首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Greenhouse gas (GHG) emissions from the process to utilize digested slurry from methane fermentation as a fertilizer were calculated with actual operational data from a methane fermentation plant and the effects were verified by introducing the process into a field system. The results indicated that the total emissions from the utilization of digested slurry as a fertilizer were 8.1 kg-CO2 eq. per 1 ton of digested slurry and transportation was the major source of GHG emissions, accounting for 67 % of the total emissions. Shortening the transportation distance by using digested slurry in farmlands near the methane fermentation plant is the most effective to reduce GHG emissions. The results also indicated that GHG emissions from the wastewater treatment process for digested slurry were much larger than GHG emissions from the utilization of digested slurry as a fertilizer. In conclusion, CH4 as an energy source and digested slurry as a fertilizer can be effectively utilized and reduce GHG emissions by introducing the methane fermentation processes to the use of digested slurry as a fertilizer.

  相似文献   

2.
Promoting biomass utilization, the objectives of this study were to clarify the spatial distribution of nitrogen, one of the most important fertilizer components in the methane fermentation digested slurry (i.e., the digested slurry), and to establish an effective method to apply spatial-uniformly digested slurry with irrigation water in the rice paddy field. A numerical model describing the unsteady two-dimensional flow and solution transport of paddy irrigation water was introduced. The accuracy of this model was verified with a field observation. The tendencies of the TN simulated in inlet and outlet portions had good agreement with the measured data and the accuracy of the numerical model could be verified. Using the numerical model, scenario analyses were conducted to determine the method for spatial-uniform application of the digested slurry with irrigation water. The simulated results indicated that drainage of the surface water and trenches at the soil surface were effective for spatial-uniform application of the digested slurry with irrigation water in the rice paddy fields. The effect of the trenches was maximized when the surface water of the rice paddy field was drained adequately.  相似文献   

3.
Vietnam is one of the world’s top two rice exporting countries. However, rice cultivation is the primary source of agriculture’s greenhouse gas (GHG) emissions in Vietnam. In particular, strategies are required to reduce GHG emissions associated with the application of organic and inorganic fertilisers. The objective of this study was to assess the effects of various combinations of biochar (BIOC), compost (COMP) and slow-release urea (SRU) on methane (CH4) and nitrous oxide (N2O) emissions. In total, 1170 gas samples were collected from closed gas chambers in rice paddies at Thinh Long commune and Rang Dong farm in northern Vietnam between June and October 2014. The gas samples were analysed for CH4-C and N2O-N fluxes using gas chromatography. The application of BIOC alone resulted in the lowest CH4 emissions (4.8–59 mg C m?2 h?1) and lowest N2O emissions (0.15–0.26 µg N m?2 h?1). The combined application of nitrogen–phosphorus–potassium (NPK) + COMP emitted the highest CH4 (14–72 mg C m?2 h?1), while ½NPK + BIOC emitted the highest N2O (1.03 µg N m?2 h?1 in the TL commune), but it was the second lowest (0.495 µg N m?2 h?1) in the RD farm. Green urea and orange urea reduced N2O emissions significantly (p < 0.05) compared to white urea, but no significant differences were observed with respect to CH4 emissions. SRU fertilisers and BIOC alone measured the lowest greenhouse gas intensity, i.e. <2.5 and 3 kg CO2 eq. kg?1 rice grain, respectively. Based on these results, application of fertilisers in the form of BIOC and/or orange or green urea could be a viable option to reduce both CH4 and N2O emissions from rice paddy soils.  相似文献   

