首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在总结分析国内外有关研究的基础上 ,指出涝渍地旱作排水研究有 5大趋势 :1由重视农田排涝发展到重视农田排渍 ;2由静态排水指标研究发展到动态排水指标研究 ;3由涝、渍分别研究发展到涝渍综合研究 ;4从排水指标仅考虑作物产量发展到既考虑产量又重视品质 ;5由单一涝渍过程对作物的影响研究发展到多个涝渍过程对作物的复合影响研究。  相似文献   

2.
The salinity in the root zone increases with the application of relatively saline groundwater. Therefore, a limited water supply coupled with high pumping cost and salinity hazards, makes it more important than ever that irrigation water be used efficiently and judiciously. In the present study, farmer's practices of irrigation application methods (Field 1) were compared with the water saving techniques (Field 2) for crop yield and salinization for two years with maize–wheat–dhanicha cropping pattern. For maize crop, regular furrow method of irrigation was used in Field 1 and alternate furrow method of irrigation was used in Field 2. For wheat experiments, basin irrigation method of water application was compared with bed and furrow method. For dhanicha, basin irrigation was applied in both the fields. The results showed that about 36% water was saved by applying irrigation water in alternate furrows in each season without compromising the maize crop yield. The salt accumulation in root zone in alternate furrow field was less than that in regular furrow field. The salinity level near the surface increased substantially in both the fields. The water saving in wheat crop under bed and furrow was 9–12% in both seasons. The salinization process in both fields during wheat crop was almost same except redistribution of salts throughout the root zone in basin field of wheat. The salinity developed in root zone during two major growing seasons was leached in monsoon.  相似文献   

3.
Large areas of the world's bunded rainfed lowland ricelands could be planted to a pre-rice crop if waterlogging damage during the early wet season is prevented. To build understanding necessary to develop effective field drainage practices for pre-rice crops, pot and field studies were undertaken on a Typic Tropaquept lowland rice soil in the Cagayan Valley, Philippines. The objective of the studies was to quantify effects of excessive moisture on mungbeans (Vigna radiata (L.) Wilczek) encountering variable regimes of duration and elevation of water table height in the root zone during a shortterm waterlogging event. Small differences in level and duration of the root zone water table markedly affected plant performance. Yields were reduced by 40–100% when the water table level reached the soil surface for 6 days compared with the unstressed treatment, but were reduced by only 12–17% when the water level was 5 cm below the surface for the same time period. Regression analysis revealed a 4% reduction in yield per centimetre increase in water table level between 5 cm below to 5 cm above the soil surface during the vegetative stage, and a 6.5% reduction per centimetre during the reproductive stage. Field experiments evaluated two prospective surface drainage techniques that farmers could employ to elevate the crop above the zone of saturation during waterlogging events. Planting in furrows, and subsequently hilling up (HU) to create ridges was unsuccessful in improving plant performance (as the base of the plant was not elevated). Planting on 25 cm high ridges formed by a plow dramatically improved growth and yield of mungbean ( ≥ 360% advantage compared with the other treatments) when subjected to a range of waterlogging stress events. Standing water occurred for 5–7 days on the soil surface of HU, broadcast seeded (B), and drilled (D) treatments, but was 56 6 cbelow the base of the plants in the ridge treatment during the two flooding events. The ridging method was observed to be effective for farm-scale use in cultivating pre-rice mungbeans with either animal or tractor power.  相似文献   

4.
Drainage water from the lower boundary of the root zone is an important factor in the irrigated agricultural lands for prediction of the water table behavior and understanding and modeling of water and chemical movement in the soil profile. The drainage coefficient is an important parameter for the design of subsurface drainage. On a 33,138 ha of the Nile Delta in Egypt, this study is conducted using 90 irrigation periods over a 3-year crop rotation to estimate the time-dependent drainage from the root zone and the design subsurface drainage coefficient with different cropping seasons and irrigation management levels.The results showed that the cropping seasons and the irrigation management levels as indicated by different irrigation efficiency are significantly affected the drainage rate from the root zone and the design value of subsurface drainage coefficient. Drainage rates from the root zone of 1.72 mm/d and 0.82 mm/d were estimated for summer and winter seasons, respectively. These rates significantly decreased in a range of 46% to 92% during summer season and 60% to 98% during winter season when the irrigation efficiency is increased in a range of 5% to 15%. The subsurface drainage coefficient was estimated to be 1.09 mm/d whereas the design drain pipe capacity was estimated to be 2.2 mm/d, based on the peak discharge of the most critical crop (maize), rather than 4.0 mm/d which is currently used. A significant decrease of the drainage coefficient and the drain pipe capacity ranges from 18% to 45% was found with the increase of irrigation efficiency in a range of 5% to 15%. The leaching requirement for each crop was also estimated.  相似文献   

