首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
G. Oettler  G. Wahle   《Plant Breeding》2001,120(4):297-300
Fusarium head blight (FHB) is a widespread disease of small‐grain cereals and can cause substantial losses in grain yield. To assess quantitative genetic parameters as a basis for an efficient breeding programme for resistance, 100 triticale (×Triticosecale Wittm.) genotypes were tested in various environments and artificially inoculated at anthesis with an aggressive isolate of Fusarium culmorum. A visual rating (1–9 scale) was used to assess head blight infection. Five grain yield traits relative to an uninoculated control were also measured. The mean value of the average rating, calculated from four or five readings, was 4.4. It ranged from 3.0 to 5.9 and showed continuous variation. Infection caused a 48% reduction of mean kernel weight per spike, which was the result of 26% fewer kernels per spike and a 32% lower 1000‐kernel weight. The 50‐ml kernel weight was affected by only 20%. The range and genotypic variation was highest for relative kernel weight per spike. For all relative grain yield traits, the most important source of variation was the environment, followed by genotype‐environment interaction, with genotype generally coming last. In contrast, genotypic variation was the most important factor for the disease rating, which also had the highest heritability (h2= 0.89). Phenotypic correlations between the average head blight rating and relative grain yield traits were moderate (r = 0.42–0.57). In conclusion, an average disease rating provides a quantitative assessment of resistance and is suitable for screening large numbers of genotypes. Relative kernel weight per spike gives a ranking of the genotypes that is very similar to the visual score.  相似文献   

2.
G. Oettler  T. Schmid 《Plant Breeding》2000,119(6):487-490
Septoria nodorum leaf and glume blotch is an important disease of triticale (×_Triticosecale Wittm.) and can cause severe losses of grain yield in some regions. Quantitative genetic parameters for resistance were estimated for 2 years in two locations in triticale genotypes artificially inoculated with S. nodorum. The effect of infection was assessed by a visual symptom rating of flag leaves and spikes and by grain yield traits relative to an uninoculated control. The mean ratings of flag leaves and spikes, calculated from two to four ratings, were 2.6 and 3.9, respectively, with a range of six ratings for spikes and over five for flag leaves. Infection caused an 11.5% mean reduction in kernel weight per spike, which was the result of 13.2% lower 1000‐kernel weight. The number of kernels per spike and 50‐ml weight were little affected. For all relative grain yield traits, genotypic variation was small with high genotype‐environment interaction effects and thus moderate to low heritabilities. In contrast, for visual ratings genotypic variation was high, with low interaction effects leading to high heritabilities. Phenotypic correlation between flag leaf and spike ratings was low, indicating independent disease resistance mechanisms. The best association, although still moderate, was obtained between flag leaf rating and relative 1000‐kernel weight. Therefore, visual disease ratings do not satisfactorily assess the effect of Septoria infection on grain yield traits. The reduction in 1000‐kernel and possibly 50‐ml weight are good indicators, provided that multi‐environment tests are conducted.  相似文献   

