首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Teak (Tectona grandis L.f.) is widely planted in the world due to its high market demand, economic, ecological and social value. Its plantations have mostly been established and expanded into sites that are acidic to severely acidic in southern China. But, there are no available and specific evidence-based nutrient management techniques. To better recognize and understand the relationship between teak tree growth and nutrient content in the foliage and soil and establish nutrient norms are critical to optimally manage these young plantations. We studied the foliar nutrient and soil chemistry in 19 representative teak plantations aged 5–8 years. Regression analysis indicated that the mean annual increment of teak volume was linearly and positively correlated with foliar N, Ca, Fe and B concentrations, with soil base saturation percentage, available P and Zn concentrations, and negatively correlated with soil Al concentration. Only if the Ca and Mg contents in soil were enhanced, could the increase in soil base saturation percentage benefit teak growth. A revised classification of low-and high-yielding stands was established by using a sorting method of principal components over 6 foliar macro and 8 micro elements in a Diagnosis and Recommendation Integrated System (DRIS). Specific DRIS norms for teak plantations in acid soils were derived. The nutrient balance of N, P, K Ca, Mg, Zn, B with Fe or Al, Ca with Mg, and Fe with Al provided a key to promote the growth of teak in acid soils. Meanwhile, soil Zn was also found as a primary trace element that affected teak growth in this study.  相似文献   

2.
Acidic deposition in high-elevation forests in the Appalachian Mountains of the eastern United States has been implicated in the decline of red spruce (Picea rubens Sarg.). Elevated soil acidity may increase soil Al availability and toxicity to roots. Enhanced soil solution NO(3) (-) concentrations, resulting from precipitation inputs and enhanced soil organic matter mineralization, may exacerbate Al toxicity by increasing root Al uptake. We exposed red spruce seedlings to 350, 500, 800 or 1400 micro M NO(3) (-) and 0 or 200 micro M Al in a factorial design in sand-nutrient solution culture to test if increased NO(3) (-) concentrations enhance Al uptake and toxicity. In addition to significant reductions in seedling growth parameters resulting from Al exposure, we found significant interactions between NO(3) (-) and Al for seedling height growth rate, needle weight, shoot weight and root weight. Differences in these parameters between Al treatments became more pronounced as solution NO(3) (-) concentration increased and reflected an Al-mediated inhibition of seedling response to increasing NO(3) (-) concentration. Solution NO(3) (-) concentrations above 500 micro M induced root nitrate reductase (NR) activity, whereas shoot NR activity increased in response to NO(3) (-) up to 500 micro M and declined above that concentration. In contrast, exposure to Al depressed NR activity of roots but tended to stimulate needle NR activity. Foliar N concentrations increased in seedlings grown in cultures containing between 350 and 500 micro M NO(3) (-), with no change above 500 micro M. Increasing concentrations of NO(3) (-) depressed foliar P concentrations, with reductions being greatest in seedlings exposed to 1400 micro M NO(3) (-). Exposure to Al increased foliar Ca, K and Al concentrations, decreased foliar P concentrations, and inhibited increases in foliar Mg concentration in response to increasing NO(3) (-). The consistent interactions between NO(3) (-) and Al for growth, root NR activity and foliar Mg concentration were the result of an inhibition of seedling response to NO(3) (-) mediated by Al in solution, rather than enhanced Al toxicity resulting from growth in the presence of elevated NO(3) (-) concentrations.  相似文献   

