共查询到18条相似文献,搜索用时 65 毫秒
1.
2.
大豆抗大豆花叶病毒病基因研究进展 总被引:3,自引:0,他引:3
大豆花叶病毒(soybean mosaic virus,SMV)病是严重危害世界大豆(Glycine max(L.)Merr.)生产的主要病害之一。近十年来,国内外关于大豆对SMV抗病基因的遗传标记定位、候选抗病基因的分析及大豆抗SMV的调控网络等研究取得许多新进展。大豆对SMV的抗性遗传主要分为数量抗性和质量抗性,其中数量抗性的遗传主要由1对加性主基因+加性-显性多基因共同控制;对不同SMV株系的质量抗性遗传分别由1对不同的显性基因控制。标记定位研究发现,大豆对SMV数量抗性位点主要分布在大豆的第6、10和13等染色体上。22个对SMV具有单显性质量抗性的基因位点已被标记定位在大豆的第2、6、13和14染色体上,且定位的多数抗病基因位点两侧标记间的物理距离都在1 Mb以内。其中第13染色体上的基因位点数最多,有Rsv1、Rsv5、RSC3Q、RSC11和RSC12等10个,定位在第2染色体上的基因位点有8个,如Rsv4、RSC5、RSC6、RSC7和RSC8等,第6和14染色体上各有2个基因位点,分别为RSC15、RSC18和Rsv3、RSC4。参考大豆全基因组序列(http://www.phytozome.net/soybean),利用生物信息学方法、表达谱分析及克隆测序技术等进一步缩小了大豆抗SMV候选基因的筛选范围。目前,在大豆第2染色体上确定的抗SMV候选基因主要有8个:Glyma.02G121400、Glyma.02G121500、Glyma.02G121600、Glyma.02G121800、Glyma.02G121900、Glyma.02G122000、Glyma.02G122100和Glyma.02G122200,在第6染色体上的是Glyma.06G182600,在第13和14染色体上的抗SMV候选基因分别有9个和6个:Glyma.13G184800、Glyma.13G184900、Glyma.13G187900、Glyma.13G190000、Glyma.13G190300、Glyma.13G190400、Glyma.13G190800、Glyma.13G194700、Glyma.13G195100和Glyma.14G204500、Glyma.14G204600、Glyma.14G204700、Glyma.14G205000、Glyma.14G205200、Glyma.14G205300。基于病毒诱导的基因沉默VIGS(virus induced gene silencing,VIGS)和转基因操作等技术,研究发现抗SMV相关基因Gm HSP40、Gm PP2C3a、Gm AKT2、Gm Cnx1、Gm SN1、Glyma.14G204500、Glyma.14G204600、Glyma.14G204700等参与大豆对SMV的抗性,属于正调控因子;而Gm EF1A和Gme IF5A等则增加大豆对SMV的易感性,为负调控因子。在综合SMV抗病基因的相关研究基础上,构建了基于Rsv1和Rsv3介导对SMV极端抗性的调控网络模型。Rsv1介导的大豆对SMV极端抗性调控模型的建立为大豆抗SMV信号网络的研究提供了新的方向。Rsv3介导的大豆对SMV极端抗性的主要机制是通过ABA信号的传导,从而使胞间连丝处的胼胝质沉积以抑制病毒从最初侵染的细胞向健康细胞的转移。本文系统综述了SMV抗病基因方面的最新研究成果并对该领域未来的研究方向进行了展望,以期为大豆抗SMV分子设计育种和抗病基因的机理研究提供参考。 相似文献
3.
蚜虫的消长与春大豆花叶病毒病的田间流行 总被引:1,自引:0,他引:1
利用黄色皿在江苏扬州、南京、句容等地春大豆田间诱集调查有翅蚜迁飞消长情况,定点定株调查春大豆无翅蚜数量变化动态。研究表明:迁飞的有翅蚜是春大豆花叶病毒病田间传播流行的主要介体,大豆植株上无翅蚜量的多少与病毒病的发生和流行没有关系;传播大豆花叶病毒病的主要蚜虫种类有桃蚜(Myzuspersicae)、豆蚜(Aphis craccioora)、菜蚜(Rhopalosiphum pseudobrassicae)等,不同地区、不同年份迁飞种的种类、数量及出现时期有差异;在蚜虫迁飞高峰期间,大豆田间植株生育期越早,病毒病发生越重;用常规杀虫药剂防治这类非持久性蚜虫传播的大豆花叶病毒病无明显效果。 相似文献
4.
5.
6.