3.
Wheat (Triticum aestivum L.) cultivars for the warm regions of South Asia must produce high yields and possess resistance to spot blotch (Cochliobolus sativus), early maturity and high kernel weight. A study was conducted to determine the effectiveness of selecting for high grain yield based on a selection index for spot blotch resistance, maturity and kernel weight in four wheat crosses involving a susceptible cultivar and resistant genotypes. Initial selection of 40 progeny lines in each cross had been made using a selection index based on disease severity, days to heading and kernel weight as reported by Sharma and Duveiller [{Crop Sci 43 (2003) 2031}]. The five highest grain-yielding progeny lines from among the 40 lines in each cross, their parents and five popular commercial cultivars were evaluated in field trials at two sites in Nepal in the 2002 and 2003 wheat seasons. Multiple spot blotch assessments were made to determine the area under disease progress curve (AUDPC). Grain yield, thousand-kernel weight (TKW), days to heading and plant height were examined. The wheat genotypes in the farmer's field were also ranked on the basis of cultivar preference criteria by the local farmers. The 20 progeny lines always showed a higher (+11 to +125%) grain yield and heavier (+10 to +44%) kernels than their parents and a lower (−83 to −89%) AUDPC than the susceptible parent. The progeny lines showed 98–100% grain yield, 97–100% TKW and 66–78% AUDPC compared to the highest grain-yielding commercial cultivar. Based on the farmers' preference criteria for a desirable wheat genotype, the best progeny lines ranked from 3rd to 5th, whereas the two commercial cultivars ranked 1st (Gautam) and 2nd (BL 1473). Results indicated that selection was effective in combining adaptation genes present in a local cultivar with some level of tolerance to spot blotch and resistance genes from exotic genotypes, which translated into improved agronomic performance and disease resistance. The selection index and farmer participatory approach used in this study could serve as a guideline in breeding efforts targeted for high yielding genotypes for wheat-growing conditions in South Asia where spot blotch is a serious biotic constraint to yield.  相似文献   

4.
Types and components of resistance to Fusarium head blight of wheat   总被引:18,自引:2,他引:18  
Resistance of wheat to Fusarium head blight caused by Fusarium graminearum and F. culmorum was identified in natural epidemics in 1985 and 1987 as well after artificial inoculations (1983–1988 and 1984–1987). Out of 25 genotypes tested, five were identified with no significant difference in head blight scores, but differing significantly in yield after artificial inoculation, i.e. tolerance differences were detected at different resistance levels. Some genotypes that were similar in yield or head blight scores differed in seed infection severity. Genotypes with awns were more susceptible to head blight when tested under natural epidemic condition in the field; but this trait did not influence head blight severity in artificial inoculations. Dwarf genotypes were more severely infected by head blight than tall genotypes under natural conditions, but genotypes of different plant height classes were similarly susceptible after artificial inoculations. In the early generations of a breeding programme resistance measured by visual evaluation of artificial inoculation is the most important way to screen. If selection of dwarf and awned genotypes cannot be avoided, the higher susceptibility caused by awns and dwarfness under natural epidemic conditions can be decreased by a higher level of physiological resistance, as variability in physiological resistance is available. In later generations, traits like percentage of seed infection or tolerance can be identified by additionally measuring yield reduction. Stability of disease reaction appears to be connected with resistance level, the most resistant genotypes are the most stable, and the most susceptible ones tend to have more unstable reactions in different epidemic conditions.  相似文献   

5.
Sooty stripe [Ramulispora sorghi (Ellis and Everhart) Olive and Lefebre] is a widespread foliar disease of sorghum [Sorghum bicolor (L.) Moench] in West Africa, responsible for grain yield losses up to 46%. We studied the inheritance of sooty stripe resistance in a 9 × 9 sorghum F2-population diallel grown together with parent lines and checks in1996 under natural disease pressure at two locations in Mali. The percentage of infected leaf area was determined twice over a two-week interval during the season. At the second evaluation, the mean sooty stripe severity amounted to 13% infected leaf area at Samanko and 12% at Cinzana. The frequency distribution of the entries was approximately normal for the mean disease severity, averaged across assessment dates and locations, pointing to the involvement of multiple genes. With the data combined across the two locations, genetic differences among lines and among F2 populations were highly significant. Genotype × location interaction variances were also significant but much smaller than the genetic variances. Broad-sense heritability estimates were 0.92 for lines and 0.94 for the F2 populations, for the mean percentage infected leaf area across the two assessment dates. General combining ability effects (GCA) determined most of the differences among the F2 populations. Specific combining ability effects (SCA), and the interactions of GCA or SCA with locations were also significant but less important. Line performance per se was highly correlated with GCA. Because of the high heritability and predominance of additive effects, prospects are good for the genetic improvement of resistance to sooty stripe in sorghum in Mali, using simple pedigree or recurrent selection procedures. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Fusarium head blight (FHB), caused by the fungal plant pathogen Fusarium, is a fungal disease that occurs in wheat and can cause significant yield and grain quality losses. The present paper examines variation in the resistance of spring wheat lines derived from a cross between Zebra and Saar cultivars. Experiments covering 198 lines and parental cultivars were conducted in three years, in which inoculation with Fusarium culmorum was applied. Resistance levels were estimated by scoring disease symptoms on kernels. In spite of a similar reaction of parents to F. culmorum infection, significant differentiation between lines was found in all the analyzed traits. Seven molecular markers selected as linked to FHB resistance QTLs gave polymorphic products for Zebra and Saar: Xgwm566, Xgwm46, Xgwm389, Xgwm533, Xgwm156, Xwmc238, and Xgwm341. Markers Xgwm389 and Xgwm533 were associated with the rate of Fusarium-damaged kernels (FDK) as well as with kernel weight per spike and thousand kernel weight in control plants. Zebra allele of marker Xwmc238 increased kernel weight per spike and thousand kernel weight both in control and infected plants, whereas Zebra allele of marker Xgwm566 reduced the percentage of FDK and simultaneously reduced the thousand kernel weight in control and infected plants.  相似文献   

