首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
构建新型材料活性碳纤维(active carbon fiber,ACF)填料床反应器,在温度25~27℃,利用人工污水进行挂膜,测定基本水质指标及生物膜氧吸收速率(oxygen uptake rate,OUR),研究反应器稳态后水力停留时间(hydraulic retention time,HRT),进水NH4+-N负荷以及CODMn/NH4+-N变化对于ACF填料滤器的影响。结果表明,ACF填料滤器最佳HRT时间为3.1h,NH4+-N去除率最高达到79.41%,此时氨氧化菌OUR平均为1.24mg O2/(g.h)。控制进水NH4+-N负荷分别为0.05、0.09、0.24、0.44g/(kg.d),最佳进水NH4+-N负荷为0.09g/(kg.d),NH4+-N去除率可达80.21%,此时氨氧化菌OUR平均为1.42mgO2/(g.h)。CODMn/NH4+-N比在2至6时,随着CODMn/NH4+-N比升高,NH4+-N去除率逐渐降低,而CODMn去除率明显上升。在CODMn/NH4+-N比为2时,NH4+-N去除率最高,为80.96%,此时氨氧化菌OUR平均为1.40mgO2/(g.h);在CODM...  相似文献   

2.
硝化抑制剂双氰胺对褐土中尿素转化的影响   总被引:2,自引:3,他引:2  
采用好气土壤培养法,研究北京地区典型褐土中添加不同浓度水平硝化抑制剂双氰胺(Dicyandiamide,DCD)条件下土壤中铵态氮、硝态氮变化规律.结果表明,44d培养期内,DCD施用显著提高土壤中NH+4 -N浓度,降低NO-3 -N浓度,1%、2%、3%、4%和5%DCD用量处理条件土壤NH+4 -N平均浓度比单施尿素对照处理分别升高29.50%、71.84%、99.73%、98.90%和139.69%,NO-3 -N平均浓度降低3.71%、15.61%、21.07%、33.57%和37.90%.综合反映NO-3 -N和NH+4 -N变化规律的土壤表观硝化率指标变化结果表明,1%、2%、3%、4%和5%DCD用量处理比对照分别降低12.18%、35.35%、44.82%、48.18%和59.93%;1%、2%、3%和4%DCD处理达到平衡时间分别延迟7d、14d、14 d和21 d,5%DCD处理表观硝化率一直较低,直到培养结束仍呈升高的趋势;2%、3%、4%DCD处理表观硝化率升高速率显著下降(分别降低39.32%、40.00%和52.27%).综合考虑作物氮素需求规律、环境效应和使用经济效益,4%DCD用量效应最佳,具有较好的土壤铵氧化抑制效果,有助于提高氮素利用率,减少环境流失.  相似文献   

3.
不同硝化抑制剂对尿素转化的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
【目的】比较不同硝化抑制剂在石灰性土壤上对氮素转化的抑制效果,旨在选择石灰性土壤上较理想的硝化抑制剂,为进一步提高氮素利用率、减少环境污染提供依据。【方法】以单纯施用尿素为对照,采用室内土壤培养试验法,将硝化抑制剂3,4-二甲基吡唑磷酸(DMPP)、双氰胺(DCD)、2-氨基-4-氯-6-甲基嘧啶(AM)和硫脲(TU)施入土壤,在培养一定时间(1~50 d)后采样,测定土壤的NH4+-N、NO3--N、NO2--N含量及pH和电导率(EC)。【结果】硝化抑制剂DMPP、DCD和AM不仅能够有效延缓尿素的水解,显著抑制土壤中NH4+-N的氧化作用,而且能够较长时间保持较高的NH4+-N含量,使硝化作用延滞35~38 d。各硝化抑制剂(TU除外)处理明显推迟了NO3--N的释放高峰期,对硝化过程均表现出明显的抑制作用。各硝化抑制剂处理的NO3--N、NH4+-N、电导率和pH之间有显著的相关性,土壤NO3--N含量与EC值呈显著正相关(P<0.05),而与pH值呈显著负相关(P<0.05);土壤NH4+-N含量与EC值和pH值的相关性则与NO3--N相反。【结论】在本试验条件下,TU未表现出对石灰性土壤氮损失的抑制效果,其他3种硝化抑制剂的抑制能力强弱顺序为DMPP>DCD>AM(P<0.05)。  相似文献   

