use efficiency. Nursery-inoculated plants established in the field showed increased survival and growth during the first year after transplant. These results indicate a potential for further enhancing the use of mycorrhizal inoculation as a cultivation practice in forest nurseries. Considering the difficulty of soil restoration under limiting environmental conditions, nursery inoculation with ectomycorrhizal fungi can be an important advantage for improving the quality of seedling stock and its performance after out-planting in the field, benefiting the regeneration of arid regions and the reintroduction of inocula of ectomycorrhizal fungi into these areas.  相似文献   

2.
The effects of root damage associated with Phytophthora cinnamomi on water relations, biomass accumulation, mineral nutrition and vulnerability to water deficit were investigated in pedunculate oak (Quercus robur), red oak (Quercus rubra) and holm oak (Quercus ilex) saplings over two years. Comparison was made with sweet chestnut (Castanea sativa), a susceptible species to infection by P. cinnamomi, and with a resistant hybrid chestnut (Castanea crenata × C. sativa). Trees were inoculated in 1998 and were subjected to water shortage in 1999. All inoculated sweet chestnuts died before the application of water shortage. Hybrid chestnut, pedunculate oak and red oak displayed low root susceptibility to P. cinnamomi. In these species, water relations, aerial growth and mineral nutrition were slightly affected by inoculation. By contrast, holm oak was the most susceptible oak species to P. cinnamomi as inoculated well‐watered trees displayed the highest root loss (67%) and a 10% mortality. Root loss was associated with a decrease in predawn leaf water potential, a 61% reduction in stomatal conductance, a 55% reduction in aerial biomass, a decrease in leaf carbon isotope discrimination and reduced leaf N and P contents in comparison with controls. In hybrid chestnut and pedunculate oak, water shortage resulted in a similar decrease of predawn leaf water potential, stomatal conductance and aerial biomass in inoculated and non‐inoculated trees. In red and holm oaks, soil volumetric water content of inoculated trees subjected to water shortage remained high. The effects observed in those trees were similar to those of inoculated well‐watered trees and were probably the result of root infection only.  相似文献   

3.
The pinewood nematode (PWN), Bursaphelenchus xylophilus, is the causal agent of pine wilt disease, an epidemic disease that has severely damaged pine forests in East Asia. The disease has spread to northern areas in Asia and parts of Europe. To prevent disease spread as the forefront of damage prevention, a better understanding of infection status is highly important. Not all infected trees show disease symptoms, and such asymptomatic PWN‐carrying trees are likely to be overlooked and can become a pathogen reservoir. To elucidate PWN infection status in asymptomatic trees, we performed PWN inspection of branches and trunks in 21 test trees in two different conditions: trees that had experienced PWN inoculation and those with suspected PWN infection that had experienced transient foliage discoloration. We detected PWNs in eight test trees (38%) and in 13 (1.5%) of a total of 843 samples. The difference in these percentages suggests that nematode inhabitation was highly localized within the trees, possibly owing to the restricted migration of PWNs. Our data demonstrated that trees that were once weakened but recovered their vigour can persist, as the asymptomatic carriers, in the forest. The implications for disease control are also discussed.  相似文献   

4.
The main objectives of this study were to determine the influence of several strains of ectomycorrhizal fungi on the growth of Acacia holosericea in a dry tropical environment and their short-term effect on indicators of ecosystem soil conditions such as biological soil properties (microbial biomass, mycorrhizal soil infectivity). Three fungal strains have been tested: Pisolithus albus IR100, P. albus COI024 and Scleroderma dictyosporum IR109. Ectomycorrhizal inoculation has significantly enhanced the growth (shoot and root biomass) of A. holosericea seedlings after 4 months culture in glasshouse conditions in a disinfected soil. In field conditions, the transplanting shock was less important for the ectomycorrhized trees. After 2 years, the inoculated trees had a better growth than that recorded in the control treatment. Ectomycorrhizal inoculation has significantly stimulated height, leave and wood biomass, root biomass of A. holosericea trees. Moreover, this fungal inoculation has significantly modified the leaf nutrient contents for P, N and phenols. Microbial biomass and mycorrhizal soil infectivity were also larger in the inoculated plots.Ectomycorrhizal inoculation could be of great relevance to improve the reafforestation process of degraded areas with legumes fast growing trees. This biological practice could also ameliorate soil characteristics such as microbial biomass or mycorrhizal soil infectivity.  相似文献   