7.
Subunits of high molecular weight glutenins strongly influence wheat bread making quality and can be associated with important agronomic traits. Polish winter wheats show a significant quantitative dominance of the null allele over the coding alleles of the Glu-A1 locus. To identify the causes of such skewed distribution, 116 F5 lines obtained from six cross combinations were analyzed for their HMW glutenin subunits and 11 agronomic characteristics, such as plant height and uniformity, leaf blotch and leaf rust resistance, grain yield per plot, number of grains per ear, grain yield per ear, 1000 kernel weight, frost tolerance, total protein content and the SDS-sedimentation value. The SDS-sedimentation value, resistance to leaf blotch and frost tolerance showed statistically significant associations with the status of the Glu-A1 locus. It appears that chromosome 1A with the null allele at Glu-A1 carries a closely linked locus responsible for frost tolerance. With early strong selection for winter hardiness, the null allele of Glu-A1 becomes fixed in advanced breeding materials despite its strong negative impact on the end use quality.  相似文献   

8.
Twenty (1990-93) and 25 (1994-96) wheat genotypes with different degrees of resistance and origins were tested with seven and eight isolates, respectively, of Fusarium graminearum and four Fusarium culmorum isolates of diverse origin in Europe. Infection severity depended largely on the genotypes and the isolates used. Head blight values, yield response and kernel infection values revealed close but varying relationships with deoxynivalenol (DON) content. This variability is explained by the presence of tolerance mechanisms which affect the relationship between Fusarium head blight severity and yield response. Kernel infection resistance accounted for decreasing Fusarium head blight values. Genotypes were found with lower infection severity and higher DON contamination and vice versa. Evidently, the cultivar has a significant influence on DON production in the infected tissue, i.e. highly susceptible genotypes may have moderate or low accumulation of DON. However, in the most resistant genotypes showing no infection to any of the isolates or only sporadic symptom development, no or very low accumulation of DON was detected. Resistant genotypes gave a stable reaction with b-values close to zero for all traits tested. Susceptible genotypes were unstable under different epidemic conditions and their stability was different for the traits investigated. Therefore, the mean of b-values is suggested to better describe the stability of the wheat genotypes. Significant positive relationships were found between aggressiveness of the isolates and their production of DON in the infected grain. The correlation improved significantly for the nivalenol-producing isolate (F89.4 from France) when the sum of DON and nivalenol contents were considered. This indicates that the total trichothecene toxin-producing capacity of the isolates may be a decisive component of pathogenicity. Since the tests included isolates from different European countries the results provide further proof that no host specificity exists within these pathogens in Europe. This was also valid for kernel infection, yield response and DON accumulation. Therefore, the nature of resistance is horizontal. The results also support the view that there is no difference between the resistance of the host plant to F. graminearum and to F. culmorum.  相似文献   