4.
Nitrogen fertilizer practices affect nitrous oxide (N2O) emissions from agricultural soils. The “4R” nutrient stewardship framework of using N fertilizer at the right rate, right source, right placement and right time can reduce N2O emissions while maintaining or improving yield of field crops, but understanding of how the various factors affect N2O emissions from irrigated processing potato is lacking. We examined the effects of selected 4R practices on emissions, using results from two irrigated processing potato studies each conducted in 2011 and 2012 in Manitoba, Canada. Experiment 1 examined combinations of source (urea, ESN), placement (pre-plant incorporation [PPI], banding), and rate (100 and 200 kg N ha-1) on a clay loam soil. Experiment 2 examined timing and source treatment combinations (urea PPI, ESN PPI, urea split, urea split/fertigation) on a loamy fine sandy soil. For Experiment 1, use of ESN at 200 kg ha-1 did not reduce area-, yield- and applied fertilizer N- based N2O emissions compared to urea at 200 kg ha-1, irrespective of placement. Emissions from pre-plant banding ESN at 200 kg ha?1, however, were 32% lower than from PPI ESN. For Experiment 2, compared to single pre-plant urea application, fertigation simulated by in-season application of urea ammonium nitrate (UAN) gave lower area-, yield- and applied fertilizer N- based emissions. Split urea ( \( \raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right. \) pre-plant, \( \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$3$}\right. \) hilling) also reduced area- and yield- based N2O emissions compared to single pre-plant urea application. Emissions were generally lower at the site with loamy fine sandy soil than the site with clay loam soil. These results demonstrate that combinations of “4R” practices rather than source alone are best to achieve reductions in N2O emissions from irrigated potato production.  相似文献   

5.
In this study, we evaluated the feasibility for the use of digested slurry from livestock manure (hereafter, slurry) in paddy fields through field experiments conducted in Southern Vietnam. The pouring method for slurry was used, and a vacuum truck was used for transportation and pouring of the slurry. A prototype slurry tanker was manufactured for transportation and application of slurry, because vacuum trucks are rarely available in rural areas of Vietnam. For evaluation of feasibility, costs and labor for application of slurry and rice production were examined and compared with conventional cultivation methods using chemical fertilizers. As the results, rice production with the use of slurry was 485 g m?2, which is within the range of on-site conventional cultivation, so slurry may be a good substitute for chemical fertilizers in rice production. Costs for slurry fertilization with a prototype slurry tanker and a vacuum truck were estimated at 0.13 USD m?2 and 0.10 USD m?2, respectively. These costs were higher than for conventional cultivation of 0.06 USD m?2 under the present conditions with T-N concentrations of approximately 400 mg L?1 in the slurry. However, we clarified that the cost for slurry fertilization can be lower than conventional cultivation when the concentrations of nitrogen in slurry increase from 400 to 2000 mg L?1. These results show that an increase in nitrogen concentrations in slurry make slurry fertilization feasible if the amounts of water for washing livestock sheds that enter into the biogas digesters are reduced.  相似文献   

6.
Conventional puddled transplanted rice (TPR) is a major source of greenhouse gas (GHG), particularly methane, causing global warming. Direct-seeded rice (DSR) is a feasible alternative to mitigate methane emission, besides saving water and labor. A 2-year field experiment was carried out to quantify GHG mitigation and water- and labor-saving potentials of the DSR crop compared to TPR in three villages in Jalandhar district of Punjab, India. The InfoRCT simulation model was used to calculate the emission of CO2 besides CH4 and N2O in different districts of Punjab, India. Total global warming potential (GWP) in transplanted rice in various districts of Punjab ranged from 2.0 to 4.6 t CO2 eq. ha?1 and in the DSR it ranged from 1.3 to 2.9 t CO2 eq. ha?1. Extrapolation analysis showed that if the entire area under TPR in the state is converted to DSR, the GWP will be reduced by 33 %, and if 50 % area is converted to DSR the GWP will be reduced by 16.6 % of the current emission. The DSR crop saved 3–4 irrigations compared to the transplanted rice without any yield penalty. Human labor use also reduced to 45 % and tractor use to 58 % in the DSR compared to TPR.  相似文献   

7.
Greenhouse gas (GHG) emissions and reactive nitrogen (Nr) releases are central environmental problems, which are closely linked to climate change, environmental ecology and crop production. Sustainable development of agriculture plays an important role in GHG emissions and Nr loss. The life cycle assessment (LCA) method was used to calculate the product and farm carbon footprints (CFs) and nitrogen footprints (NFs) in rice, wheat and maize production in China based on farm survey data. The results pinpointed that the CFs of rice, wheat and maize were 0.87, 0.30 and 0.24 kg/kg. Meanwhile, the computed NFs were 17.11, 14.26 and 6.83 g/kg, respectively. Synthetic nitrogen fertilizer applications and methane (CH4) emissions were dominant CF sources, while ammonia (NH3) volatilization was the main NF contributor. Moreover, significant decreases in CF and NF by 20%–54% and 33%–61%, respectively, were found in large-size farms (> 20 hm2) when compared to small-size farms (< 0.7 hm2). Furthermore, the significantly positive relationships between CF and NF indicated the potential for simultaneous mitigation in the regions with high agricultural inputs, like amounts of fertilizer. Based on our results, some effective solutions would be favorable toward mitigating climate change and eutrophication of the major cereal crop production in China, especially optimizing fertilizer use and farm machinery operation efficiencies, as well as developing large-size farms with intensive farming.  相似文献   