5.
Three-year-old Alnus glutinosa (L.) Gaertn. (alder) saplings were single or double inoculated at the stem base with Phytophthora alni subsp. alni Brasier & S.A. Kirk under natural climatic conditions. Lesion formation on the bark showed a biphasic pattern of development, with extension occurring at a moderate rate in spring, and more rapidly during late summer. However, large variability was encountered in pathogen development within the population of infected saplings, ranging from high susceptibility to almost complete resistance. Infection resulted in severe growth retardation, and death within two years of inoculation in 75% of the saplings. During disease development, rates of transpiration and CO(2) uptake were significantly reduced. Consequently, minimum leaf water potentials were less negative in infected saplings than in control saplings. Surviving saplings matched control trees in photosynthetic capacity, transpiration rate and water potential during the second year of infection. Leaf starch concentration of infected saplings was significantly higher than in control saplings, possibly indicating that the destruction of bark tissue by the pathogen impaired phloem transport from leaves to roots.  相似文献   

6.
The pinewood nematode (PWN) Bursaphelenchus xylophilus is an invasive pathogen that was introduced from North America to Asian countries and Portugal and is devastating native pine forests. Some native European and Asian Bursaphelenchus nematodes also have weak to moderate pathogenicity to native pine species. To evaluate the potential risk of native Bursaphelenchus species, we inoculated ten Japanese Bursaphelenchus species into native pine species (the dominant forest species) in Japan, and evaluated their pathogenicity using mortality and tracheal tissue damage as indices. Inoculation was conducted on August 3, 2007, and the symptoms were observed every 2 weeks until February 1, 2008. None of the inoculated trees, excluding the pathogenic PWN inoculated control, showed external disease symptoms; however, four species [a less pathogenic PWN isolate, B. luxuriosae, Bursaphelenchus sp. NK215 (undescribed), and NK224 (undescribed)] caused tracheal tissue damage in inoculated seedlings and showed weak pathogenicity. Therefore, we conclude that there are some potentially pathogenic native species of nematodes distributed in Japan. Interestingly, two of these weakly pathogenic species, B. luxuriosae and NK215, are not associated with Pinaceae trees, suggesting that nematode pathogenicity may be a pre-adaptive character. More experimental studies under different conditions are necessary to accurately evaluate the potential risk of these pathogens.  相似文献   

7.
To confirm the pathogenicity of a blue stain fungus,Ceratocystis piceae (Münch) Bakshi to the Japanese red pine (Pinus densiflora Sieb. et Zucc.), the responses of healthy young pine trees and stressed trees which were girdled by the half-circumferential girdling technique were investigated by the fungal inoculation test. Although neither of the pine trees inoculated withC. piceae in the non-girdled treatment nor the controls died, mortality of the trees girdled and inoculated withC. piceae was 28.6%. In the pine trees inoculated withC. piceae, the mean area of the necrotic lesion of the sapwood was significantly larger than that of the controls, and the mean of the water pressure potential of the xylem decreased, regardless of the girdling treatment. TheC. piceae was reisolated from the wood pieces near the inoculation points on the inoculated trees, but not from the controls. These results suggest that under strongly stressed conditions, the Japanese red pine trees might have been killed by heavy infestations ofC. piceae carried by bark beetles. A part of this paper was presented at the 103rd Annual Meeting of the Japanese Forestry Society (1992).  相似文献   