9.
Field experiments were conducted from 1989 to 1991 at Ibadan, Nigeria, to assess effects of maize streak virus (MSV) disease on growth and yield of maize varieties having different levels of disease resistance. MSV disease reduced yield and growth in all years, but varieties differed significantly in amount of loss, disease severity and incidence. MSV disease was negatively correlated with plant height and dry weight, grain weight per plot, 1000-grain weight, ear length and diameter. In 1989 MSV disease decreased yield of resistant variety TZB-SR by 1.5%, of resistant hybrid 8321-21 by 10%, and of moderately resistant hybrid 8329-15 by 17%. Yield of susceptible variety TZB Gusao was reduced significantly more, by 71%. Plant age at time of virus challenge had significant effects on yield and growth characters, with earlier infection resulting in greater disease severity and yield reduction. A significant interaction between variety × age at challenge was also detected, indicating that varieties were differentially affected by MSV in relation to the growth stage when challenged. Disease incidence after challenge was lower for the most resistant varieties. This property of lower disease incidence under equal challenge opportunities (tolremicity) is an important aspect of resistance. The resistant varieties discussed here were bred for tolerance - good yield performance when diseased -, but TZB-SR and 8321-21 also exhibited tolremicity. Tolremicity combined with tolerance constitutes the overall disease resistance of a variety to a systemic pathogen such as MSV. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Summary A population of 572 F2 derived F3 lines from six crosses were used to estimate parameters relevant to selection for resistance to Septoria nodorum of wheat. Lines were grown in disease free (fungicide sprayed) and inoculated microplots in 2 replications of a split-plot design in a single environment in 1977. Average yield reduction due to disease was approximately 50%; this was associated with an average septoria score of 50% on the flag leaf, an average septoria score of 42% on the head, and a reduction of 37% in seed weight. Low S. nodorum scores were correlated with late heading date, tall plant height, high grain yield, and high seed weight in diseased plots, and high seed weight % (seed weight in diseased plots expressed as a percentage of seed weight in fungicide sprayed plots).Restricted selection indexes were used to study the relative contributions of disease escape, true resistance, and tolerance to variability in grain yield in diseased plots, seed weight in diseased plots, and seed weight %. True resistance appeared to be the most important factor causing variation in grain yield in diseased plots and seed weight %. Tolerance and escape seemed to be more important for seed weight in diseased plots.Heritabilities of S. nodorum scores on the flag leaf and head were 63% and 52%, respectively. Leaf and head scores could be used most effectively as selection criteria to upgrade resistance in a population before harvest.Selection for high seed weight % slightly reduced yields in disease free plots, although yield in diseased plots and seed weight in diseased plots were increased. However, selection for increased yield or increased seed weight in diseased plots improved yield in disease free plots. It is suggested that direct selection for yield or seed weight in diseased plots is likely to achieve more desirable goals than selection for seed weight %.  相似文献   