8.
The contribution of rice production to the three major greenhouse gases CO2, CH4 and N2O in 1990, the base year of the Kyoto protocol is investigated for Japan. For the CO2 assessment, we use a top-down life cycle approach, CH4 is assessed using the Japanese GHG emission inventory and N2O is assessed according to the ratio of rice area divided by the total area of agricultural soils. In total, 1.6% of greenhouse gas (GHG) emissions in 1990 originated from rice production. Next, we assess regional variations in nine rice-producing regions, based on the CO2 data of 1990. General trends in rice production from 1960 to 2000 and data from the Japanese GHG emission inventory since 1990 are used to assess variations in time. The rice-related GHG emissions decreased to 1.05% of the total GHG emissions in 2001 and will be less than half the 1990 level in 2012, mainly due to the decrease in rice production. Contrary to the trend in GHG emissions of rice, overall GHG emissions increased as rice production fulfils important roles, in mitigating global warming and in adapting to changing climates. The protection of rice production is required to counter the increase of GHG emissions in transportation, waste and domestic sectors and to minimize problems related to landscape, water and natural hazard management.  相似文献   

9.
While the application rate of nitrogen fertilizer is believed to dramatically influence rice fields and improve the soil conditions in paddy fields, fertilization with low use efficiency and nitrogen loss may cause environmental pollution. In this paper, 15N-labeled urea was used to trace the fate of nitrogen at four rates (0, 75, 225 and 375 kg N/ha) of urea fertilizer over three split applications in Hangzhou, Zhejiang, in 2014. Plant biomass, the soil nitrogen content of different layers, NH3 volatilization and N2O emissions were determined using the 15N abundance to calculate the portion from nitrogen fertilizer. The results indicated that rice yields increased with the application rate of nitrogen fertilizer. NH3 volatilization is the main nitrogen loss pathway, and N2O emissions were significantly associated with nitrogen application rates in the paddy. The percent of nitrogen loss by NH3 volatilization and N2O emissions increased with the nitrogen application rate. This study showed that the suitable N fertilizer in a loam clay paddy, considering the yield requirements and environmental issues, is approximately 225 kg N/ha in Hangzhou, with a distribution of 50.06% of the residual in the rice and soil and 48.77% loss as NH3 volatilization and N2O emissions. The nitrate from fertilization mainly remained in the 0–20 cm level of the topsoil.  相似文献   

10.
The objective of this study was to investigate the effects of the application of rice husk biochar on selected soil physical properties, rice growth, including root extension, and methane (CH4) emissions from paddy field soil. Three replication experiments were conducted using outdoor pot experiments utilizing commercial rice husk biochar mixed with paddy soil at a rate of 0 (control), 2, and 4 % (weight biochar/weight soil) in which the rice was cultivated for 100 days under a continuously flooded condition. The physical properties of soils were analyzed before and after the growing periods. Some parameters of rice growth and CH4 emissions of paddy soils were monitored weekly during the experiment. Root extension was also analyzed after harvesting. The experiments showed that the application of rice husk biochar improved the physical properties of paddy soils. It led to a decrease in bulk density and an increase in saturated hydraulic conductivity, including the total pore volume as well as the available soil water content. The shoot height of rice plants was significantly higher in soil amended with 4 % biochar than that in the control soil. However, other plant growth parameters and root extension were only slightly affected by the application. It was also found that amending soil with biochar led to a reduction of the total CH4 emissions by 45.2 and 54.9 % for an application rate of 2 and 4 %, respectively, compared with the control. Our results showed that the higher the application rate, the stronger the effect of biochar was observed. More research is still necessary for a better understanding of the underlying mechanisms.  相似文献   

