首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
为探索沼液资源再利用,以鸡粪沼气发酵液培养的小球藻为原料,采用水热液化技术制备生物原油。采取正交试验,在温度250~330℃、时间30~90 min及含固量15%~25%下,探讨了水热反应后各相产物特性及元素回收效率。生物原油产率为13.23%~23.83%,最高产油率在330℃、60 min、15%时取得。生物原油中碳、氢及氮回收率分别是16.13%~31.14%、19.18%~34.89%及5.97%~14.32%,最高碳回收率及最低氮回收率分别在330℃、60 min、15%及250℃、30 min、15%时获得。水热液化各相产物中,碳、氢及氮回收率在水相中占主导地位,分别为48.74%~60.43%、46.81%~62.13%及74.84%~82.67%。热重分析暗示生物原油可能适合制备润滑油。此外,GC-MS分析表明生物原油中烃类物质质量分数为16.14%~24.91%,主要为低碳链烃类,如甲苯及二氢茚等。  相似文献   

2.
鉴于生物油的高含氧量,将其轻质组分在温和条件下转化为以饱和醇为主要成分的含氧燃料可能成为生物油利用的新思路。该文以自制Raney-Ni为催化剂,研究在高压反应釜中反应温度(100~180℃)、氢气冷压(4~8 MPa)、催化剂用量(0.5~2 g)对生物油轻质组分催化加氢改质的影响;对Raney-Ni催化剂进行N2吸附脱附、X射线衍射(X-ray diffraction)、扫描电镜(scanning electron microscope)表征,分析催化剂失活机理,研究催化剂的重复使用性能。试验结果表明:反应温度和反应初压对生物油加氢产物分布的影响较大,在反应温度为140℃、氢气初压为6.0 MPa 时,产物中饱和醇的相对含量(以GC峰面积百分比计算)最高可达53.51%;当催化剂用量从0.5 g增加到1 g时,产物中饱和醇的含量显著提升,由25.42%提高到51.89%,进一步提高催化剂用量对饱和醇含量的提高影响不大;一次与二次催化剂催化生物油加氢反应产物中饱和醇含量由53.51%降为29.20%,活性显著降低可能与催化剂孔道内部及表面的活性中心被覆盖进而降低反应效率有关。加氢过程中,除有酮醛酚类化合物的加氢反应和酸与醇的酯化反应外,存在醇脱水成醚的反应发生。与烃类液体燃料相比,含氧燃料以其优异的燃烧性能逐渐被人们所青睐。将生物油的轻质组分加氢制备含氧燃料有望成为生物油的应用提供新思路。  相似文献   

3.
为研究与开拓高品位生物油的制备方法,该文以松木粉为原料,采用真空热解的方法制备生物油。讨论了150~830μm的4种不同粒径大小、400~600℃的5种不同反应温度对真空热解的影响,对其原因进行讨论与分析;并对最优条件下的真空热解气液相产物进行表征。试验结果表明,在500℃反应温度下,250~380μm粒径松木粉真空热解得到生物油产率最高,可达52.06%;真空热解生物油的黏度较低,流动性能好,高附加值化合物较多,这些特性使真空热解生物油作为提取化学品的原料成为可能,该研究为生物质制备高品位生物油提供参考。  相似文献   

4.
生物质热裂解生物油精制的研究进展   总被引:5,自引:5,他引:5  
生物质热裂解生物油的高含氧量、低热值和化学不稳定等特性在一定程度上影响了生物油的广泛应用,因此必须对生物油进行精制,以改善生物油的品质.该文从催化加氢、催化裂解、气相催化、水蒸气重整和乳化等方面详细阐述了生物油精制的研究进展,指出了生物油精制的发展方向,以期为生物油的应用提供参考.  相似文献   