4.
硫/珊瑚石填料床的自养反硝化反应器   总被引:3,自引:0,他引:3  
采用硫/珊瑚石填料床反应器去除人工合成废水中的硝酸盐.结果表明,该反应器通过硫自养反硝化作用能有效去除水体中硝酸盐氮.硫与珊瑚石体积比为1∶1、温度为(29±1)℃时,0.092-0.246 kg.m-3.d-1NO3--N为最适进水负荷,可确保NO3--N的去除率大于95%,且出水NO2--N含量低于1 mg.L-1;进水负荷达0.842 kg.m-3.d-1NO3--N时,达到最大体积去除负荷,为0.394 kg.m-3.d-1NO3--N,而相应出水NO2--N含量达40.95 mg.L-1.在不提高碱度的情况下,出水pH可始终维持在7.08以上.不同硫/珊瑚石体积配比对反硝化效率有显著影响,1∶1体积配比为该反应器最适填料配比.  相似文献   

5.
[目的]研究尿素中添加硝化抑制剂碧晶N+随水滴灌对灰枣生长以及品质的影响.[方法]以红枣为试材,设置添加浓度为纯氮量的0.3;的硝化抑制剂碧晶N+与不添加的处理,测定果园土壤中的NH4+-N含量与NO3--N含量,枣果产量与品质.[结果]土壤中的NH4+-N含量提高22.3; ~ 32.8;,NO3--N含量降低12;~35.7;;枣吊坐果数、单株坐果数与单株产量分别提高了105; 、95;与94;,可溶性固形物、糖和VC含量略有提高.[结论]添加硝化抑制剂碧晶可显著抑制土壤中的硝化作用,增加土壤中的铵态氮比例,延长氮肥肥效,增加红枣枣吊坐果数和单株坐果数,增加枣产量;提高果品中可溶性固形物、糖和VC含量及整齐度,增加枣果的商品性.  相似文献   

6.
固体碳源填充床反应器反硝化性能的研究   总被引:3,自引:0,他引:3  
为了优化固体碳源填充床反应器的运行条件,以PLA/PHBV颗粒为碳源和生物膜载体,研究了水力负荷与硝态氮负荷对反应器反硝化性能的影响,并用扫描电镜观察碳源表面生物膜的形态。结果表明,在进水硝态氮浓度为100mg·L-1,水力负荷为1.71~8.39m3·m-2·d-1时,反硝化速率呈现先增加后降低的趋势,最大值为40.53mg·L-1·h-1;随着水力负荷的提高,出水硝态氮浓度逐渐增加,而COD浓度逐渐降低;维持水力负荷在3.54m3·m-2·d-1以下,可保证反应器的出水满足我国饮用水标准对硝态氮与亚硝态氮浓度的要求;维持水力负荷为5.30m3·m-2·d-1,反应器的反硝化速率与进水硝态氮负荷线性相关(R2=0.937),而硝态氮负荷对出水的COD浓度未发生明显影响;维持进水硝态氮负荷不高于0.16kg·m-2·d-1,可保证反应器出水的硝态氮与亚硝态氮浓度满足国家标准。通过扫描电镜照片可以看出,PLA/PHBV颗粒表面的生物膜以球菌和杆菌为主,成簇定植在碳源颗粒表面。  相似文献   

7.
[目的]研究2种含氯甲基吡啶硝化抑制剂在滴灌条件下对土壤氮素转化及棉花产量的影响.[方法]在石河子农科中心设置硝化抑制剂棉花滴灌小区试验.[结果]供试的2种硝化抑制剂随水滴施第6 d后均表现显著的硝化抑制效果,土壤NH4+-N较对照增加3.82;~211.25;,NO3--N降低56.2;~77.12;;表观硝化率较对照处理降低2.66~52.83个百分点;提高氮肥利用率1.54~4.15个百分点;1 hm2增产籽棉202.5~247.5 kg,增产幅度3.43;~4.3;,新增经济效益1 059~1 306.5元.[结论]滴灌条件下硝化抑制剂随水滴施,简单易行,能够有效改善棉株的氮素营养水平,增产效果显著.  相似文献   

