首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
土壤中噻虫嗪农药残留分析方法   总被引:5,自引:1,他引:5  
噻虫嗪(thiamethoxam),分子式为C8H10ClN5O3S,属于第二代新烟碱类杀虫剂,即硫烟碱类杀虫剂,在国内外有着广泛的应用。通过实验建立了一种噻虫嗪在土壤中残留的分析方法,即采用甲醇为萃取剂,在超声振荡条件下萃取土壤中噻虫嗪的残留,经硅胶柱层析净化后,采用反相HPLC-UVD方法对噻虫嗪在土壤中残留进行定量分析。结果表明,该方法噻虫嗪的最小检测量为9.6×10-8g,在土壤中的最低检测浓度为0.024mg·kg-1。标准添加回收率为78.9%~90.1%,标准差为2.26~4.82,变异系数为2.52%~5.67%。该方法的准确性、灵敏度均达到农药残留分析的要求,且所需仪器设备简单,测试费用较低。  相似文献   

2.
【目的】分析噻虫嗪及其代谢物噻虫胺在苦瓜上的残留动态,初步评估其膳食摄入风险。【方法】于2018年在黑龙江省哈尔滨市、河北省定州市、河南省新乡市、湖南省张家界市、浙江省绍兴市、广东省东莞市6地进行噻虫嗪及其代谢物噻虫胺的田间残留试验,并基于高效液相色谱-串联质谱仪(LC-MS/MS)及优化的样品前处理技术,建立苦瓜中噻虫嗪及其代谢物噻虫胺的检测方法。【结果】在0.01~0.5 mg/kg的添加水平下,噻虫嗪和噻虫胺在苦瓜空白基质中的平均回收率分别为87.5%~89.9%和73.9%~89.7%,相对标准偏差分别为5.3%~8.2%和2.5%~5.0%,定量限为0.01 mg/kg。黑龙江和广东两地噻虫嗪在苦瓜中的消解半衰期(t_(1/2))为3.55~5.33 d。最终残留结果显示,噻虫嗪和噻虫胺施药5 d后在苦瓜中的残留量分别为≤0.12 mg/kg和≤0.06 mg/kg。膳食风险评估结果表明,噻虫嗪和噻虫胺在苦瓜中的风险商分别为0.14和0.075,均小于1,不会对一般人群健康产生不可接受的风险。【结论】推荐噻虫嗪、噻虫胺在苦瓜上的最大残留限量值分别为0.2和0.1 mg/kg。  相似文献   

3.
[目的]评估噻虫胺和虫螨腈在大葱中的残留消解及膳食摄入风险。[方法]通过规范田间残留试验,结合大葱中噻虫胺和虫螨腈的残留量,评估噻虫胺和虫螨腈的长期膳食摄入风险。[结果]噻虫胺和虫螨腈在大葱中的半衰期分别为4.6~7.4和5.8~6.9 d,均降解较快。长期膳食风险评估结果表明,普通人群中噻虫胺和虫螨腈的风险商(RQ)分别为5%和84%,对一般人群健康产生的风险是可接受的。[结论]按照推荐剂量使用,噻虫胺和虫螨腈在大葱中残留不会对我国人体健康产生影响。  相似文献   

4.
建立了同时测定油菜籽中噻虫嗪及其代谢物噻虫胺的超高效液相色谱-串联质谱分析方法,并对实际样品中的噻虫嗪和噻虫胺进行了检测.结果表明:在0.001~0.100 mg·L-1添加水平下,噻虫嗪和噻虫胺均呈现良好的线性关系,二者线性回归方程分别为Y=526940X-285,r=0.9999(噻虫嗪);Y=946791X-36...  相似文献   

5.
采用田间试验和高效液相色谱-质谱法研究噻虫嗪在菜豆中残留的检测方法、噻虫嗪在菜豆中的残留消解动态及最终残留量与安全风险。结果表明,检测方法对噻虫嗪、噻虫胺的最小检出量均为2.5×10-11g,噻虫嗪、噻虫胺在菜豆中的最低检出浓度均为0.01 mg·kg-1,噻虫嗪、噻虫胺在菜豆中的添加回收率分别为90%~94%和89%~93%,相对标准偏差分别为2.1%~4.2%和4.6%~7.7%。噻虫嗪在菜豆中的半衰期为2.0~4.1 d,药后5 d消解69.3%以上。25%噻虫嗪水分散粒剂的有效成分分别为75.0、112.5 g·hm-2时,施药2~3次,末次施药后10 d,收获的菜豆中噻虫嗪的残留量均低于0.02 mg·kg-1,故推荐该药在菜豆上的安全间隔期为10 d。  相似文献   

6.
噻虫嗪可有效防治多种害虫,现已被广泛应用于农业和畜牧业。为噻虫嗪的进一步研究提供参考,综述了杀虫剂噻虫嗪在蔬菜、茶叶等植物及土壤上的残留测定方法,分析了噻虫嗪残留的研究现状。  相似文献   