5.
互花米草在乙醇-水体系中直接液化制备生物油   总被引:1,自引:0,他引:1  
生物质因其储量丰富、来源广泛、碳中和等优势被认为是最具有应用前景的生产替代燃料的原料。在容积50 m L的小型高温高压反应釜中,利用醇-水共溶剂直接液化互花米草制备生物油,考察反应温度、醇-水共溶剂中乙醇体积分数、液料比对液化产物分布的影响,分析了原料的热重特性及生物油的主要成分。结果表明:随着升温速率的增加,互花米草的热失重曲线(thermogravimetric,TG)和微分热重曲线(differential thermogravimetric,DTG)基本保持不变,但却发生了不同程度的横向移动,出现明显的滞后现象,这是由温度和时间共同作用的结果;正交优化操作条件为温度340℃、乙醇体积分数50%、液料比10 m L/g,此时生物油产率高达44.2%,而残渣率仅为12%;与单一溶剂相比,醇-水共溶剂对互花米草的液化具有明显的协同作用,在提高产油率的同时能够显著改善生物油的品质;生物油的气相色谱-质谱分析表明生物油是一种组分复杂的含氧有机混合物,包括酸类、酚类、酯类、呋喃等,主要成分为酚类和酯类,相对含量分别为29.62%和11.27%;乙醇能够与酸发生酯化反应生成酯类,而酚类主要来自原料中木质素的降解;以乙醇体积分数为50%的醇-水共溶剂作为液化介质时,生物油的能量回收率为76.5%,明显高于以水或乙醇作为单一溶剂时液化所得生物油的能量回收率,因而醇-水共溶剂是生物质直接液化中非常有前景的液化介质。  相似文献   

6.
为了降低生物油中羧酸类物质的质量分数,提高生物油品质,本试验采用碳基固体酸作为催化剂,对生物油进行催化酯化降酸提质。以乙酸为模型与甲醇反应,用单因素和响应面法优化生物油催化酯化反应条件,得出最佳工艺参数:反应温度100℃、醇酸比3.37、反应时间2.49 h、催化剂质量分数为5.26%,乙酸平均转化率为94.72%,在此条件下,分别用甲醇、乙醇、正丁醇与生物油进行催化酯化反应。结果表明:酯化后生物油中羧酸类物质转化成酯,酸值降低了82.82%~91.41%,降酸效果明显。且酯化后,生物油的密度降低、黏度减小、热值增加,提高了生物油作为燃料的品质。本研究可为生物油降酸提质提供参考依据。  相似文献   

7.
玉米秸秆的催化微波裂解及生物油成分   总被引:11,自引:5,他引:11  
近年来,生物质热化学裂解已引起了越来越广泛的兴趣。但常规的生物质热裂解技术(如流化床等)要求细小的生物质原材料,因此粉碎能耗大。而且裂解所得的生物油和合成气产物易受生物质粉末污染。微波裂解虽然能帮助解决这些问题,但目前的微波裂解所得的生物油成分和其他热裂解技术一样,仍然过于复杂,因此尽管生物质热解获取生物油的成本低于生物质发酵所获得的燃料,生物质热解技术也仍未在工业上得到推广应用。该研究旨在帮助解决这一难题。利用玉米秸秆颗粒为原料,采用了4%的硫酸或磷酸的预处理,或者采用氯化物等催化剂直接混入原料,然后利用微波进行催化裂解,并获得气态、固态和液态生物油3种产物。利用气质联用设备(GC-MS),对所得到的液态产物(生物油,Bio-oil)进行成分分析。在大量的试验基础上,该文筛选出的酸预处理,MgCl2、ZnCl2、及AlCl3直接催化是可以使所得的生物油成分简化的实用技术。  相似文献   

8.
为研究不同分子筛催化剂对生物油催化裂解特性的影响,该文采用稀土元素La、非金属元素P以及活泼金属元素Ni对ZSM-5分子筛催化剂进行改性,在连续式固定床反应器中对乙酸乙酯、二丙酮醇、糠醛和愈创木酚等生物油模型化合物进行催化裂解试验,进而对比HY、HZSM-5、ZSM-5催化剂以及改性后ZSM-5催化剂对模型化合物的催化裂解反应特性以及脱氧效果。试验结果表明:在反应温度为400℃、反应质量空速为4/h条件下,经La/P/Ni改性ZSM-5分子筛催化剂,模型化合物有机相收率提高,结焦率下降;HY分子筛所得有机相收率最低,结焦率最高。模型化合物各组分裂解难易程度由易到难为二丙酮醇乙酸乙酯糠醛愈创木酚;改性后ZSM-5分子筛使组分单一转化率和总转化率均出现下降;HZSM-5分子筛作用下,反应转化率达到最高。模型化合物催化裂解脱氧产物以芳香烃为主,经La改性ZSM-5分子筛作用后,其芳香烃选择性较ZSM-5略微上升;P和Ni改性后,芳烃选择性下降;HZSM-5对于芳香烃选择性最高,达7.36%;HY对于芳香烃选择性最低,仅为3.15%。通过液体产物组分分析进一步探讨模型化合物反应路径,从而为生物油的催化裂解提供一定的理论基础和科学依据。  相似文献   