3.
Cumming JR 《Tree physiology》1993,13(2):173-187
The association of ectomycorrhizal fungi with tree roots enhances the acquisition of phosphorus (P) from the soil. In addition to increasing the uptake of H(2)PO(4) (-) (P(i)), mycorrhizal fungi may increase the spectrum of P sources utilized by tree roots by mediating the dissolution of insoluble metallophosphate salts or the hydrolysis of organic P compounds. To investigate the role of ectomycorrhizal fungi in enhancing P acquisition by tree roots, pitch pine (Pinus rigida Mill.) seedlings were grown in sand culture with or without the ectomycorrhizal symbiont Pisolithus tinctorius Coker and Couch under various conditions of P limitation. Compared with nonmycorrhizal seedlings, seedlings inoculated with P. tinctorius exhibited a greater capacity to function under P limitation as evidenced by superior growth and the maintenance of normal foliar ion composition at low P(i) concentrations. Nonmycorrhizal seedlings subjected to P-limiting conditions exhibited depressed K and P and elevated Na concentrations in foliage. The association of P. tinctorius with pitch pine seedling roots maintained foliar K concentrations and prevented the accumulation of Na under P limitation. Nonmycorrhizal seedlings were unable to obtain P from either solid AlPO(4) or inositol hexaphosphate (IHP), whereas seedlings inoculated with P. tinctorius utilized AlPO(4), but not IHP as a P source. Root surface acid phosphatase (APase) activity was depressed in roots infected with the mycorrhizal symbiont and was negatively correlated with seedling growth on all P sources. Root APase activity was negatively correlated with foliar P concentrations in seedlings grown on P(i), but was not correlated with foliar P concentrations in seedlings cultured with AlPO(4) or IHP.  相似文献   

4.
Many teak plantations are established on acidic soils with low nutrient availability. There is also poor documentation of nutrient budgets for teak, therefore, a pot experiment with optimal hybrid regression design (Roquemore R311A) was implemented with calcium, boron and nitrogen treatments with teak seedlings (Tectona grandis L.f.) planted in acidic lateritic red soil substrate. Seedling growth, biomass production and root development, and soil pH, and exchangeable Ca and Al concentration were measured. Plant height, root collar diameter, biomass of leaves, stems and roots, root volume, taproot length, number of lateral roots of teak seedlings were significantly and positively correlated with soil exchangeable Ca, pH and Ca/Al molar ratio, and negatively correlated with exchangeable Al. All growth traits were significantly affected by calcium, nitrogen and their interaction, but B fertilizer and other interactions had insignificant effects. To effectively cultivate teak seedlings in acidic soil substrates, 1.68 g kg−1 quicklime (CaO) and 0.65 g kg−1 urea was suggested to be added to neutralize soil acidity, and enhance soil exchangeable Ca content and Ca/Al molar ratio. Urea should not be added without quicklime.  相似文献   

5.
Differences in sensitivity to soil conditions across tree species and developmental stage are important to predicting forest response to environmental change. This study was conducted to compare elemental concentrations in leaves, stems, and roots of (1) sugar maple (Acer saccharum Marsh.) seedlings vs. mature trees and (2) mature sugar maple vs. mature American beech (Fagus grandifolia Ehrh.) in two sites that differ in soil base saturation and pH. Both sites are located in Huntington Forest, NY, USA; one site (hereafter ‘H’) has higher soil pH and Ca, Mg, and Mn concentrations than the other site (hereafter ‘L’). Sugar maple growth at H (14.8 cm2 year−1 per tree) was much greater than at L (8.6 cm2 year−1 per tree), but the growth of beech was not different between the two sites. Leaves, roots, and stem wood of mature beech trees and sugar maple seedlings and mature trees were sampled for nutrient analysis. Foliar Ca, K, and Al concentrations were positively correlated with soil elements, but Mn concentrations were negatively correlated. Sugar maple differed more than beech between sites in foliar K and Mn concentrations. Root Mg and P concentrations reflected soil chemistry differences, in contrast to foliar concentrations of Mg and P, which were indistinguishable between the sites. In sugar maple, seedlings differed more than in mature trees in nutrient concentrations in roots, especially for Mg and Mn. Although beech was not as responsive to nutrient availability as sugar maple in foliar and root nutrient concentrations, Ca and Mg concentrations in beech wood were higher in H (52% higher for Ca and 68% higher for Mg), while sugar maple did not differ between sites. Sugar maple regeneration failure on acidic soils in the same region is consistent with our finding that sugar maple seedlings were very sensitive to nutrient availability. This sensitivity could ultimately contribute to the replacement of sugar maple by American beech in regions of low pH and base cations if base cation leaching by anthropogenic deposition and tree harvesting continues.  相似文献   