5.
Analysis of field water balance components provides information necessary to minimize the risk of offsite movement of contaminants from crop production practices or animal manure applications. The objective of this study was to determine the timing and amount of surface runoff and drainage from the root zone for a hillslope in the Ozark Highlands of US. A 0.4 ha watershed with slopes of 8–20% having tall fescue (Festuca arundinacea Schreb.) cover was established in northwestern Arkansas (35°56′W, 93°51′N). Continuous measurements of water balance parameters were made from June 1997 to August 1998. Soil water drainage was estimated as the residual of weekly water balance calculations. Runoff occurred in response to three precipitation events in the winter of 1998 and totaled 30.6 mm of water or 2.6% of the 1185 mm of precipitation that fell at the site during the study period. Storms of comparable or greater intensity during other seasons failed to produce runoff, a result that was likely due to dry soil conditions and taller grass canopy. Drainage through the root zone totaled 117 mm and occurred primarily during an 83-day interval in the winter of 1998. The water balance was dominated by evaporation, which accounted for 91% (1080 mm) of the precipitation. Tall fescue was capable of sustaining relatively high evaporation rates between infrequent summer rains thereby dewatering the soil profile, which was not replenished until winter. Delaying spring animal manure applications in the Ozarks until evaporation has increased and the soil profile has begun to dry would decrease the risk of offsite transport of potential contaminants contained in the manure.  相似文献   

6.
涝渍连续过程以时间为尺度的作物排水控制指标研究   总被引:7,自引:4,他引:7  
在易涝易渍地区雨季,涝渍相伴相随,对作物影响很大,研究涝渍连续过程作物排水控制指标具有重要生产意义。根据这类地区涝渍发生特点,以棉花涝渍相随试验为基础,建立了作物排水分析基本模型,依据模型提出了涝、渍连续过程排水控制指标的确定方法。从涝、溃连续过程的统一体中确定适宜的排涝、排渍指标与传统的从涝、渍分别试验确定排涝、排渍指标有很大不同,它符合涝渍地域生产实际,体现了涝渍兼治的排水控制新理念。  相似文献   

7.
农田除涝排水技术研究综述   总被引:2,自引:0,他引:2  
从农田涝灾风险评估、农田除涝排水工程技术、农田除涝排水管理3个方面入手,综述了近年来国内外取得的相关研究成果,并对农田除涝排水技术研究的未来发展进行了展望.明确指出未来的重点方向是:研究变化环境下的农田涝灾演变规律,构建人工-自然复杂条件下的农田涝灾预测评估技术与方法;研究满足作物产量需求和环境保护要求的农田涝灾综合控制标准,提升传统农田除涝治理技术水平与管理模式,探讨现代化除涝技术与传统除涝技术相结合的技术体系;重视农田排水资源的高效利用,研究适宜不同类型区的节水灌溉与控制排水相结合、灌溉排水与沟塘湿地调蓄净化相结合、排水资源循环灌溉再利用与除涝抗旱相结合的农田排水管理模式.  相似文献   

8.
在地下水位较高、地表易于形成积水的中国南方地区,通过农田排水措施可以及时排除多余地表积水,快速降低地下水位,以达到排涝降渍、协同调控的目的.文中基于室内砂槽试验,揭示暗管排水、明沟排水、不同反滤体高度的反滤体排水及改进暗管排水等措施的地下排水规律及效果.结果表明:将暗管周围土体置换为高渗透性土体介质的改进暗管排水可明显提高排水流量,当土体置换高度达2 cm时(对应于田间条件40 cm),其排水流量均高于相同埋深条件下的其他排水措施,达暗管排水的1.59~1.66倍;改进暗排在地表积水消失时仍保持较大的排水流量,可达相同埋深暗管流量的2倍以上,在积水层消失后,能迅速降低农田土壤水的渍害胁迫,将地下水位降低至暗管埋设高度;各种排水措施,在地表积水即将消失时,出现了流量与水头变化幅度较大的现象.相对于各种地下排水措施,改进暗管排水在除涝降渍中存在明显优势.研究结果可为涝渍灾害易发地区高效除涝降渍减灾工程设计和建设提供参考.  相似文献   