11.
Fusarium head blight (FHB, scab) caused by Fusarium spp. is a widespread disease of cereals causing relevant yield and quality losses and contaminating cereal products with mycotoxins. Breeding resistant cultivars is the method of choice for controlling the disease. Resistance to FHB is a quantitative trait and is most likely governed by several genes. We present the results of an F1 diallel analysis of FHB resistance involving six resistant and one susceptible European winter wheat genotypes of diverse origin in order to identify promising combinations for the selection of improved cultivars. Parents and F1s including reciprocals were evaluated for FHB resistance in an artificially inoculated field trial. Two traits were assessed: visual disease symptoms on the heads and the percentage of Fusarium damaged kernels in a harvested sample. General combining ability (GCA) and specific combining ability (SCA) effects were statistically significant for visual symptoms and kernel damage, whereas reciprocal effects were small or not significant. Heterosis for resistance was common, indicating that the parental genotypes possess different resistance genes. Selection of transgressive segregates should be feasible from such heterotic combinations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Maize grey leaf spot (GLS) disease remains an important foliar disease in sub-Saharan Africa accounting for more than 25% yield losses in maize. Information on inheritance of GLS resistance of germplasm adapted to African environments is required in new sources being identified. Therefore, hybrids generated from a 10 × 10 half-diallel mating of tropical advanced maize inbred lines were evaluated in six environments to determine combining ability, genotype × environment interaction (G × E) and the impact of GLS disease on grain yield. General combining ability effects were highly significant and accounted for 72 and 68% of the variation for GLS resistance and grain yield, respectively. Significant specific combining ability effects associated with reduced disease levels were observed in some hybrids when one parent was resistant, and these may be exploited in developing single cross maize hybrids. Regression analysis showed a 260–320 kg ha?1 decrease in maize grain yield per each increase in GLS disease severity score, and significant associations (r = ?0.31 to ?0.60) were observed between grain yield and GLS severity scores. This showed the potential of GLS disease to reduce yield in susceptible varieties grown under favourable disease conditions, without control measures. Genotype and genotype × environment biplots and correlation analysis indicated that the significant G × E observed was not due to changes in hybrid ranking, implying absence of a significant crossover interaction. Therefore, predominance of additive gene effects imply that breeding progress for GLS disease resistance would be made through selection and this could be achieved at a few hot-spot sites, such as Baynesfield and Cedara locations in South Africa, and still deploy the resistant germplasm to other environments in which they are adapted.  相似文献   

13.
Fusarium head blight (FHB) remains a serious problem that causes yield and grain quality losses, and mycotoxin accumulation in wheat production in western Japan. A 3-year field trial with artificial FHB inoculation was conducted to evaluate varietal characteristics of FHB resistance among 31 wheat cultivars/lines cultivated in western Japan, including one standard line. Severity of FHB, frequency of Fusarium-damaged kernels (FDK), deoxynivalenol concentration (DON), nivalenol concentration (NIV), and grain yield showed significant differences among years and among cultivars/lines. Interaction between years and cultivars/lines was also significant in these traits, but F values were larger for cultivars/lines than for the interaction. Correlation analysis showed that cultivars/lines with lower FHB severities tended to have lower FDK, DON and NIV, and a higher yield. Resistance to kernel infection (RKI), residuals calculated by regressing FDK against FHB severity, and resistance to mycotoxin accumulation (RTA), residuals calculated by regressing DON + NIV against FDK, also differed significantly among cultivars/lines. These results indicated that varietal differences in response to FHB symptom development, RKI and RTA exist among wheat cultivars/lines in western Japan. Such information is important to aid producers in controlling the disease and for breeders to improve FHB resistance and reduce mycotoxin accumulation in commercial wheat cultivars.  相似文献   

14.
Fusarium culmorum head blight infections may lead to accumulation of toxic metabolites in winter rye grain. To estimate the correlation between resistance traits, fungal colonization and accumulation of deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-AcDON) and zea-ralenone (ZEA), 27 winter rye single-cross hybrids were artificially inoculated in 1992 and 1993. Resistance traits were head blight rating and grain weight of the inoculated relative to the non-inoculated plots. Fungal colonization was determined by the analysis of ergosterol (ERG) content in the grain. Head blight rating and relative grain yield showed a medium to high disease severity and ERG indicated a considerable fungal colonization of the kernels with a mean of 85 mg/kg in 1992 and 66 mg/kg in 1993. DON content among genotypes ranged from 0.7–28 mg/kg in 1992 and from 11 to 35 mg/kg in 1993. 3-AcDON and ZEA contents were low in both years with overall means of 1.1 and 0.09 mg/kg, respectively. Across both years, considerable genotypic variation was found for head blight rating, relative grain weight, and ERG content with medium to high heritabilities (0.6–0.7). For the mycotoxin contents, however, genotype-year interaction variance was the most important source of variation. The correlations between relative grain weight and DON, 3-AcDON, or ZEA were low in 1992 (r ~ 0.3), but considerably higher in 1993 (r ~ 0.7, P = 0.01). In contrast, correlation between relative grain weight and ERG was significant in both years (r ~ 0.5, P = 0.01). In F. culmorum head blight infections, DON, 3-AcDON and ZEA contents appear to be affected, at least partially, by different environmental factors than resistance traits and fungal colonization.  相似文献   