6.
It has been proposed that yellow-cedar (Callitropsis nootkatensis) decline is initiated by the freezing injury of roots when soils freeze during times of limited snowpack. To explain the unique susceptibility of yellow-cedar in contrast to co-occurring species, yellow-cedar roots would need to be less cold tolerant and/or more concentrated in upper soil horizons that are prone to freezing. We measured the root cold tolerance and used concentrations of foliar cations as an assay of rooting depth for five species in one forest in Ketchikan, Alaska. Species evaluated were yellow-cedar, western redcedar (Thuja plicata), western hemlock (Tsuga heterophylla), mountain hemlock (Tsuga mertensiana), and Sitka spruce (Picea sitchensis). Roots were collected in November 2007 and January, March and May 2008; foliage was collected in January 2008. Soil samples from surface and subsurface horizons were analyzed for available calcium (Ca) and aluminum (Al) to compare with foliar cation concentrations. Across all dates the sequence in hardiness from the least to most cold tolerant species was (1) yellow-cedar, (2) western redcedar, (3) western and mountain hemlock, and (4) Sitka spruce. Yellow-cedar and redcedar roots were less cold tolerant than roots of other species on all sample dates, and yellow-cedar roots were less cold tolerant than redcedar roots in January. Yellow-cedar roots were fully dehardened in March, whereas the roots of other species continued to deharden into May. Yellow-cedar roots exhibited the highest electrolyte leakage throughout the year, a pattern that suggests the species was continuously poised for physiological activity given suitable environmental conditions. Yellow-cedar and redcedar had higher foliar Ca and lower Al concentrations, and greater Ca:Al ratios than the other species. Yellow-cedar had higher foliar Ca and Ca:Al than redcedar. Soil measurements confirmed that the upper horizon contained more extractable Ca, less Al and higher Ca:Al than the lower horizon. Considering the distribution of Ca and Al in soils, we propose that concentrations of Ca and Al in yellow-cedar and redcedar foliage reflect a greater proportional rooting of these species in upper soil horizons compared to other species tested. Greater Ca and Ca:Al in the foliage of yellow-cedar suggests shallower rooting compared to redcedar, but broad similarities in foliar cation profiles for these species also highlight some overlap in rooting niche. Our data indicate that both limited root cold tolerance and shallow rooting likely contribute to the unique sensitivity of yellow-cedar to freezing injury and decline relative to sympatric conifers.  相似文献   

7.
Eight-week-old shortleaf pine seedlings (Pinus echinata Mill.) with and without ectomycorrhizae formed by Pisolithus tinctorius were treated for two to eight weeks with 25 microg borate ml(-1) solution applied either to the soil, or as a foliar spray, or in both ways. Control seedlings were fertilized only with modified Hoagland's solution containing 0.03 microg ml(-1) borate. Five sugars (pinitol, fructose, glucose, myoinositol and sucrose) were quantitated in both mycorrhizal and nonmycorrhizal roots by gas-liquid chromatography. Fertilization with boron increased the total carbohydrate content of mycorrhizal roots except in seedlings receiving foliar applications of boron. Foliar + soil fertilization yielded a 24% increase in total carbohydrates in mycorrhizal roots, whereas foliar fertilization alone decreased the total carbohydrate content. Carbohydrate content of nonmycorrhizal roots was significantly increased only by soil fertilization with boron. Individual sugars were affected less by boron fertilization in nonmycorrhizal roots than in ectomycorrhizal roots. However, significant increases in sugars in response to boron fertilization were observed in both ectomycorrhizal and nonmycorrhizal plants.  相似文献   