7.
稻田土壤及水稻中噻虫嗪的残留检测与降解   总被引:2,自引:0,他引:2  
噻虫嗪是防治稻飞虱和叶蝉等害虫的常用药剂,为明确其在稻田土壤及水稻中的残留动态,建立了一 种测定稻田土壤和水稻中噻虫嗪残留量的高效液相色谱分析方法,并采用该方法检测了贵州开阳、黄平和桐梓3 地 噻虫嗪的残留动态,结果表明在0.05,10.00 mg/L 范围内,噻虫嗪的峰面积与其质量浓度间呈良好的线性关系,相关 系数为0.9994,噻虫嗪的最低检出量为1.0,10-10 g,在土壤,稻秆,糙米和谷壳中的最低检出浓度分别为0.004,0.001, 0.003,0.003 mg/kg,在添加水平为0.1~1.0 mg/kg 范围内,稻田土壤和水稻中噻虫嗪平均回收率分别为90.97%~ 100.32%,88.96%~100.32%,相对标准偏差分别为1.77%~2.93%,0.57%~3.05%噻虫嗪在贵州开阳,黄平和桐梓3 地 稻田土壤和水稻中的降解动态曲线均符合一级动力学方程,其在水稻植株中降解迅速半衰期为1.73~2.14 d,在稻 田土壤中的降解速率比植株中的慢半衰期为2.79~3.03 d,属于易降解农药(t1/2 < 30 d)。  相似文献   

8.
9.
为了掌握噻虫嗪在辣椒上的残留消解规律,本文设置了日光温室栽培和露地栽培两种栽培条件,采用田间试验和液相质谱分析法,研究了不同剂量30%噻虫嗪悬浮剂在辣椒茎叶上喷洒后的残留消解动态。结果表明,噻虫嗪在日光温室辣椒和露地辣椒上的初始沉积量存在较大差异,施药剂量越大、初始沉积量越高;噻虫嗪在辣椒上的残留消解动态符合动力学一级降解方程;茎叶喷洒噻虫嗪60 g/hm2和120 g/hm2后,其降解速率基本相似,在露地辣椒上的半衰期分别为2.7 d和2.6 d,在日光温室辣椒上的半衰期分别为2.8 d和2.6 d;2种剂量的残留降解时间和最终残留量均符合蔬菜质量安全标准。  相似文献   

10.
氯虫苯甲酰胺和噻虫嗪在豇豆中的残留检测与消解动态   总被引:1,自引:0,他引:1  
采用QuEChERS方法提取,以超高效液相色谱 电喷雾电离串联质谱法测定,外标法定量。结果显示,在0.02~1.0 mg·kg-1添加水平范围内,氯虫苯甲酰胺和噻虫嗪平均回收率为944%~101%,变异系数为2.03%~7.58%,方法最低检出限为0.5~1.0 μg·kg-1。当施药剂量氯虫苯甲酰胺为60 g·hm-2,噻虫嗪为120 g·hm-2时,消解方程分别是C=0.620 5 e-0.264 1t,C=1.662 3 e-0.561 7t。该方法的灵敏度、准确度和精密度均能符合农药残留分析的要求。氯虫苯甲酰胺和噻虫嗪在豇豆中属于易降解农药,半衰期分别是2.62和1.32 d。  相似文献   

11.
SPE-HPLC-MS/MS法测定人参及土壤中氟硅唑的残留及风险评估   总被引:1,自引:0,他引:1  
【目的】明确人参和土壤中氟硅唑的残留量,并对可能产生的膳食风险进行评估,以确保人参产品的质量安全.【方法】在集安市和抚松县进行2年试验,采用固相萃取-高效液相色谱-串联质谱法测定了400 g·L-1氟硅唑乳油在人参根及土壤中的残留消解及最终残留量,并采用风险商值法对人参中氟硅唑可能产生的膳食风险进行了评估.【结果和结论】施药剂量为90 g·hm-2(以有效成分计)时,氟硅唑在人参根和土壤中的降解半衰期分别为7.85~9.94和5.59~7.13 d.施药剂量为60~90 g·hm-2时,施药后35 d氟硅唑在人参根和土壤中的残留量分别小于0.043 3和0.037 5 mg·kg-1.风险商值为4.59×10-5,风险较低,处于安全水平.建议我国在人参中氟硅唑的最大残留限量值可暂定为0.05 mg·kg-1,安全间隔期为35 d.  相似文献   

12.
为评价苏州生态涵养发展实验区农业土壤中农药的污染状况与潜在风险,运用气相色谱-质谱法(GC-MS)检测了苏州生态涵养区63个位点的农业土壤中46种农药的残留水平,结合非度量多维尺度分析其时空分布特征,并以风险商法评估其生态风险。结果显示:土壤样品中共检出有机氯、有机磷、噻二嗪及拟除虫菊酯4类农药,其平均浓度分别为31.8、56.9、109.8 μg·kg-1和71.9 μg·kg-1。p''p-DDE检出范围最广(检出率91%~100%),噻嗪酮检出浓度最高(1 061.1 μg·kg-1)。生态风险评估显示,27%的土壤样点存在潜在生态高风险,风险来自p,p''-DDE、噻嗪酮、水胺硫磷、联苯菊酯、氯氰菊酯、氰戊菊酯、溴氰菊酯7种农药。  相似文献   