15.
Devastating maize grain yield and quality losses are caused by Aspergillus flavus, Fusarium verticillioides and Stenocarpella maydis ear rots especially in tropical countries. Therefore, combining ability of tropical maize populations for ear rot severity and ear rot-related traits was investigated. Ten full-sib progenies, comprising one resistant and one susceptible from each of the five populations, were selected for mating in a 10 × 10 full diallel. The full-sib progeny crosses were evaluated across two environments with two replications in Zambia. To determine resistance across three ear rots that occur together in Zambia, the crosses were artificially inoculated with a mixture of Aspergillus flavus, Fusarium verticillioides and Stenocarpella maydis isolates. There were marked differences between environment main effects and their interaction with GCA and SCA effects were highly significant, suggesting observation of genotype × environment interaction effects. Both additive and non-additive gene effects were significant for ear rot severity. Highly significant reciprocal differences were also revealed, suggesting that cytoplasmic gene effects and their interaction with nuclear genes were responsible in modifying resistance across the three ear rot diseases in the full-sib progenies that were derived from the five tropical maize populations.  相似文献   

16.
Summary Fusarium head blight infection causes severe yield losses and contamination of the grain with mycotoxins in triticale (× Triticosecale Wittmack) grown in temperate and semihumid areas. In a two-year experiment thirty-six genotypes were inoculated separately with two isolates of Fusarium graminearum differing fivefold in their in vitro deoxynivalenol (DON) production and the effect on various traits was studied. All traits were significantly affected by head blight. The two isolates differed considerably in their aggressiveness resulting in a mean reduction of grain weight per spike of almost 25% and 50%, respectively. Inter-annual correlation was high for average disease rating (r=0.63, P<-0.01) and low for the other traits. Therefore, disease rating, averaged from two to three records, was regarded a suitable criterion for screening purposes. The effect of isolates on genotypes was not stable over years. The mean DON content of five genotypes with diverse resistance levels was 68 mg kg-1. In vitro DON production of the two isolates used for inoculation did not correspond to their aggressiveness and DON contamination of the grain.  相似文献   

17.
Fusarium head blight (FHB) is a cereal disease of major importance responsible for yield losses and mycotoxin contaminations in grains. Here, we introduce a new measurement approach to quantify FHB severity on grains based on the evaluation of the whitened kernel surface (WKS) using digital image analysis. The applicability of WKS was assessed on two bread wheat and one triticale grain sample sets (265 samples). Pearson correlation coefficients between Fusarium‐damaged kernels (FDK) and WKS range from r = 0.77 to r = 0.81 and from r = 0.61 to r = 0.86 for the correlation between deoxynivalenol (DON) content and WKS. This new scoring method facilitates fast and reliable assessment of the resistance to kernel infection and shows significant correlation with mycotoxin content. WKS can be automated and does not suffer from the “human factor” inherent to visual scorings. As a low‐cost and fast approach, this method appears particularly attractive for breeding and genetic analysis of FHB resistance where typically large numbers of experimental lines need to be evaluated, and for which WKS is suggested as an alternative to visual FDK scorings.  相似文献   