两个不同株系大豆花叶病毒侵染大豆细胞的超微病变比较研究 总被引:1,自引:0,他引:1
以大豆品种冀豆7号和大豆花叶病毒(SMV)株系SC-8、N3分别组成感病和抗病组合,运用电子显微镜比较观察了不同组合中大豆叶片细胞的超微结构变化。结果显示:在抗病组合的叶肉细胞中,侵染早期(接种8~12h),叶绿体膨胀,叶绿体片层结构轻微零乱,核染色质发生凝集现象;接种后24h,叶绿体继续膨胀变形,线粒体结构清晰完整,核变形严重;侵染后期(接种后72 h),细胞核近乎衰败,双层核膜已基本辨认不清,叶绿体结构基本解体。此时线粒体嵴突已发生退化,只有双层膜结构,内部出现空虚状态。细胞中的病毒粒子很少,也没发现柱状内含体结构。在此过程中,叶绿体和细胞核是最早做出反应的细胞器,而线粒体是最后解体的细胞器。感病组合中叶肉细胞超微结构的变化比抗病组合晚了10 h以上,细胞器的结构变化特征与抗病组合相似,但在所观察的整个互作过程中,核、叶绿体和线粒体的衰退是同步的,显示出了细胞被动死亡的特征;且在细胞死亡的整个过程中叶绿体上均有淀粉粒的积累,另外还观察到线粒体的异常增加现象,这可能是为了病毒粒子的增殖和柱状内含体的产生提供能量所致。 相似文献
7.
黄淮地区大豆花叶病毒株系的鉴定与分布 总被引:3,自引:1,他引:3
2001-2002年采集了黄淮地区四省28个县市的大豆病样591份,经初步繁殖鉴定、生物纯化及组织印迹检测,得到了50个SMV毒株, 采用王修强等筛选的10个鉴别寄主进行接种鉴定,检测到SC-3~SC-9等7个株系群,发现1个新的株系群SC-10。综合本单位1998-2002年的结果,黄淮地区(河南、山东、安徽北、江苏北) 在SC-1~SC-10中,除SC-2未发现外,9个株系群中,以SC-3和SC-7为主,分别占29.21% 和23.60%,SC-4和SC-8其次(10.11%、8.99%)。在各省分布上,河南省有7个株系群,SC-3、SC-4为主,SC-5、SC-7其次;山东省4个株系群,以SC-3为主,SC-8也占相当比重;皖北7个株系群,以SC-7和SC-9为主,其次SC-10;苏北8个株系群,以SC-3和SC-7为主,其次SC-8。按株系群看,SC-3、SC-4各省均有;SC-5、SC-6 、SC-7 在河南、皖北、苏北3地;SC-1、SC-8在河南、山东、苏北3地;SC-9只在皖北发现;SC-10在皖北、苏北2地发现;SC-2在黄淮未发现。 相似文献
8.
9.
10.
大豆花叶病毒(SMV)病是危害大豆的最主要病毒病之一,在我国不同地区普遍发生且各地生理小种都有不同。小豆病毒病近年来在各地发生具有加重的趋势,但小豆病毒侵染来源等相关研究不甚清楚。利用大豆花叶病毒流行生理小种对来自国内不同地区的小豆品种进行接种侵染研究,接种SMV于137份小豆品种,调查发病情况发现50个品种发病,症状包括花叶、矮缩、坏死,说明大豆花叶病毒也可侵染小豆,且大多数症状为花叶,破坏寄主的叶绿体功能。2个SMV株系的发病品种数量无明显差异,说明病毒的侵染范围与病毒的致病力强弱无必然联系,只与寄主的“基因-基因”识别有关。该发现为国内首次相关报道,为小豆病毒病的研究打下了相关基础。 相似文献
11.
12.
13.
大豆花叶病毒症状反应的遗传研究 总被引:2,自引:0,他引:2
利用对SMV不同株系分别表现抗病(免疫或无症状)、坏死以及花叶的品种,配置花叶×抗病,花叶×花叶、花叶×坏死,坏死×坏死、坏死×抗病5类杂交组合。各组合的F1、F2和部分B1、F3世代在接种大豆花叶病毒Sa, SC8和N3株系的条件下,研究了大豆花叶病毒症状反应的遗传。结果表明,花叶×抗病组合接种SC8株系后,F1表现抗病,F2和B1群体分别发生3抗∶1感以及1抗∶1感的表型和基因型分离,说明一对等位基因控制大豆对SC8 的抗病和花叶症状,其中抗病表现显性,花叶表现隐性。花叶×坏死组合接种SC8和Sa后,F1表现坏死,F2群体发生3坏死∶1花叶分离,说明控制坏死和花叶症状的基因是等位的,坏死基因对花叶基因表现为显性。坏死×抗病组合的F1表现抗病,F2出现3抗∶1坏死分离,说明抗病对坏死为显性。坏死×坏死,花叶×花叶两类组合后代接种不同株系后均没有发生症状分离,说明不同品种间控制花叶的基因是等位的;控制坏死的基因也是等位的。根据以上遗传试验推断,大豆对SMV的抗病(无症状)、坏死以及花叶3类症状由1组复等位基因控制,对应的等位基因可分别表示为S R、s N和s m,其中S R对s N和s m均表现显性,s N对s m表现显性。 相似文献
14.
研究菌克毒克对烟草花叶病的防治效果,结果表明:菌克毒克(8%宁南霉素水剂内销品)对烟草花叶病有较好的防治效果,平均防治效果达66.7%,可促进烟株的生长,经济效益显著。 相似文献
15.
16.
综述了黄瓜花叶病毒的研究进展及黄瓜对黄瓜花叶病毒病的抗性遗传规律和分子标记研究现状,对存在问题进行了分析,并提出了解决问题应该采取的措施。 相似文献
17.