8.
Dutch elm disease (DED) spread across Europe and North America in the 20th century killing most natural elm populations. Today, breeding programmes aim at identifying, propagating and studying elm clones resistant to DED. Here, we have compared the physiology and biochemistry of six genotypes of Ulmus minor of variable DED resistance. Leaf gas exchange, water potential, stem hydraulic conductivity and biochemical status were studied in 5‐year‐old trees of AB‐AM2.4, M‐DV2.3, M‐DV2 × M‐CC1.5 and M‐DV1 and 6‐year‐old trees of VA‐AP38 and BU‐FL7 before and after inoculation with Ophiostoma novo‐ulmi. Leaf water potential and net photosynthesis rates declined, while the percentage loss of hydraulic conductivity (PLC) increased after the inoculation in susceptible trees. By the 21st day, leaf predawn and midday water potential, stomatal conductance to water vapour and net photosynthesis rates were lower, and PLC was higher in trees of susceptible (S) genotypes inoculated with the pathogen than in control trees inoculated with water, whereas no significant treatment effect was observed on these variables in the resistant (R) genotypes. Fourier transform infrared spectroscopy analyses revealed a different biochemical profile for branches of R and S clones. R clones showed higher absorption peaks that could be assigned to phenolic compounds, saturated hydrocarbons, cellulose and hemicellulose than S clones. The differences were more marked at the end of the experiment than at the beginning, suggesting that R and S clones responded differently to the inevitable wounding from inoculation and repeated sampling over the experimental course. We hypothesize that a weak activation of the defence system in response to experimental wounding can contribute to the susceptibility of some genotypes to O. novo‐ulmi. In turn, the decline in shoot hydraulic conductivity and leaf carbon uptake caused by the infection further exacerbates tree susceptibility to the fungus.  相似文献   

9.
Ten 5‐year‐old Betula pendula clones were studied for their rust resistance in the field. The trees were treated by inoculating 10 leaves on a shoot with Melampsoridium betulinum urediniospore suspension or spraying the control leaves with water. The birch clones differed significantly in their resistance to M. betulinum leaf rust fungus and the clones also varied in their responses to the local rust strain and the inoculated rust strains. However, natural rust infections and inoculation treatment were positively correlated. The older leaves had fewer infections than the younger ones on the tip of the shoot in the control trees, but in the inoculation treatment no significant correlation was found between the leaf ages and rust infection. The factors behind the different leaf susceptibilities are discussed.  相似文献   

10.
Domec JC  Pruyn ML 《Tree physiology》2008,28(10):1493-1504
Effects of trunk girdling on seasonal patterns of xylem water status, water transport and woody tissue metabolic properties were investigated in ponderosa pine (Pinus ponderosa Dougl. ex P. Laws.) trees. At the onset of summer, there was a sharp decrease in stomatal conductance (g(s)) in girdled trees followed by a full recovery after the first major rainfall in September. Eliminating the root as a carbohydrate sink by girdling induced a rapid reversible reduction in g(s). Respiratory potential (a laboratory measure of tissue-level respiration) increased above the girdle (branches and upper trunk) and decreased below the girdle (lower trunk and roots) relative to control trees during the growing season, but the effect was reversed after the first major rainfall. The increase in branch respiratory potential induced by girdling suggests that the decrease in g(s) was caused by the accumulation of carbohydrates above the girdle, which is consistent with an observed increase in leaf mass per area in the girdled trees. Trunk girdling did not affect native xylem embolism or xylem conductivity. Both treated and control trunks experienced loss of xylem conductivity ranging from 10% in spring to 30% in summer. Girdling reduced xylem growth and sapwood to leaf area ratio, which in turn reduced branch leaf specific conductivity (LSC). The girdling-induced reductions in g(s) and transpiration were associated with a decrease in leaf hydraulic conductance. Two years after girdling, when root-to-shoot phloem continuity had been restored, girdled trees had a reduced density of new wood, which increased xylem conductivity and whole-tree LSC, but also vulnerability to embolism.  相似文献   