8.
Abstract

Pisolithus tinctorius(Pers.) Coker & Couch was evaluated as an ectomycorrhizal associate of sweet birch (Betula lentaL.). Sand culture and mine soil growth media were employed, and three fertilization treatments were imposed by application of differing Hoagland's nutrient solution #2 concentrations. The high fertilization treatment suppressed mycorrhizal formation by P. tinctoriusin both growth media, while the medium rather than the low treatment induced the most extensive colonization by this mycobiont. Seedlings with induced P. tinctoriusmycorrhization exhibited enhanced above— and below-ground growth according to shoot dimensions and dry weight and root weight and length. However, these responses were frequently absent with high fertilization, especially in the mine soil. Inoculated seedlings had higher foliar N, P, and K concentrations overall but lower Ca, Mg, and S concentrations than uninoculated seedlings. Those with P. tinctoriusalso had lower concentrations of several potentially phytotoxic trace elements, specifically Zn, B, Mo, and Al. Furthermore, xylem pressure and soil water potentials measured during a simulated drought episode indicated that water uptake was enhanced by these mycorrhizae. Again, however, the above physiological responses were often compromised by high fertilization. Collectively, these results indicate that P. tinctoriusis a viable mycobiont for the inoculation of sweet birch, and when substrate fertility is not excessive, can avail this host of physiological benefits that result in substantial growth enhancement.  相似文献   

9.
Growth and physiological performance of multipurpose tree species can be severely constrained by low phosphorus (P) availability in highly weathered soils. Limitations to plant growth are accentuated by seasonal dry periods. The overall objective of this study was to examine P fertilization and irrigation effects on survival, growth, biomass partitioning, foliar nutrients, intrinsic water-use efficiency (WUE) indexed by δ13C, Rhizobium nodulation, and carbohydrate content as an indicator of resprouting potential, of mimosa (Albizia julibrissin Durz.), a N2-fixing tree species being tested for browse in agroforestry practices in south-central USA. In a field experiment carried out during two growing seasons near Booneville, Arkansas, USA, mimosa had a strong growth response to irrigation. The trial was arranged in a split plot design with three replications with irrigation as main plot treatment and P as sub-plot treatment. Mean total plant aboveground biomass at the end of the second growing season was 9.8 and 44.1 g plant−1 for the rainfed treatment without and with 300 mm of irrigation water, respectively. Placed P fertilization increased mean total aboveground biomass from 19 g plant−1 for the 0-P treatment to 69 g plant−1 for the treatment with 90 kg P ha−1 year−1. Similarly, irrigation consistently increased stem basal diameter, total height, survival, root, stem, foliar and total aboveground biomass, and number of nodules per plant. Phosphorus fertilization increased basal diameter, and root and stem biomass in both irrigation treatments, survival and nodulation in the rainfed treatment, and foliar and total aboveground biomass in the rainfed +300 mm irrigation treatment. There was a decrease of foliar δ13C suggesting that WUE decreased with P fertilization. In a pot experiment, seedlings were subjected to a factorial combination of two irrigation treatments and six P levels in a randomized complete block design. Irrigation increased basal diameter, root, stem, foliar and total biomass, leaf area and nodulation, whereas P fertilization (i.e., levels from 0 to 3.68 g P kg−1 soil) had similar effect in all the above variables except foliar biomass. Foliar P concentration to obtain 90% of the maximum total plant biomass (critical level) was estimated at 0.157%. Total nonstructural and water soluble carbohydrate, and starch concentrations increased non-linearly with irrigation and P addition suggesting impaired re-growth potential after defoliation of seedlings with reduced water supply and at low soil P availability. Results of this study indicated strong limitations for growth and regrowth potential of mimosa on a highly weathered soil with very low P availability and seasonal water content shortages. Placed (i.e., near the plant base) application of P appeared to be a good strategy to fertilize perennial woody plants.  相似文献   