9.
为了研究生物原油所含不同组分对其储存稳定性的影响,该研究提出利用溶剂分步萃取法分离生物原油。采用螺旋藻为原料进行水热液化,利用极性不同的四氢呋喃、乙酸乙酯、丙酮和正己烷为萃取溶剂分离生物原油,以黏度和热值作为稳定性评价指标,利用热重分析仪、气相色谱质谱联用仪和傅立叶红外光谱仪分析生物原油的老化机理。结果表明:乙酸乙酯萃取得到的生物原油的黏度最低(316 mPa•s),流动性最好,且在储存过程中黏度变化率最小(78.6%),稳定性最好;利用溶剂可以分离生物原油中的重、轻组分和极性、非极性组分,生物原油的老化与极性大分子之间发生的酯化反应、聚合反应密切相关,而小分子非极性化合物的存在可显著降低生物原油的黏度,提高其流动性和稳定性;经储存后生物原油的热值降低了0.4%~6.2%,生物原油的极性组分、重组分和氮元素含量越多,黏度和热值的变化率越大。该研究可为生物质水热液化产物的定向调控及生物原油储存稳定性的提高提供参考。  相似文献   

10.
为了提高芳烃的产率,提高生物油的品质,该研究采用金属改性的生物质来源的活性炭为催化剂,催化生物质热解二维气相重整制备芳烃,探讨了金属的种类(Al、Cu、Zn、Ni)以及金属的负载量(1%、5%、10%)对热解产品的产率以及选择性的影响,同时采用X-射线衍射仪、比表面积和孔径分布仪、化学吸附仪、扫描电子显微镜、傅里叶红外...  相似文献   

11.
微藻个体微小,不易采收,为其开发利用带来了很大困难。利用酸性壳聚糖对3种不同类型的黏土矿物(膨润土、硅藻土、沸石)进行改性,制备无公害复合絮凝剂,探究其对小球藻(C.pyrenoidosa)的絮凝效果,并考察了复合絮凝剂的浓度、静置时间、藻液p H值和壳聚糖与黏土矿物的比例对絮凝率的影响。结果表明:复合絮凝剂的絮凝效果明显高于壳聚糖。其中壳聚糖改性硅藻土对小球藻的絮凝效果最佳,其最佳絮凝条件为p H值为8,壳聚糖和硅藻土的配比为1∶6,浓度为0.2 g/L,沉降120 min。在该条件下,小球藻的絮凝采收率可达到约96.16%。复合絮凝剂无毒环保,不会造成二次污染影响微藻生物质后续加工利用,是一种环境友好,安全健康的微藻絮凝剂,具有良好的应用前景。  相似文献   

12.
为了优化水提法小球藻多糖提取的工艺,该文在单因素试验的基础上,选择水料质量比、超声波功率、提取时间、冻融-超声波次数进行4因素3水平的正交试验提取小球藻多糖,采用三氯乙酸法去除游离蛋白质。结果表明:小球藻多糖最佳提取条件为水料质量比15,超声波功率600W,超声波作用时间6min和冻融-超声波2次,小球藻粗多糖得率为5.918%。三氯乙酸法脱游离蛋白质以pH值为4为最佳,多糖回收率为57.84%。该研究可为从小球藻中大规模分离和提取以及纯化多糖提供参考。  相似文献   