11.
The Japanese black pine (Pinus thunbergii) is highly susceptible to pine wilt disease caused by the pine wood nematode (PWN; Bursaphelenchus xylophilus). To cope with this disease, researchers and tree breeders selected PWN‐resistant individuals in a previous breeding program. In an attempt to understand the mechanisms of resistance in the Japanese black pine, we created four LongSAGE (serial analysis of gene expression) libraries. A total of 20 818 tags were studied, including 5194 tags from a PWN inoculated resistant pine, 5218 a non‐inoculated resistant pine, 5194 an inoculated non‐resistant pine, and 5212 a non‐inoculated non‐resistant pine. The analysis of the libraries indicated that 14 tag species were significantly up‐regulated (e.g., pathogenesis‐related proteins 2 and 4, osmotin, lipoxygenase, and chalcone synthase), and nine were down‐regulated (eukaryotic translation initiation factor SUI1, translationally controlled tumor protein, and xyloglucan endotransglycosylase) by the PWN inoculation in both the resistant and non‐resistant pines. On the other hand, 38 tag species were significantly expressed at a higher level only in the resistant pine (catalase, dienelactone hydrolase family protein) and 25 were expressed at a higher level in the non‐resistant pine (pathogenesis‐related proteins 1, 2, and 3, and leucoanthocyanidin dioxygenase). These differentially expressed genes are presumed to reflect some of the differences between the resistant and non‐resistant pines. Our results provide valuable information on the complex responses induced in the resistant and non‐resistant pine trees in response to PWN invasion.  相似文献   

12.
Abstract

Individual and interactive effects of simulated acidic rainfall and mycorrhizal inoculation on growth and nutrient and water relations of loblolly pine (Pinus taedaL.) and white oak (Quercus albaL.) grown in a loam soil were examined. Seedlings of each species inoculated with basidiospores of the ectomycorrhizal fungus Pisolithus tinctorius(Pers.) Coker and Couch, a known my-cobiont of both loblolly pine and white oak, and uninoculated control seedlings received two simulated rains per week of either pH 3.6, 4.2, or 4.8 for 26 weeks. Higher acidity rainfall reduced the growth but increased mycorrhizal colonization of loblolly pine, while both loblolly pine and white oak exposed to these rains exhibited greater foliar injury. Inoculation with P. tinctoriusincreased growth and reduced foliar injury of both species. Foliar concentrations of P, S, and Cu in loblolly pine and white oak, Ca in loblolly pine, and Fe and Zn in white oak decreased with increasing rain acidity while the Al concentration of both species increased. Higher rainfall acidity also reduced soil pH and Ca and Mg concentrations while increasing soil AI. Foliage of inoculated seedlings of both species had higher N and P concentrations and lower Al concentrations than control seedlings. Following the final rain applications, a drought cycle was simulated by withholding irrigation for two weeks during which seedling xylem pressure potential and soil water potential were measured. One day after cessation of irrigation, xylem pressure potential of loblolly pine that had received pH 3.6 rains was lower than that of other treatments. Thereafter, xylem pressure potential and soil water potential of the inoculated treatment decreased below those of the control treatment in both species. These results suggest that acid deposition is detrimental to juvenile loblolly pine and white oak, but the magnitude of this effect is less than the positive response to ectomycorrhizal inoculation.  相似文献   

13.
Girdling effects on fruitlet abscission, leaf chlorophyll, chlorophyll a fluorescence and carbohydrate concentration in various flowering and vegetative shoots were studied during natural fruit drop in two Citrus cultivars. Irrespective of shoot type, girdling delayed fruitlet abscission, but only fruitlets borne on leafy shoots had increased final fruit set. Chlorophyll a fluorescence analysis revealed differences in quantum yield efficiency of photosystem II of light adapted leaves (Phi(PSII)) among shoot types and in response to girdling. In young leaves of vegetative shoots, girdling decreased Phi(PSII), whereas Phi(PSII) increased from Day 30 after girdling in young leaves of leafy flowering shoots; however, Phi(PSII) did not change in mature leaves during fruit set in either control or girdled trees. Girdling altered leaf carbohydrate concentrations and the photosynthetic performance of the various shoot types. Our results indicate that, in Citrus, several carbohydrate-based regulatory mechanisms of photosynthesis coexist during carbohydrate accumulation brought about by girdling. It is concluded that the delay in fruitlet abscission and the increase in Phi(PSII )observed in girdled leafy flowering shoots are the mechanisms underlying the enhancement of fruit set after girdling.  相似文献   