18.
Preharvest sprouting (PHS) in spring wheat (Triticum aestivum L.) causes significant economic losses due to a reduction in grain functionality, grain yield and viability of seed for planting. Genetic resistance to PHS reduces these losses. Development of PHS resistant cultivars is complicated by the effects of genotype, environment, kernel diseases and spike morphological factors. RL4137 has consistently exhibited high levels of resistance to PHS over years and environments. The mean PHS scores of Canada Western Red Spring (CWRS) wheat cultivars with RL4137 in their ancestry are lower than that of CWRS wheat cultivars without. RL4137 has two mechanisms for PHS resistance, one associated with kernel color and the other not associated with kernel color. RL4137 was the source of PHS resistance in white wheats HY361, AC Vista, Snowbird, Kanata, and Snowstar, all of which had significantly lower PHS scores than the white-seeded check, Genesis. Known DNA markers relating to PHS were used to compare haplotypes with and without RL4137 in the ancestry. Coefficients of parentage also demonstrated the relationship. Because cultivars that have RL4137 in their ancestry were grown on about 77% of the spring wheat area for 2003–2007, RL4137 continues to contribute to protecting market grade from preharvest sprouting.  相似文献   

19.
Although kernel infection by Aspergillus flavus Link ex Fries and subsequent pre-harvest aflatoxin contamination of maize (Zea mays L.) grain are major production problems in the south-eastern United States and elsewhere in the world, limited progress has been made in developing and identifying sources for resistance. Genetics of kernel infection by A. flavus remains poorly understood. A 10-parent diallel experiment was conducted in 1992 and 1994 to study the genetic nature of percentage kernel infection (PKI) by A. flavus. General combining ability (GCA), specific combining ability (SCA), and reciprocal mean squares for PKI were significant. The GCA and SCA sums of squares were about equal. The GCA, SCA, and reciprocal effects varied across years, which implied that percentage kernel infection was greatly influenced by environments. The percentage kernel infection was always greater when Mo 17 was the male parent in a cross than when it was the female parent. The percentage kernel infection mean for female Mo 17 was 38.5% lower than that for male Mol7. Similarly, percentage kernel infection mean for female L668 was 23.7% lower than that for male L668. The use of inbred lines L729 and B73 as female parents should be avoided, as they showed significant, positive maternal reciprocal effects.  相似文献   

20.
A. Menkir 《Plant Breeding》2006,125(2):131-139
Striga hermonthica is the most widespread and destructive obligate root parasite infecting maize and other cereals in Africa. Maize inbred lines supporting reduced S. hermonthica emergence can form an important basis for developing Striga‐resistant maize cultivars. Twenty new inbred lines selected for field resistance to S. hermonthica, and five inbred checks with known resitance, tolerance and susceptibility reactions to S. hermonthica were evaluated in pots, greenhouse and field experiments under artificial Striga infestation for 3 years. The experiments were conducted to determine the extent of variation in parasite attachment to the roots of these lines and its relationship with emerged Striga plants and other traits. Significant differences (P < 0.0001) were detected among the inbred lines for the numbers of attached and emerged Striga plants and the results were consistent across test environments. Also, the lines exhibited significant differences for Striga damage symptom ratings and other traits recorded in the field. Parasite attachment to the roots was significantly correlated with emerged Striga count in the screenhouse (r = 0.67–0.68, P < 0.001) and in the field (r = 0.82–0.84, P < 0.0001) and with levels of grain yield reduction due to Striga (r = 0.71, P < 0.0001). Regression analysis of the numbers of attached parasites on the first principal component axis scores that integrated several traits recorded in the field was significant (P < 0.0001) and accounted for 62% of the total variation in numbers of attached parasites. The new inbred lines and the resistant inbred check were the least affected by S. hermonthica and exhibited yield losses of 0–37% compared with the yields of the tolerant and the susceptible inbred checks, which were reduced by 40–85%. Sixteen new inbred lines supported significantly fewer attached parasites compared with the susceptible inbred check. Some of these lines also supported significantly fewer emerged parasites and sustained lower damage symptoms and percentage yield losses due to Striga compared with the susceptible inbred check. These inbred lines would be useful in breeding programmes for developing resistant maize cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号