8.
蚯蚓处理后的猪粪物质变化试验研究   总被引:10,自引:0,他引:10  
以不同预处理的猪粪为饵料,在温度2 0℃、湿度70 %的培养箱里培养赤子爱胜蚓。对蚯蚓处理前的饵料和蚯蚓处理后蚓粪的C/N比、NH+4 -N和NO- 3-N的含量变化进行了测试对比。结果表明:与饵料相比,蚓粪的C/N比、NH+4 -N下降,NO- 3-N上升。  相似文献   

9.
针对近年来中国规模化养殖场迅速发展所带来的严重环境污染,特别是畜禽养殖废水中氨氮污染物所产生的污染,采用硝化反应器对其进行处理。首先进行硝化细菌的培养驯化,然后通过连续运行试验、间歇运行试验,考察氨氮的去除效果和操作参数的影响。试验结果表明:当温度为25℃,pH为6~7,DO为4~6mg·L-1,HRT为12h,进水氨氮为200mg·L-1时,出水氨氮浓度可以降低到1mg·L-1左右,氨氮的去除率接近100%。  相似文献   

10.
张国照  药宝宝 《安徽农业科学》2022,50(7):197-199+206
以活性碳纤维作为微生物载体开展农村生活污水处理试验,在进水COD、NH4+-N、TN、TP浓度分别为79.3~107.1、28.0~48.2、32.6~51.6、2.3~3.9 mg/L的条件下,上述指标的去除率分别为73.7%~89.1%、91.1%~98.2%、42.6%~77.9%、74.5%~86.3%(投加除磷剂)。其中,COD和NH4+-N的出水水质优于《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级A标准,TN和TP可稳定达到一级B标准(投加除磷剂),出水SS保持在5 mg/L以下。采用活性碳纤维填料的一体化农村污水处理装置已用于示范工程,达到了预期效果。与常规填料相比,活性碳纤维填料接触氧化法NH4+-N的去除性能更优。活性碳纤维适合在农村生活污水处理中应用。  相似文献   

11.
浒苔和条浒苔生长及其氨氮吸收动力学特征研究   总被引:4,自引:1,他引:4  
研究了浒苔(Enteromorpha prolifera)和条浒苔(Enteromorpha clathrata)在室内条件下的生长及其氨氮吸收动力学特征。结果表明:浒苔和条浒苔藻体体重日生长率分别为17.30%和16.82%;浒苔和条浒苔藻体幼苗在温度25℃和光照140μmol/(m2.s)的条件下达到最大体长日生长率,分别为78.9%和82.1%。在1~10 g/L密度范围内,浒苔和条浒苔对NH4+-N的吸收速率随密度和时间的增加而增加,当藻体密度为10 g/L时,NH4+-N浓度分别下降了86.43%和84.13%。两种浒苔对NH4+-N吸收速率与介质中NH4+-N浓度呈显著的线性关系,在NH4+-N浓度为400μmol/L时,30 min后浒苔和条浒苔的吸收速率分别为421和409μmol/(gDW.h),说明两种浒苔吸收氨氮的方式以被动扩散为主。在400μmol/L的起始浓度下,浒苔和条浒苔对NH4+-N的吸收速率随时间变化呈现3个不同阶段:在75 min内呈快速吸收阶段,75~185 min为内部NH4+-N控制的吸收阶段,250 min后为外界NH4+-N浓度控制的吸收阶段;在700 min后,...  相似文献   

12.
研究了浒苔(Enteromorpha prolifera)和条浒苔(Enteromorpha clathrata)在室内条件下的生长及其氨氮吸收动力学特征。结果表明:浒苔和条浒苔藻体体重日生长率分别为17.30%和16.82%;浒苔和条浒苔藻体幼苗在温度25℃和光照140μmol/(m2.s)的条件下达到最大体长日生长率,分别为78.9%和82.1%。在1~10 g/L密度范围内,浒苔和条浒苔对NH4+-N的吸收速率随密度和时间的增加而增加,当藻体密度为10 g/L时,NH4+-N浓度分别下降了86.43%和84.13%。两种浒苔对NH4+-N吸收速率与介质中NH4+-N浓度呈显著的线性关系,在NH4+-N浓度为400μmol/L时,30 min后浒苔和条浒苔的吸收速率分别为421和409μmol/(gDW.h),说明两种浒苔吸收氨氮的方式以被动扩散为主。在400μmol/L的起始浓度下,浒苔和条浒苔对NH4+-N的吸收速率随时间变化呈现3个不同阶段:在75 min内呈快速吸收阶段,75~185 min为内部NH4+-N控制的吸收阶段,250 min后为外界NH4+-N浓度控制的吸收阶段;在700 min后,...  相似文献   