9.
Summary Irrigation is essential for economic production of some crops in semiarid climates. Benefits from irrigation may be partially offset by detrimental effects of rising water tables and salinization. Drainage systems are usually installed when the water table rises to the root zone, but installation of a drainage system and safe disposal of drainage water are expensive. The long-term consequences of a high saline water table on crop production, particularly as related to irrigation scheduling, has not been firmly established. A multiseasonal transient state model, known as the modified van Genuchten-Hanks model, was used to simulate cotton (Gossypium hirsutum L.) production using a three or four in-season irrigation schedule (3irr or 4irr) under both free drainage and water table conditions. Under drainage conditions, irrigation scheduling to avoid applying more water than the soil water-holding capacity during any irrigation event is important, whereas this factor is less important under water table conditions. Excess water during an irrigation causes a rise in the water table, but this water remains available for later crop use which lowers the water table. In the presence of a water table the simulations indicate, (1) higher yields are achieved by applying less irrigation during the crop season and more during the preirrigation for salt leaching purposes, (2) annual applied water must equal evapotranspiration to avoid long-term water table rise or depletion, and (3) high cotton yields can be achieved for several years even if the water table is saline and no drainage occurs if the irrigation water is low in salinity.  相似文献   

10.
Waterlogging of field-grown plants can occur either when the surface of slowly permeable soils is inundated or when the water-table rises so that part or all of the root zone is saturated. The effects of short-term waterlogging on field crop growth and yield have not been well quantified. To study these effects, a sloping, repacked slab of soil underlain by an impermeable membrane was constructed. The sloping plot (45 m long × 6 m wide × 0.6 m deep) was flooded by introducing water through a drainage network and gravel bed so that a gradient of water-table depth ranging from 0.1 m above to 0.66 m below the soil surface was obtained. Cotton (Gossypium hirsutum cv. Deltapine 61) was grown in the facility and the responses of plants to two periods of flooding were monitored. Soil matric potential and oxygen partial pressure data indicated that plants were subjected to a continuum of conditions ranging from complete inundation to no water-table within the root zone.The first flooding event began 82 days after sowing just prior to the main flowering period. Plants with more than 55% of their root system below the water table showed decreased leaf growth about 3–4 days after the flooding started with visible wilt symptoms and decreased leaf water potential observed on days 7 and 8 of flooding. In the second flooding event (131 days after sowing), plants showed no signs of waterlogging stress apart from reduced leaf growth despite 16 days of flooding. Plant growth response was probably more the result of reduced nutrient status (mostly nitrate) rather than a water deficit stress effect with some plant acclimatization between the first and second flooding event. Seed cotton yield data indicated that the observed stress during the first flooding event may have promoted reproductive growth in plants where the short-term water-table was greater than 0.2 m below the soil surface.  相似文献   

11.
The environmental impacts of agricultural drainage have become a critical issue. There is a need to design and manage drainage and related water table control systems to satisfy both crop production and water quality objectives. The model DRAINMOD-N was used to study long-term effects of drainage system design and management on crop production, profitability, and nitrogen losses in two poorly drained soils typical of eastern North Carolina (NC), USA. Simulations were conducted for a 20-yr period (1971–1990) of continuous corn production at Plymouth, NC. The design scenarios evaluated consisted of three drain depths (0.75, 1.0, and 1.25 m), ten drain spacings (10, 15, 20, 25, 30, 40, 50, 60, 80, and 100 m), and two surface conditions (0.5 and 2.5 cm depressional storage). The management treatments included conventional drainage, controlled drainage during the summer season and controlled drainage during both the summer and winter seasons. Maximum profits for both soils were predicted for a 1.25 m drain depth and poor surface drainage (2.5 cm depressional storage). The optimum spacings were 40 and 20 m for the Portsmouth and Tomotley soils, respectively. These systems however would not be optimum from the water quality perspective. If the water quality objective is of equal importance to the productivity objective, the drainage systems need to be designed and managed to reduce NO3–N losses while still providing an acceptable profit from the crop. Simulated results showed NO3–N losses can be substantially reduced by decreasing drain depth, improving surface drainage, and using controlled drainage. Within this context, NO3–N losses can be reduced by providing only the minimum subsurface drainage intensity required for production, by designing drainage systems to fit soil properties, and by using controlled drainage during periods when maximum drainage is not needed for production. The simulation results have demonstrated the applicability of DRAINMOD-N for quantifying effects of drainage design and management combinations on profits from agricultural crops and on losses of NO3–N to the environment for specific crop, soil and climatic conditions. Thus, the model can be used to guide design and management decisions for satisfying both productivity and environmental objectives and assessing the costs and benefits of alternative choices to each set of objectives.  相似文献   