10.
Abstract

Individual and interactive effects of simulated acidic rainfall and mycorrhizal inoculation on growth and nutrient and water relations of loblolly pine (Pinus taedaL.) and white oak (Quercus albaL.) grown in a loam soil were examined. Seedlings of each species inoculated with basidiospores of the ectomycorrhizal fungus Pisolithus tinctorius(Pers.) Coker and Couch, a known my-cobiont of both loblolly pine and white oak, and uninoculated control seedlings received two simulated rains per week of either pH 3.6, 4.2, or 4.8 for 26 weeks. Higher acidity rainfall reduced the growth but increased mycorrhizal colonization of loblolly pine, while both loblolly pine and white oak exposed to these rains exhibited greater foliar injury. Inoculation with P. tinctoriusincreased growth and reduced foliar injury of both species. Foliar concentrations of P, S, and Cu in loblolly pine and white oak, Ca in loblolly pine, and Fe and Zn in white oak decreased with increasing rain acidity while the Al concentration of both species increased. Higher rainfall acidity also reduced soil pH and Ca and Mg concentrations while increasing soil AI. Foliage of inoculated seedlings of both species had higher N and P concentrations and lower Al concentrations than control seedlings. Following the final rain applications, a drought cycle was simulated by withholding irrigation for two weeks during which seedling xylem pressure potential and soil water potential were measured. One day after cessation of irrigation, xylem pressure potential of loblolly pine that had received pH 3.6 rains was lower than that of other treatments. Thereafter, xylem pressure potential and soil water potential of the inoculated treatment decreased below those of the control treatment in both species. These results suggest that acid deposition is detrimental to juvenile loblolly pine and white oak, but the magnitude of this effect is less than the positive response to ectomycorrhizal inoculation.  相似文献   

11.
Watanabe T  Osaki M 《Tree physiology》2002,22(11):785-792
Melastoma malabathricum L. (melastoma) is an Al-accumulating woody plant that grows in tropical Southeast Asia in acid soils with high aluminum (Al) concentrations and low nutrient concentrations. Because oxalate serves as a ligand for Al accumulation in melastoma leaves and citrate is the ligand associated with Al translocation from roots to shoots, we investigated the role of organic acids in the adaptation of melastoma to growth on these soils. Phosphorus starvation increased oxalate concentration in the rhizosphere, enabling melastoma to solubilize insoluble aluminum phosphate in the rhizosphere. Increased availability of P and Al in the rhizosphere enhanced growth. In the xylem sap, the concentration of citrate increased with increasing Al concentration. In contrast, the concentrations of malate, succinate and alpha-ketoglutarate in the xylem sap decreased with increasing Al concentration, suggesting that tricarboxylic acid cycle enzymes were affected by Al treatment.  相似文献   

12.
通过在温室条件下施加不同剂量的重过磷酸钙(0,50和100mg·kg-1P),对典型水铝英石土壤(Orthic Allophanic Soil)的土壤植物有效磷、磷素营养和伴生有金雀花(Cytisus scoparius)或黑麦草(Lolium multiflorum)的辐射松苗木生长变化情况进行了研究。结果表明,施加磷肥增强了辐射松根际和磷素匮乏土体的有效磷。与辐射松苗伴生的金雀花、黑麦草根际土壤有效磷也增加。辐射松新枝和老枝松针、茎和根系中磷含量随施加重过磷酸钙剂量的增加而增加;但是金雀花、黑麦草对辐射松苗磷素营养的影响依赖于土壤磷状态。未施肥处理下,与金雀花伴生的辐射松新枝和老村松针、茎和根系中磷含量要高于与黑麦草伴生的辐射松苗,而施肥处理下,结果相反。这可能与金雀花生长大量消耗土壤中有效磷有关。因为,在两个施肥剂量(50mg·kg-1P和100mg·kg-1P)上,与金雀花伴生的辐射松根际土壤中Bray-2磷含量始终低于与黑麦草伴生的辐射松根际土壤。此外,在施肥浓度100mg·kg-1下,与金雀花伴生的辐射松苗干特质量低于黑麦草伴生的辐射松。说明在中、高施肥水平,辐射松苗与黑麦草伴生生长好于与金雀花伴...  相似文献   