13.
不同浓度DMPP和DCD对石灰性土壤中氮素转化的影响   总被引:3,自引:0,他引:3  
【目的】研究不同浓度硝化抑制剂3,4-二甲基吡唑磷酸(DMPP)和双氰胺(DCD)对石灰性土壤中氮素转化的影响,筛选出适宜石灰性土壤施用的DMPP和DCD最佳浓度,为其进一步在生产实践中的施用提供参考。【方法】采用室内培养的试验方法,在相同培养条件(土壤水分含量为田间持水量(WHC)的60%,温度为25℃)下,通过测定不同浓度DMPP(含氮量的0.5%、1%、2.5%和5%)和DCD(含氮量的2.5%、5%、10%和15%)处理土壤中各种形态氮素含量,评价不同浓度DMPP和DCD的抑制效果。【结果】施加不同浓度DMPP和DCD的土壤铵态氮含量均显著高于CK,而硝态氮和亚硝态氮含量显著低于CK。石灰性土壤中施用DMPP和DCD均能显著降低土壤的氨氧化速率,土壤铵态氮的半衰期从CK处理的3.6 d分别增加到14.1-17.1 d和13.1-26.8 d。不同浓度的DMPP间氨氧化速率差异不显著;而DCD处理的氨氧化速率随其浓度的增加而下降,亦即土壤铵态氮浓度的半衰期随施用浓度的增加而显著增加。除CK外,各处理氨氧化速率常数k相比,以2.5%DCD最小,15%DCD最大;DMPP与DCD相比较,除DCD最低浓度处理外(2.5%),所有DCD处理的氨氧化速率均大于DMPP。【结论】硝化抑制剂DMPP和DCD均能显著抑制铵态氮向硝态氮的氧化进程,DMPP各浓度处理抑制效果差异不显著,DCD各浓度处理间差异显著,5%DCD与DMPP各浓度处理间无显著差异。因此,建议DCD的施用量为含氮量5%,而DMPP的施用量为含氮量的0.5%。  相似文献   

14.
为提高咖啡氮肥肥料有效性,采用溶液培养的方法,研究NH_4~+和NO_3~-2种不同形态氮吸收速率、5种铵硝比例(10∶0、7∶3、5∶5、3∶7、0∶10)对咖啡生长及其氮素利用的影响。结果表明,不同形态氮素对咖啡的生长影响差异显著,铵硝混合营养下咖啡的生长明显优于单一形态氮素处理。在单一形态氮素条件下,咖啡对NH4+的最大吸收速率大于对NO3-的最大吸收速率;当2种形态氮素同时存在时,铵态氮会抑制硝态氮的吸收,硝态氮促进铵态氮的吸收;铵态氮促进地上部分生长,但浓度过高反而抑制地上部分生长;硝态氮的增加有利于根系的生长,但抑制了咖啡地上部分的生长。因此,在咖啡苗期,铵硝比例控制在7∶3~3∶7有利于咖啡生长。  相似文献   

15.
EUF析滤出的矿质氮源及其反映土壤供氮能力方面的效果   总被引:4,自引:0,他引:4  
分别用EUF,KCl和水析滤浸取了肥力不同的12种土壤中的氮素,并研究了不同方法浸出的氮素与黑麦草吸氮量的关系。研究表明,EUF法析滤出来的NO_3~--N与KCl和水浸出的大致接近,并没有使土壤中易矿化的有机氮氧化成NO_3~--N而浸出;析滤出来的NH_4~+-N仍是土壤中的可代换铵,既没有担负固定铵释放的信息,也没有提供易矿化有机N分解的信息。不同方法浸取的NO_3~--N都与黑麦草吸氮量有密切关系,而获得的NH_4~+-N情况相反。用KCl浸取的NO_3~--N与黑麦草吸氮量的关系比EUF析滤出来的NO_3~--N更为密切,而浸取方法的简单方便又为EUF所不及。  相似文献   