14.
The distribution of pine wood nematodes (Bursaphelenchus xylophilus, PWNs) in Japanese black pine (Pinus thunbergii) tissues was investigated by staining with fluorescein isothiocyanate-conjugated wheat germ agglutinin. After PWNs were inoculated to current-year stems of pine seedlings, their distribution at about 5 cm below the inoculation site was confined only to cortical resin canals 1 day after inoculation, and then spread to other tissues, including resin canals of short branches. When PWNs were inoculated onto cross or tangentially cut surfaces of stem segments, maximal PWN migration speed was estimated to be faster through cortical resin canals and xylem axial resin canals vertically (>6.7 and <2.3 mm/h, respectively) than through cortical tissues both vertically and horizontally (<1.2 and <0.2 mm/h). To examine whether PWNs in cortical resin canals could invade surrounding tissues, segments in which PWNs resided only in cortical resin canals were prepared by removing the top portion 6 h after inoculation. Additional incubation of such segments caused extended PWN distribution to xylem axial resin canals and then to other tissues. A similar experiment with top portions of girdled segments removed 12 h after inoculation also showed extended PWN distribution from xylem axial resin canals and pith to cortical resin canals and then to other tissues. These results provided direct evidence that PWNs have the ability to migrate from cortical resin canals and xylem axial resin canals to other tissues.  相似文献   

15.
In a five-year-old Pinus radiata stand, trees were pruned to remove 50%, 40% or 25% of the crown and pruning stubs inoculated with Diplodia pinea. Infection occurred in 65–68% of the intensely pruned trees some of which also developed crown wilting and died, but in lightly pruned trees (25% crown removal) only 8% of the trees were infected and no mortality occurred. Pruning and inoculation every two weeks for a whole year cycle showed an infection peak in summer, but extremely low infection level during the rest of the year. A vertical gradient of resistance of infection was apparent along the stem with the basal part being extremely resistant, becoming more susceptible towards the top. Within limits infection also increased with increasing stub diameter.  相似文献   

16.
To better understand the effects of sugar accumulation on red color development of foliage during autumn, we compared carbohydrate concentration, anthocyanin expression and xylem pressure potential of foliage on girdled versus non-girled (control) branches of 12 mature, open-grown sugar maple (Acer saccharum Marsh.) trees. Half of the study trees were known to exhibit mostly yellow foliar coloration and half historically displayed red coloration. Leaves from both girdled and control branches were harvested at peak color expression (i.e., little or no chlorophyll present). Disruption of phloem export by girdling increased foliar sucrose, glucose and fructose concentrations regardless of historical tree color patterns. Branch girdling also increased foliar anthocyanin expression from 50.4 to 66.7% in historically red trees and from 11.7 to 54.2% in historically yellow trees, the latter representing about a fivefold increase compared with control branches. Correlation analyses indicated a strong and consistent relationship between foliar red coloration and sugar concentrations, particularly glucose and fructose, in both girdled and control branches. Measures of xylem pressure potentials confirmed that girdling was a phloem-specific treatment and had no effect on water transport to distal leaves. Results indicate that stem girdling increased foliar sugar concentrations and enhanced anthocyanin expression during autumn in sugar maple foliage. Native environmental stresses (e.g., low autumn temperatures) that reduce phloem transport may promote similar physiological outcomes.  相似文献   

17.
Migration of the pine wood nematode (PWN), Bursaphelenchus xylophilus, in susceptible and resistant pines was investigated at the tissue level. PWN was inoculated onto the top cross‐cut surface of 20‐cm stem cuttings of susceptible Pinus thunbergii and resistant pines (P. strobus, P. rigida and P. thunbergii of a resistant family Namikata‐(t)‐73 (half‐sib)). PWNs were mainly distributed in cortical resin canals of susceptible P. thunbergii down to 15 cm from the inoculated surface by 6 h after inoculation (HAI) and all tissues (including cortical and xylem resin canals) down to the bottom at 192 HAI. In P. strobus, P. rigida and P. thunbergii family Namikata‐(t)‐73 (half‐sib), PWN was distributed in cortical resin canals down to 5 cm by 6 HAI and down to the base at 192 HAI. However, the distribution of PWN in xylem resin canals of the resistant pines was restricted near inoculated surfaces down to 5 cm, even at 192 HAI. These results demonstrated that migration of PWN in resistant pines was slowed in cortical resin canals and restricted in xylem axial resin canals, features which may be associated with the resistance.  相似文献   