11.
The effect of slurry application techniques and slurry N stabilizing strategies on nitrous oxide emission from grasslands is poorly understood and, therefore, can result in large uncertainties in national/regional inventories. Field experiments were, thus, conducted to estimate the effect of different fertilization techniques on nitrous oxide (N2O) emissions. Fertilizer was applied (135–270 kg N ha−1 year−1) as calcium ammonium nitrate (CAN), untreated or treated cattle slurry. The slurry was either treated with sulfuric acid (target pH = 6.0), applied using trailing shoes or treated with 3,4-dimethyl pyrazole phosphate and applied via slot injection. N2O fluxes were sampled using the closed chamber technique. Cumulative N2O emissions ranged 0.1–2.9 kg N ha−1 year−1 across the treatment, sites and years. The N application techniques showed inconsistent effects on soil mineral N content, cumulative N2O emission and N yield. The fertilizer replacement value of slurry was low due to low N use efficiencies at the sites. However, a close positive relationship (r = 0.5; p = .013) between slurry value and biomass yield was observed, highlighting the benefit of high slurry value on crop productivity. N2O-N emission factors were low for all treatments, including CAN, but were 2–6 times higher in 2019 than in 2020 due to lower precipitation in 2020. Variations in N2O emission were largely explained by soil and climatic factors. Even with the low N2O emissions, this study highlights the benefit (significant mitigation of N2O emissions) of replacing the increasingly expensive chemical fertilizer N with input from slurry under favourable conditions for denitrification.  相似文献   

12.
Climate change associated with greenhouse gas (GHG) emissions may have important implications for Europe's grasslands. Projected scenarios indicate that increased temperatures and CO2 concentrations have the potential to increase herbage growth and to favour legumes more than grasses, but changes in seasonal precipitation would reduce these benefits particularly in areas with low summer rainfall. Further implications for grasslands may arise from increased frequency of droughts, storms and other extreme events. Potential farm-scale adaptive responses to climate change are identified. Grassland agriculture also contributes to GHG emissions, particularly methane and nitrous oxide, and management of grassland affects net carbon balances and carbon sequestration. Management options are identified for mitigating grassland's contribution to GHG emissions which need to be developed in a holistic way that also considers other pressures.  相似文献   

13.
水稻低碳生产研究进展   总被引:11,自引:0,他引:11  
 稻田是甲烷(methane,CH4)和氧化亚氮(nitrous oxide,N2O)的重要发生源。稻田中CH4和N2O的产生、消耗以及传输过程受稻田土壤类型、水分条件、肥料种类、施肥量及方法、耕作模式和制度、水稻品种等多种因素影响。CH4和N2O具有不同的排放特性,很多研究结果表明,水稻生长期间的中期排水烤田、后期干湿交替能显著降低CH4排放量,但同时也可能促进N2O的排放,因此,如何同时减少CH4和N2O的排放量是实现稻田低碳生产的关键要素;另一方面,稻田土壤的碳固定也是使稻田系统从源转变成汇的关键技术。从水稻生产过程中CH4排放、N2O排放、稻田土壤有机碳动态、减排措施四个方面综述了近年来水稻低碳生产相关研究状况,重点总结了国内外有关影响稻田CH4和N2O排放的关键影响因素、增加稻田土壤有机质含量的主要措施以及各种减排措施的全球增温潜势评价研究,并对水稻低碳生产研究作了展望。  相似文献   

14.
Understanding the long-term and quantitative effects of different fertilization practices on carbon sequestration and nitrogen loss is important when establishing the best fertilization regime. In this study, the DeNitrification–DeComposition (DNDC) model was validated first for the change of soil organic carbon (SOC) at the site mode and at the regional mode, and then it was used to simulate the effects of three fertilization practices including rice straw (RS) returning, chemical fertilizer application (CF), and green manure planting (GM) on C and N dynamics in paddy soils from a subtropical area of China. The prevailing fertilization practices in the study area were set as the baseline scenario, and alternative scenarios were assigned by varying only one of the three fertilization practices. All three fertilization practices increased SOC content but had different effects on rice yield, N2O emission, and nitrate leaching loss. Compared with a baseline RS rate of 15 %, the SOC contents less than RS rates of 30, 50, and 80 % were increased on average by 12.84, 29.48, and 53.50 %, respectively. SOC content also increased as the CF rate rose from 70 to 130 % of the baseline scenario and then leveled off from 130 to 160 %. SOC contents under GM were higher than that without GM by 35.74 %. Both the N2O emissions and the nitrate leaching were increased with the increasing CF rate, while they decreased under GM treatment. However, RS increased the N2O emissions but decreased the nitrate leaching. The polygon-based modeling method with the DNDC could accurately evaluate the general trend of SOC dynamics and nitrogen loss from paddy soils.  相似文献   