12.
Nearly 60 per cent of the geographical area of Haryana state in Indian Union is underlain by saline ground water. The intra-basin transfer of surface water in the early sixties for irrigation has disturbed the hydrodynamic equilibrium resulting in waterlogging and salinization in large parts of the state. The existing inland drainage basin conditions did not permit the disposal of drainage effluent. The reuse system was therefore, integrated with the drainage system. A model RESBAL was coupled with the calibrated and validated on-farm water management model FAIDS and run for eight years to optimally design a series of connected reservoirs for the disposal of drainage effluent from an area provided with a subsurface drainage system. The possibility of the reuse of the disposed water for irrigation, aqua culture and salt harvesting was also studied comprehensively in order to maintain proper salt balance in the root zone.  相似文献   

13.
根据在鲁北地区开展的几种主要粮食作物耐渍涝的大田调查和筒栽试验,通过对地表水、地下水和土壤水的动态观测,分析土壤通气率对作物生态的影响,。而提出了玉米、大豆、高粱、谷子不同生育期的耐涝和耐渍的控制标准极限及其高水位允许的持续时间,可为同类地区规划在田排水工程提供设计参数和科学依据。  相似文献   

14.
Summary Empirical functions to predict the nitrogen uptake, increase in LAI and minimum leaf water potential (LWP) of cotton were incorporated into a water balance model for the Namoi Valley, N.S.W. A function was then developed to describe the lint yield of irrigated cotton as a function of water stress days at 4 stages of development, total nitrogen uptake and days of waterlogging. A water stress day was defined as predicted minimum leaf water potential less than -1.8 MPa up to 90 days after sowing and -2.4 MPa there-after; stress reduced yield by up to 40 kg lint ha–1 d–1 with greatest sensitivity at 81–140 days after sowing and when N uptake was highest. Nitrogen uptake was reduced by 0.98 kg per ha and yield reduced by 33.2 kg lint ha–1 for each day of waterlogging. The model was used to evaluate various irrigation strategies by simulating production of cotton from historical rainfall data. With a water supply from off farm storage, net returns ($ M1–1) were maximized by allocating 7 Ml ha–1 of crop. The optimum practice was not to irrigate until 60 days from sowing and until the deficit in the root zone reached 50%. When the supply of water was less than 7 Ml ha–1 there was no advantage in either delaying the start of irrigation or irrigating at a greater deficit; it was economically more rational to reduce the area shown or, if already sown, to irrigate part with 6 Ml ha–1 and leave the rest as a raingrown crop. Irrigation decisions are compromises between reducing the risk of water stress and increasing the risk of waterlogging. The simulation showed that there is no single set of practices that is always best in every season; in a number of seasons practices other than those which on average are best, give better results.  相似文献   

15.
Decades of irrigation on the west side of the San Joaquin Valley without sufficient drainage have created large areas where shallow ground water (<1.5 m) has become a problem for agriculture. Because drainage outflow is restricted as a result of environmental concerns, reducing the amount of irrigation applied is a farm management solution for this situation. One option to reduce the amount of irrigation water is to include shallow ground water use as a source of water for crop production when scheduling irrigation. The objective for this study is to describe soil water fluxes in the presence of saline, shallow ground water under a safflower crop. Two weighing lysimeters, one with and one without shallow saline ground water were used to measure crop evapotranspiration of surface drip irrigated safflower. A saline water table (14 dS/m) was maintained in one of the lysimeters. Ground water use as part of crop evapotranspiration was characterized using hourly measurements of the water level in a ground water supply tank (Mariotte bottle). Ground water contribution of up to 40% of daily crop water use was measured. On a seasonal basis, 25% of the total crop water use originated from the ground water. The largest ground water contribution was shown to occur at the end of the growing season, when roots are fully developed and stored soil water in the root zone was depleted. The applied irrigation on the crop grown in the presence of a water table was 46% less than irrigation applied to the crop without a water table. The reduction of irrigation was obtained by using the same irrigation schedule as on the lysimeter without ground water, but through smaller applied depths per irrigation event.  相似文献   