16.
岱海表层沉积物中影响氨氮释放的模拟研究   总被引:5,自引:1,他引:5  
以北方半干旱地区典型内陆封闭湖泊岱海为研究对象,采用室内模拟实验方法,开展了温度、pH、溶解氧及水生植物对湖泊沉积物中NH+4-N释放的影响研究.结果表明,温度升高,中性条件,厌氧条件均有利于NH+4-N的释放.狐尾藻对上覆水NH+4-N含量的有效控制作用是其抑制底泥释放、同化吸收作用和增强上覆水氧化条件等综合作用的结果,植物修复是控制湖泊富营养化水平的有效措施.  相似文献   

17.
活性炭吸附法处理含酚废水   总被引:2,自引:0,他引:2  
研究了活性炭吸附法处理苯酚废水的反应机理和影响因素,并考察了活性炭用量、pH值、吸附反应温度、振荡时间等因素对苯酚废水处理效果的影响。实验结果表明:在活性炭用量0.3 g左右,pH值2-3,吸附温度20℃-25℃,振荡时间40-60 min的条件下,苯酚浓度去除率可达95%以上,COD去除率可达90%以上。  相似文献   

18.
为了明确不同氮素形态(铵硝配比)对芝麻苗期光合荧光特性的影响,探究适合芝麻生长的铵硝配比,采用营养液栽培方法研究了不同铵硝配比(10∶0、9∶1、3∶1、1∶1、1∶3、1∶9、0∶10)对芝麻品种中芝13(ZZ13)和漯12(L12)苗期光合特性、光合色素、叶绿素荧光参数的影响。结果表明,铵态氮比例过高显著抑制芝麻生长,铵硝配比为10∶0和9∶1时植株死亡,高比例铵态氮(铵硝配比3∶1)处理的芝麻幼苗地上部干质量显著低于其他处理;随着铵态氮比例降低,抑制作用减弱,并且适当配施硝态氮(铵硝配比1∶9)时2个芝麻品种地上部干质量达最大值,ZZ13和L12的叶绿素a、b含量及叶绿素总量分别在铵硝配比1∶9和0∶10时达到最高,而铵硝配比3∶1时上述光合色素含量大幅降低。铵硝配比1∶9时,ZZ13和L12的净光合速率(Pn)和蒸腾速率(Tr)均最大,而高比例铵态氮处理时Pn和Tr均显著降低,两者对铵态氮的响应较为明显。此外,与纯硝态氮处理相比,铵硝配比1∶9显著提高了ZZ13的光系统活性,表现为光系统Ⅱ最大量子效率(Fv/Fm)和实际光化学效率(ΦPSⅡ)显著增加,非光化学猝灭系数(q N)显著降低,但对L12光系统Ⅱ活性的提高不明显;而铵硝配比3∶1显著抑制了ZZ13和L12的光系统Ⅱ活性,表现为Fv/Fm、ΦPSⅡ和q P(光化学猝灭系数)值显著降低,Fo(基础荧光)和q N值显著增加。可见,铵硝配比1∶9最适合芝麻生长,尤其是对于ZZ13,其促进光合作用的主导因素是显著提高了光系统Ⅱ活性,而对芝麻叶片光合色素含量及组成比例的影响不显著;高比例铵态氮对芝麻叶片光合色素含量及组成比例、光系统Ⅱ活性、Pn和Tr都产生了不良影响,进而严重抑制芝麻的光合作用和生长。  相似文献   

19.
不同小白菜器官对氮素形态响应的生理差异   总被引:13,自引:1,他引:13  
通过水培试验研究了不同形态氮素比例对4个不结球小白菜品种单株生物量,叶片、叶柄及根系与整株的比例,叶片叶色值(SPAD值)以及不同器官硝酸盐含量的影响。结果表明:在NH4^ -N/NO3^--N为25:75时小白菜的单株生物量最大;随着NH4^ -N/NO3^--N的变小,根重/株重及叶重/株重先减后增,而叶柄重/株重则与前两的变化规律完全相反;叶片SPAD值与营养液中的NH4^ N/NO3^-N的相关性达0.9以上;叶片、叶柄及根的硝酸盐含量均随着营养液中硝态氮比例的增大而增加,以叶柄的硝酸盐含量最高,根中的最低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号