15.
沼液与氮肥配施对小麦产量及品质的影响   总被引:2,自引:0,他引:2  
为给小麦高产优质生产中沼液利用提供依据,在大田条件下,研究了沼液与氮肥配施对小麦籽粒产量及品质的影响.结果表明,在全生育期总施氮量240 kg·hm-2条件下,在基施化肥氮基础上追施沼液,尤其基施75%化肥氮和追施25%沼液氮配合处理(3/4U+1/4B)显著提高了淀粉糊化特性参数(峰值黏度、最终黏度、稀懈值和反弹值)、粉质参数(形成时间、稳定时间、粉质指数)和拉伸参数(拉伸面积、拉伸阻力和拉伸比).籽粒蛋白组分(总蛋白、球蛋白、醇溶蛋白和谷蛋白)含量以基施50%化肥氮和追施50%沼液氮配合处理(1/2U+1/2B)最高,3/4U+1/4B处理次之.籽粒蛋白组分、粉质与拉伸参数均以单施沼液处理(1/2B+1/2B)最低,单施化肥氮的处理(1/2U+1/2U)次之,而淀粉糊化特性参数以1/2U+1/2U处理最差,施用沼液的处理较1/2U+1/2U处理提高2.0%~6.5%.与1/2U十1/2U处理相比,基施沼液与追施化肥氮配合处理产量提高,而基施化肥氮与追施沼液氮处理的产量降低.可见在基施沼液的基础上追施化肥氮可提高小麦产量,其中1/2B+1/2U处理能够高产和优质兼顾,单施沼液效果低下.  相似文献   

16.
Dairy farming systems are important sources for the emission of a number of materials that include various forms of nitrogen (NO3, N2O and NH3) with potential environmental impact. The present paper is a systems synthesis study and assesses the likely impact of changes in management on N flows and losses. These include tactical fertilizer adjustment, slurry injection, maize silage production and the use of white clover as an alternative to fertilizer N. Implications for greenhouse gases (N2O and CH4) and support energy have also been considered. Substantial reductions in inputs and total and proportional losses by all die options considered were predicted by this study. Thus, using a tactical approach to fertilizer application and injecting slurry or using 50% maize silage reduced overall N losses from 160 (under conventional management) to 86 and 109kg Nha−1 respectively. Combining both possibilities reduced losses further to 69 kg ha−1. Although use of white clover, especially at low contents in the sward, was the most effective regime to reduce losses, this was at some cost to production so that losses per livestock unit (LU) did not always differ from those under other managements. Changing the N management had consequences for greenhouse gas emission with an estimated maximum 70% reduction in N2O release. The effects on CH4 emissions were relatively small. Substantial reductions in support energy costs were also obtained: these arose mainly from the reduction in fertilizer N use, which represented 66% of the total support energy in the original system.  相似文献   

17.
In some European countries, the majority of annual enteric methane (CH4) emissions by ruminants occur at pasture – a direct result of the predominance of grazing within ruminant production systems. However, there are only limited data available as to the effect of perennial ryegrass cultivar and season of harvest on CH4 production. Using the in vitro gas production technique, the effect of perennial ryegrass cultivar on fermentation characteristics and CH4 production was determined (Experiment 1) and the persistence of these traits throughout the growing season for two cultivars, identified from Experiment 1 as having either a high or low methanogenic potential, was examined (Experiment 2). In Experiment 1, organic matter (OM) digestibility and cumulative total gas production profiles were unaffected by cultivar but, with regard to the kinetics of CH4 production, the asymptote value (A), cumulative CH4 yield at 72 h, and the fractional rate (μ) of CH4 production at both time of 0·5A(T)(μCH4T) and at 48 h (μCH448h) were significantly (P < 0·05) different. The amount of digested OM, as a proportion of cumulative CH4 production (DigOM/CH4) at 24 and 72 h after commencement of inoculation, revealed that the amount of substrate required to produce 1 ml of CH4 also differed significantly between cultivars (P < 0·01). In Experiment 2, regrowth number significantly modified the majority of measured samples (P < 0·01); cultivar effects were limited to the lag phase of the cumulative CH4 production curve and DigOM/CH4 at 8 h only (P < 0·05). These results suggest that differences exist between cultivars in how OM is partitioned following microbial fermentation and that these differences demonstrate persistency throughout the growing season. In the course of time it may be possible to exploit these differences through cultivar selection and plant breeding programmes, and thereby reduce enteric CH4 emissions within pastoral production systems.  相似文献   