13.
采用室内培养法考察了十六烷基三甲基氯化铵(CTAC)和十八烷基三甲基溴化铵(STAB)对蛋白核小球藻(Chlorellapyrenoidosa)的生长状况、蛋白质含量、叶绿素含量、脂质过氧化丙二醛(MDA)含量以及超氧化岐化酶(SOD)活性的影响,进而分析了CTAC和STAB对小球藻的毒作用机理。结果表明,CTAC和STAB对蛋白核小球藻的生长抑制效应受浓度和时间的影响显著,STAB对蛋白核小球藻的毒性大于CTAC,且CTAC和STAB作用4 d内,藻细胞蛋白质、叶绿素含量以及SOD活性均先上升后下降,MDA含量逐渐下降。根据5种指标变化与CTAC(或STAB)之间呈现的浓度-效应关系和时间-效应关系推测,表面活性剂对藻细胞的最初攻击点是通过改变其细胞膜膜脂分子的水溶性破坏小球藻的细胞膜,表面活性剂通过刺激细胞产生活性氧自由基引起脂质及其他生物大分子的氧化损伤可能是其对小球藻产生毒害效应的主要机制。  相似文献   

14.
近年来,由于水热液化技术可以将高含水率的生物质直接转化为生物原油而极具潜力,引起了人们的广泛关注。该文综述了生物质水热液化研究的最新进展,简述了生物质水热液化的产物分离流程,着重分析了水热液化4种产物(生物原油、水相产物、固体残渣和气体)的产物特性及其利用方式。在4项产物中,生物原油可作为燃料或者从中提炼高附加值产品,水热液化水相可以进行微藻养殖、经厌氧发酵产甲烷或者利用微生物电解池产生氢气等,固体残渣通过进一步处理后可作为生物炭使用,气相产物可作为温室的气体肥料。另外,该文总结了生物质中关键元素在水热液化产物中的分布规律,展望了水热液化技术未来研究方向,以期能为生物质水热液化研究提供参考与借鉴。  相似文献   

15.
为了研究输送带速度和光谱仪安装高度对近红外在线检测秸秆-煤混燃物的影响。该研究收集并制备秸秆样品80个、煤样品9个,制备秸秆质量分数为70%~99%的秸秆-煤混燃物样品120个(质量分数增量为1%)、秸秆质量分数为1%~30%的秸秆-煤混燃物样品120个(质量分数增量为1%)。在输送带速度分别为300、600、1 000和1 400 mm/s,光谱仪安装高度分别为50、56、59和65 mm的条件下,使用Thermo Fisher Scientific Antaris Target FT-NIR型光谱仪获取样品近红外光谱。使用线性判别分析法建立定性分析模型,使用偏最小二乘法建立定量分析模型。结果表明,光谱仪安装高度建议为50~65 mm,输送带速度建议小于300 mm/s。该研究可为近红外光谱法在线定性和定量检测生物质-煤混燃物的方法学研究和相关仪器设计提供参考。  相似文献   

16.
玉米秸秆液化制备生物高聚物材料的研究(英)   总被引:1,自引:0,他引:1  
该研究旨在探讨低温生物质液化技术及液化产物应用的可能性。以玉米秸秆为原料在酸性、常压条件下快速液化成多羟基化合物,再以多羟基化合物为原料合成一系列的聚合材料。采用不同的有机溶剂,在稀硫酸的催化作用下,对不同的温度下生物质的液化效果进行研究。同时探讨了液化有机溶剂同生物质物料的混合比率对液化过程的影响。试验表明,碳酸乙烯酯比乙烯醇具有较高的液化率。优化试验结果表明,在较佳的液化效果下, 有机溶剂同玉米秆的混合比率为3∶1,反应温度160℃,稀硫酸浓度3%,反应时间2.5 h。液化产物经稀释、调节pH值、过滤、臭氧氧化一系列过程的处理后得到具有高活性多羟基聚合物。阐述了以多羟基聚合物制备各种生物聚合物材料如聚酯薄膜、聚胺酯泡沫和颗粒板的方法。聚酯薄膜是多羟基化合物上的羟基和多元酸上的羧基通过酯化反应形成的;聚胺酯泡沫通过多羟基化合物上的羟基和二异氰酸酯反应形成。研究表明以多羟基化合物和多元酸(酐)形成的聚酯型胶粘剂适合于制造颗粒板。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号