18.
Pine wilt disease is of major concern as it has destroyed pine forests in East Asia and Europe. Several studies have suggested that invasion by the pinewood nematode (PWN) Bursaphelenchus xylophilus, which causes this disease, evokes an excessive defence response in pine trees, resulting in tree death. However, few studies have quantitatively evaluated the correlation between PWN distribution and tree defence responses. Therefore, the present study aimed to quantify the number of PWNs and expression levels of putative pathogenesis‐related (PR) genes in different positions of Japanese black pine (Pinus thunbergii) seedlings over time. To quantify the number of PWNs in the seedlings, we used TaqMan quantitative real‐time PCR (qPCR) assay. During the early phase of infection, most PWNs were distributed around the inoculated sites, with only a small number being detected at distant sites, but the expression levels of PR genes were highly upregulated throughout the seedlings. Both the number of PWNs and expression levels of PR genes then increased drastically throughout the seedlings, all of which exhibited external symptoms. Thus, it appears that the rapid migration of PWNs induces a defence response throughout the seedling; however, this may not be effective in controlling these parasites, thereby ultimately leading to plant death.  相似文献   

19.
Selected tropical Acacia species are used extensively for short-rotation plantation forestry in many parts of Asia and, to a limited degree, in Australia. We explored leaf-level photosynthetic activity and leaf water potential (Ψleaf) of three field-grown Acacia tree species (aged between 7 and 18 months) in contrasting wet–dry tropical plantations in southern Vietnam and northern Australia. Light-saturated photosynthetic rate (A1500) declined throughout the morning and early afternoon in the dry season; in the wet season, levels remained high and relatively constant throughout most of the day. Maximum daily A1500 at 09:00 ranged from 22.2 μmol?m?2?s?1 in the wet to 10.4 μmol?m?2?s?1 in the dry season. At both locations, trees were able to extract soil water such that pre-dawn leaf water potential (Ψpd) remained>?1.5?MPa even at the end of the dry season. Stomatal conductance to water vapour (gs) did not respond to decreasing Ψleaf during the wet season but was sensitive to changes in Ψleaf in the dry season. Species comparisons of the relationships between A1500 and Ψleaf revealed different strategies to balance carbon uptake and water loss in a wet–dry environment. Acacia crassicarpa and A. mangium regulated Ψleaf to a greater extent than the A. mangium×A. auriculiformis hybrid such that ?Ψleaf (determined as Ψpd?midday Ψleaf) was unaffected by season. This result suggests that the hydraulic regulation of tree water status varies amongst young tropical Acacia species. From a management perspective, for Acacia species that tend to strongly regulate water loss in environments with an extended dry season, overall productivity at the end of a rotation may be less than for species that prioritise carbon gain.  相似文献   

20.
Trees of the family Dipterocarpaceae are the dominant trees in Southeast Asian tropical forests where they play an important ecological role and are also important commercially. An experiment was conducted to determine the effect of ectomycorrhizal fungi on the growth of dipterocarp species in peat soils. Seedlings of Shorea pinanga were inoculated with spores of two ectomycorrhizal fungi, Pisolithus arhizus and Scleroderma sp. were grown in pots containing sterilized peat soil for 7 months. The percentage of ectomycorrhizal colonization on S. pinanga exceeded 86%. Colonization of S. pinanga roots by ectomycorrhizal fungi resulted in increased shoot height, stem diameter, number of leaves, and shoot fresh and dry weight. Survival rates of S. pinanga were greater for inoculated seedlings than control seedlings. These results suggest that inoculation of ectomycorrhizal fungi can improve the early growth of S. pinanga grown in tropical forests and that this technique will accelerate the rehabilitation of degraded dipterocarp forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号