13.
Calcium (Ca) is an essential macronutrient in plants and is an important component of many cellular structures and physiological processes as well as overall forest function. Aluminum (Al) in soil solution can inhibit Ca uptake by plants and disrupt many Ca-dependent metabolic and physiological processes of plants. The ratio of Ca to Al in soil solution can be an important indicator of forest health, especially on acid soils. We used sequential chemical extractions (water, acetic acid and hydrochloric acid) to assess the chemical availability of Ca and Al in foliage from mature red spruce (Picea rubens Sarg.) trees growing under ambient environmental conditions. In plants deficient in Ca and with intermediate total foliar Ca concentration ([Ca]), Ca preferentially accrued in labile and physiologically available forms (water- and acetic acid-extractable). In plants with total foliar [Ca] above a "sufficiency" threshold, Ca also accrued in a chemically sequestered form with low solubility (HCl-extractable), suggesting that Ca sequestration is an inducible process in response to excess foliar Ca. Because it has low solubility, it is likely that sequestered Ca is unavailable for Ca-dependent physiological processes. Immobilization of Al in foliage was related to Ca sequestration, suggesting that Ca sequestration may provide a passive mechanism for Al tolerance in the foliage of these trees. Aluminum immobilization was evident based on the ratio of HCl-extractable Al to the more labile (water- and acetic acid-extractable) forms of Al. Sufficient labile Ca combined with Al sequestration was associated with plant health, including enhanced foliar accretion of Mg and Mn, greater tree growth, enhanced foliar cold hardiness and reduced winter injury. These findings demonstrate that not all chemical forms of foliar Ca and Al are of equal physiological significance and underscore the importance of assessing the biologically significant element forms in biogeochemical research.  相似文献   

14.
陈广生  曾德慧  陈伏生 《林业研究》2004,15(1):11-18,J001
对辽宁省章古台地区的几种主要针叶树种的针叶养分及其林分表层(0-15cm)土壤养分进行研究。结果表明,不同年龄樟子松(45、29和20年)(Pinussylvestrisvar.mongolica)林地表层土壤养分并无显著差别,而29年樟子松林分表层土壤全N、全P和N:P比显著高于相近年龄的赤松(P.densiflora)(29年)和油松林(P.tabulaeformis)(31年)。随着樟子松年龄的增加,叶片P含量逐渐减少,而叶片N和K含量则未表现出随年龄而变化的趋势;对于年龄相近的三个树种,叶片N和P含量表现为:樟子松>赤松>油松,而叶片K含量在三个树种中并无显著差别。表层土壤的全N和全P,有机质和全P以及叶片N和P含量之间表现出了显著的相关性,但是,林分表层土壤养分和树木针叶养分之间并无显著相关关系,这可能与当地对凋落物的过度收集,过度放牧以及土壤水分含量低有关。最后,根据国外研究结果引入N:P比阈值来分析研究区域的N,P养分状况,基于章古台地区这几种针叶树种针叶N:P比,我们认为研究区域的樟子松随着年龄的增加受N限制的可能性降低,29年的赤松林整体表现出不受N和P养分限制,而31年的油松林则表现为系统N和P都供应不足。图3表3参45。  相似文献   

15.
The hypothesis that soil chemistry is a main constraint for the vigour of Norway spruce trees on calcareous soils is scrutinised based on data from 60 existing and new intensive study sites in the Bavarian Alps, where comprehensive information on soils, climate, foliar nutrient concentration, ground vegetation, and tree growth is available. We characterised ecological gradients of the response variables site index (SI), foliar nutrient level and needle weight by constrained ordination, identified nutrient limitations based on regression trees and modelled SI based on vegetation-based mean Ellenberg indicator values. Our study confirms the assumption that soil development and concurrent acidification are key determinants for the vitality and growth of spruce in the Bavarian Alps, which surpass the importance of climate on nutrition and growth. Pools and availability of P and N are limiting nutrition and growth of spruce in this region. We hypothesize that N-limitation persists despite considerable deposition inputs because N tends to be locked up in organic horizons with low biological activity. K and trace elements, especially Fe, can also be deficient in some cases but do not appear as major limiting factors. High foliar Mn concentrations are a reliable indicator of mature soils and favourable site conditions in the Bavarian Alps, but Mn itself is usually not limiting. P must be regarded as the most critical macronutrient in the Bavarian Alps, particularly in the face of biomass harvesting. Consequently, at sites with shallow soils forest, management should focus on sustaining or restoring humus stocks. SI of spruce can be predicted from composition of ground vegetation and Ellenberg indicator values with remarkable precision (R 2 = 0.75).  相似文献   