18.
The chemical composition of silage consumed by cattle can influence the subsequent rumen microbial fermentation patterns and methane (CH4) emissions. The objectives of this study were to (i) evaluate the effect of ensilage on the in vitro rumen methane output of perennial ryegrass and (ii) relate the silage fermentation characteristics of grass silages with in vitro rumen methanogenesis. Three pre‐harvest herbage‐conditioning treatments and seven silage‐additive treatments were used in a laboratory‐scale silo experiment to produce a diversity of silage fermentation characteristics. Ensilage reduced (< 0·01) the in vitro rumen CH4 output (mL CHg?1 dry matter (DM) disappeared). This reflected differences in the direction of rumen fermentation (lower acetic (< 0·05) and higher propionic (< 0·001) acid proportions in volatile fatty acids) rather than major changes in the extent of in vitro rumen fermentation (i.e. mmol VFA g?1 DM). The magnitude of the decrease in CH4 output (mL g?1 DM incubated) owing to ensilage increased as the extent of silage fermentation, and in particular the lactic acid concentration, increased. In contrast, among silages with relatively similar extents of silage fermentation (i.e. total fermentation products), an increase in the proportion of lactic acid in silage fermentation products led to a more extensive in vitro rumen fermentation and thus to a greater CH4 output (mL g?1 DM).  相似文献   

19.
The effects of rate of inorganic nitrogen (N) fertilization (0, 80 or 160 kg N ha?1 per regrowth), season of harvest (regrowths 1, 2 and 3) and perennial ryegrass (Lolium perenne L.) cultivar [classified as having either a normal or elevated water soluble carbohydrate (WSC) concentration genotype] on in vitro gas production and digestibility were assessed. Increased N fertilizer application significantly decreased total gas production (TGP), methane (CH4) production and organic matter digestibility (OMD). The results suggest that the decreases in TGP and CH4 production were associated with a restriction in organic matter (OM) fermentation and an altered crude protein (CP) to structural carbohydrate ratio rather than a modification in the stoichiometry of fermentation. Season of harvest only significantly (P < 0·05) altered in vitro OMD and CH4 production at 8 h, despite altering the chemical composition of the herbage. Cultivar effects on all measured in vitro parameters were not significant presumably because the elevated WSC concentration trait was not expressed strongly in the study.  相似文献   

20.
节水灌溉条件下不同施磷量对冬小麦磷素吸收利用的影响   总被引:1,自引:0,他引:1  
为提高节水灌溉条件下小麦磷素利用效率,以济麦22和石优20为材料,设置60、120和180 kg P2O5·hm-2三个磷素供应水平(分别用P60、P120和P180代表)研究了节水栽培下磷素(P)用量对小麦P吸收和利用特性的影响。结果表明,供试小麦品种在各生育时期植株干重均随施P水平增高而提高;低P(P60)水平下石优20植株干重较大,在高P(P180)水平下济麦22则植株干重较大。两小麦品种各生育时期植株P含量均以高P处理下较高,且石优20高于济麦22。随施P水平的增高,小麦植株P累积量增多, P累积速率增大,以开花至成熟期P累积速率较高,且施P水平对P累积速率有正向调控作用。成熟期,植株各器官的干重、P累积量和P分配比例均以籽粒最高,茎秆和叶鞘及叶片次之,颖壳和穗轴最低;各器官P含量以籽粒最高,茎秆、叶鞘、颖壳和穗轴次之,叶片最低,表明生育后期植株体内P素主要向籽粒转运、积累。低P和中P(P120)处理下,石优20产量显著高于济麦22;高P处理下,石优20的产量较济麦22低。随供P水平的提高,植株花前的P转运量和P转运效率增大,但P贡献率、P利用效率和P肥偏生产力下降。不同品种相比,石优20植株的花前P转运量和营养器官P贡献率与济麦22相近,但石优20的P收获指数、花前P转运效率、P利用效率和P肥偏生产力较济麦22低。研究表明,节水条件下,小麦养分高效品种石优20在低P水平下具有较高P吸收能力和籽粒产量,适当施P可增强济麦22植株生育后期P的吸收、利用能力和高产潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号