16.
农田组合排水条件下涝渍兼治的水平衡动态机理初探   总被引:2,自引:0,他引:2  
从涝渍相伴连续危害的自然特点出发,针对典型暴雨式的排水运动模式,以分析组合排水条件下涝渍兼治的水平衡动态机理为基础,对地面、地下排水模数计算方法进行了初步探讨。  相似文献   

17.
Nutrient flux and balance studies are valuable tools to assess the sustainability of agro-ecosystems and potential consequences for agricultural productivity. This paper presents results from a study at the field/farm scale representing mixed farming systems typical for the East African Highlands. We selected catchments in the Dega (cool highlands and Woina Dega (warm-to-cool mid-highlands) of the Central Highlands of Ethiopia, to get more insight on how individual land use strategies and access to resources affect the magnitude of nutrient flows and resulting balances and to explore some of reasons of the variability within and between farming systems at different altitudes. Our results show that environmental condition, farming system (e.g. choice of crop), access to resources (e.g. land, livestock and fertilizer) and smallholders’ source of off farm income influence the magnitude of nutrient fluxes and the degree to which nutrient fluxes may be imbalanced.  相似文献   

18.
Two alternative in situ area rainwater conservation practices (tied ridging and mulching) were evaluated for four seasons (2004, 2007, 2008 and 2009) at an experimental station in Mekelle, Ethiopia. The objectives were to evaluate the performance of barley as influenced by mulch and tied ridge and to understand the relationships of rainfall and runoff on barley fields. About 16-30% of the seasonal rainfall resulted in runoff when barley was grown without water conservation, whereas the in situ conservation practices resulted in significantly low runoff. Tied ridging and mulching increased the soil water in the root zone by more than 13% when compared with the control. Consequently, grain yield and rainwater use efficiency increased significantly with tied ridging but not with mulching. Tied ridging increased the grain yield over the control at least by 44% during below average rainfall years. Neither mulching nor tied ridging were significantly different from the control when the seasonal rainfall was above average. Since rainfall is often unreliable, we recommend tied ridging as a water conservation technique for loams in the study area in order to mitigate the effect of drought stress in barley. However, tied ridges could be carefully opened when excess water is expected to cause waterlogging.  相似文献   

19.
生态灌区农田排水沟塘湿地系统的构建和运行管理   总被引:1,自引:1,他引:0  
建设生态型灌区是灌区现代化发展的重要内容。针对传统灌区农业面源污染日益严重的现状,总结了当前利用农田排水沟渠塘堰系统去除农业面源污染的研究进展,探讨了减污型农田排水沟渠塘堰湿地系统的构建方法,其基本特征包括:水利工程属性(排渍排涝及水流的不冲不淤要求),沟塘末端修建控制排水闸(低坝),种植优势植被,生态护岸(护底)工程,排水闸(退水闸)等水工建筑物减污型工况设计。分析了该系统的运行管理方式。  相似文献   

20.
面向可持续灌溉农业发展的涝渍盐碱管理   总被引:6,自引:0,他引:6  
发展可持续灌溉农业是实现全球粮食安全、维持民众生计的必要保障条件之一,但因灌溉诱发的农田涝渍盐碱协同危害却对作物生长及产量产生直接和间接影响,严重制约灌溉农业生产力水平,带来农田生态环境负效应.文中在对灌溉诱发的涝渍盐碱共存形成机制、作物生长和土壤特性对涝渍盐碱的响应、涝渍盐碱对作物产量的影响进行综述基础上,从排水、用水、灌溉、土壤、作物、社会经济等各种涝渍盐碱管理途径入手,阐述相关的治理措施与技术应用效果,围绕“节灌、减排、控盐、增效”的面向可持续灌溉农业发展的涝渍盐碱管理目标,从涝渍盐碱共存机制研究、涝渍盐碱共存状况监测评价、涝渍盐碱治理技术组合及集成模式研发、涝渍盐碱危害风险分析与评估等层面上,提出相应的主要研究内容与重点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号