16.
Fertilization of drained peatland forests with easily soluble or slow-release apatite fertilizers can increase phosphorus (P) export to water courses, especially when the soil is low in aluminum (Al) and iron (Fe) hydroxides and oxides. Application of Al and Fe together with P increases P adsorption to the soil and decreases the risk of leaching. The aim of this study was to investigate the use of recycled iron phosphate (rFePO4) as forest fertilizer raw material from environmental and forest production perspectives. Trial fertilizers with different mixtures of rFePO4 and Russian Kola apatite (Kap) were applied on 15 mini-catchments (area 100 m2), where the discharge at the outlet was collected, sampled and analyzed throughout the about 4-year measurement period. The foliage P content and height growth of the trees on the mini-catchments were measured. The biomass growth of the extramatrical mycorrhizal mycelia (EMM) was studied with a separate in-growth mesh bag experiment conducted on the same site. The results indicated no increase in phosphorus export to surface waters after application of rFePO4 and 25/75 and 50/50 mixtures of rFePO4 and Kap. In contrast to earlier studies showing a relatively high P export with different types of apatite fertilizers, the Kap fertilizer showed only minor phosphorus export. The height growth measurements and needle analyses of the juvenile Scots pine stands indicated poor P availability from pure rFePO4, but the P availability from the 50/50 and 25/75 mixtures of rFePO4 and Kap was similar to pure Kap. The mixtures of Kap and rFePO4 enhanced the EMM biomass by 2- to 3-fold, whereas Kap and rFePO4 alone, and high P availability (superphosphate) had no significant effect compared to non-P controls. The increase in EMM biomass as induced by concurrent application of Kap and rFePO4 was not clearly reflected in tree growth and P acquisition. However, longer follow-up studies than in this one may be needed in order to verify the effect of increased EMM biomass on mycorrhizal mycelia mediated nutrient uptake and tree growth.  相似文献   

17.
The purpose of this study was to determine the factors which are responsible for clearly visible growth irregularities in Gmelina arborea stands by relating growth rates to soil and site properties. All Gmelina plantations under study, established on degraded pasture soils in the Atlantic lowlands of Costa Rica, showed the same growth pattern: very poor growth and chlorotic foliage of trees in mid-slope positions, and fast growth and healthy leaves of trees on hilltops and hillbases. The variation in site and soil properties and tree growth rates was analysed, investigating 24 plots in eight different plantations. Leaf samples were taken from 120 trees (five trees per site). Foliar analysis revealed that the tree growth is highly dependent on the supply of N, P, K and S, indicating that poorly growing trees suffer from a multiple nutrient disorder. To identify the most restricting soil factor, simple correlations between growth rates and soil chemical and physical properties were applied to the entire data set. The best correlation was obtained with exchangeable soil K (r=0.78, P<0.001). Subdivision of the data set into plots on brown soils (eight) and plots on red soils (16) and subsequent correlation analysis resulted in much stronger relationships. Growth depressions in mid-slope positions had other causes on brown soils than on red soils. On the acid brown soils the combination of the variables Al saturation and bulk density could explain 82% of the variation of tree growth. Al saturation of up to 80% in brown soils inhibits nutrient uptake, particularly of N and P. The red soils dominate on Ca---Mg-enriched, alluvial terraces and were among the first soils to be cultivated in the region. During the agricultural use and at the establishment of the tree plantations, they received dolomitic lime to reduce Al toxicity. Here, very low K/Mg ratios (less than 0.03) may induce K deficiency. Therefore, the best multiple regression model for tree growth rates on red soils is obtained with K/Mg ratio and thickness of the humic A-layer (r2=0.75, P<0.001). Inclusion of the variable bulk density resulted in a clear improvement of the model, explaining 91% of the growth variability.  相似文献   

18.
Andean-Patagonian forests are especially interesting for the study of N and P limitation because they receive minimal atmospheric pollution, have little influence of vascular N-fixing species, and grow on volcanic soils that retain P. In a previous study of 10 woody species (four broad-leaved deciduous species, three broad-leaved evergreens and three conifers) conducted during an exceptionally dry year in NW Patagonia, and on the basis of nutrient resorption efficiency and proficiency, we suggested that N was the most limiting nutrient except for the broad-leaved evergreen Lomatia hirsuta. In the present work, we compared patterns of nutrient limitation during a dry and a wet year, quantified the percentage of mycorrhizal infection, and related mycorrhizal behavior and nutrient limitation to soil fertility. We used N and P concentrations in green leaves as indicators of nutrient requirements, and N and P concentrations in senescent leaves (resorption proficiency) and the N/P ratio in green leaves as indicators of nutrient limitation. We also determined leaf mass area (LMA) and lignin concentration as indicators of structural and chemical defences. From previous works, the following soil fertility indicators were included: pH, organic C, total N, exchangeable cations, Olsen-P, potential N mineralization (pNmin) and N retained in microbial biomass (N-MB). Nitrogen, P and lignin concentrations in green and senescent leaves did not differ significantly between the dry and the wet year either by species or by functional groups. Most species behaved as N-proficient and P-non-proficient; this together with values of foliar N/P ratios lower than 14–16 confirmed N limitation in these forests. The only species limited by P but not by N was L. hirsuta (1.0–1.1% N in senescent leaves, N/P ratio = 21–23), a non-mycorrhizal species with cluster roots. The lack of P limitation in the other species was probably related to the high percentages of infection with arbuscular mycorrhizae (80–90% in Maytenus boaria and the conifers Araucaria araucana, Austrocedrus chilensis and Fitzroya cupressoides), and ectomycorrhizae (73–79% in five Nothofagus species). Nitrogen and P requirements were positively correlated among themselves and negatively with lignin and LMA. Soil fertility was positively correlated with nutrient requirements and negatively with lignin and LMA. Conifers had lower N and P requirements, higher LMA, lower foliar N/P ratio and grew on soils of lower soil N dynamics (lower pNmin and N-MB) than ectomycorrhizae-associated species.  相似文献   

19.
The relationship between the height growth, foliar concentrations of nitrogen (N) and phosphorus (P), and the N:P ratio was analyzed in a fourth rotation plantation that did not respond to fertilization with these nutrients. Spearman's nonparametric correlation analysis was used to evaluate the association between growth in height—calculated as the difference between heights measured at 1 yr and 2 yr after planting—and foliar N and P concentrations, as well as N:P ratio, determined in the 1-yr-old plantation. Only a weak positive correlation between height growth and foliar P concentration in planted seedlings was found. A significant negative relation was observed between the growth and N:P ratio in seedlings. Foliar concentrations suggest that there were neither P nor N limitations for growth in the analyzed period. This may be due to the management of harvest residues, which were abandoned on-site without burning.  相似文献   

20.
Broadcast fertilization with an array of amendments was examined for its capacity to reinvigorate growth and enhance nutrition of a 12-yr-old Jeffrey pine (Pinus jeffreyi Grev. & Balf.) plantation growing on an acidic Sierra Nevada surface mine site. Selected amendments consisted of Viking Brand 21-7-14, Free Flow 29-3-4, High N 22-4-6 + Minors, and Milorganite 6-2-0 + Iron—formulations that differed substantially in critical characteristics including N sources and the duration of release, and each was administered using three rates of application. All formulations stimulated sapling growth during some stage of the study, especially when applied at the highest rates, but the Free Flow amendment, which features urea as the predominant N source, the High N formulation, which is a controlled release fertilizer, and Milorganite, an organic amendment based on municipal biosolids, sustained growth enhancement longer than the Viking amendment, which relies exclusively upon ammoniacal and nitrate N forms and lacks any provision for metering nutrient release. As indicated by foliar analysis, increased availability and uptake of N probably accounted for most of the added growth induced by fertilization, although improved P nutrition likely contributed as well. However, in addition to the N and P responses, fertilized saplings were frequently lower in Mn, B, and Al—all of which may be phytotoxic at elevated concentrations. Further support for the possible linkages between foliar concentrations noted above and sapling growth responses were provided by the concentrations of these elements in the mine soil, which was low in N and P but high in Mn, B, and Al. This study reports approaches to nutritional augmentation on degraded sites suitable for use during the sapling stage of tree development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号