13.
农药残留是影响我国蔬菜质量安全的重要因素,文章以西兰花为研究对象,开展了苯醚甲环唑、戊唑醇、腈菌唑等3种三唑类农药在西兰花中的残留动态试验.建立了GC-MS测定西兰花中3种三唑类农药残留的方法,并开展了在西兰花中残留的膳食暴露风险评估.结果表明,根据现有的膳食摄入数据计算,西兰花生产中使用苯醚甲环唑和腈菌唑应控制使用量...  相似文献   

14.
通过田间试验研究露地栽培条件下唑虫酰胺在西兰苔上的消解动态和最终残留情况,明确使用该药剂防治害虫可能产生的食用安全风险。结果表明,15%唑虫酰胺悬浮剂按2倍最高推荐剂量(有效成分225 g·hm-2)施药1次,在西兰苔上的消解半衰期为3.35 d。最终残留量试验结果表明,该药剂的残留超标风险与田间用药量、用药次数正相关。经膳食风险评估,以225 g·hm-2的剂量施药1次,药后1 h~17 d风险商值RQ均小于1,施药2~3次则药后1~7 d均存在较大膳食风险;以112.5 g·hm-2的剂量施药2次,药后3 d起膳食风险处于可接受水平。建议生产中采用15%唑虫酰胺悬浮剂以有效成分112.5 g·hm-2的剂量用药,每季最多使用2次,在露地栽培西兰苔上安全间隔期为5 d。  相似文献   

15.
为研究呋虫胺在甘蓝上的消解动态规律及评价呋虫胺在甘蓝上长期膳食摄入风险,分别于2015、2016年在湖北、安徽和河北进行规范残留试验,建立高效液相色谱-质谱法(HPLC-MS)检测呋虫胺及其代谢物在甘蓝中残留的分析方法,并评估呋虫胺在甘蓝上的长期慢性膳食暴露风险.样品经乙腈-乙酸溶液超声提取,盐析离心,上层清液经QuEChERS法净化后,用HPLC-MS检测.结果 表明:呋虫胺及其代谢物1-甲基-3-(四氢-3-呋喃甲基)脲(UF)和1-甲基-3-[(3-四氢呋喃)甲基]二氢胍盐(DN)在甘蓝中平均回收率为56%~97%,相对标准偏差(RSD)为3%~16%,呋虫胺在甘蓝上最低检测浓度为0.05 mg·kg-1.呋虫胺在甘蓝中降解半衰期为1.8~4.4 d.膳食摄入风险评估结果显示,我国各类人群的呋虫胺国家估计每日摄入量(NEDI)为0.706~1.604 μg·kg-1,风险商值(RQ)为0.008~0.321,表明呋虫胺在甘蓝上的长期膳食摄入风险较低.  相似文献   

16.
[目的]探讨不同剂型保水剂残留后效对两年宿根蔗的持续影响.[方法]采用田间试验,新植蔗下种时设施用胶体型保水剂,颗粒型保水剂和不施用保水剂处理,各处理宿根蔗期均不再施保水剂.观测调查宿根蔗的发株、分蘖和株高等生长指标,分区验收各处理产量.[结果]施用保水剂处理在两年宿根蔗中仍表现增产,胶体型保水剂和颗粒型保水剂与对照相比,宿根第1年分别增产6.97%、8.01%,宿根第2年分别增产3.20%、3.96%.[结论]两种剂型保水剂在土壤中的残留后效对宿根蔗均具有增产作用,其增产效果随施入土壤时间的延长而降低.  相似文献   

17.
【目的】了解烯酰吗啉在马铃薯和土壤中的消解动态,为其防治马铃薯晚疫病时的安全合理用药提供依据。【方法】首先建立一种用气相色谱仪测定烯酰吗啉残留量的检测方法,然后于2012和2013年在山东、吉林进行田间试验,对烯酰吗啉在马铃薯植株、块茎、土壤中的消解动态和最终残留量进行检测,并对施药后可能产生的膳食安全风险进行评估。【结果】2012年和2013年烯酰吗啉在马铃薯植株中的半衰期分别为0.7d(吉林)、0.6d(山东)和2.5d(吉林)、1.2d(山东),在马铃薯土壤中的半衰期分别为0.7d(吉林)、0.5d(山东)和4.3d(吉林)、9.6d(山东)。烯酰吗啉施用剂量、施药次数不同,则其在马铃薯植株、块茎及土壤中的最终残留量也不同,烯酰吗啉最终残留量在马铃薯植株中均低于1.240mg/kg,在土壤中均低于3.405mg/kg,在马铃薯块茎中均低于或等于检测方法的最低定量限0.02mg/kg,也低于我国制定的烯酰吗啉在马铃薯中的最大残留限量0.05mg/kg。采收后马铃薯块茎中烯酰吗啉的估计暴露量为1.64×10-5 mg/kg,风险商值为8.18×10-5(远小于1),膳食风险较低。【结论】50%烯酰吗啉可湿性粉剂推荐施药剂量为450g/hm2,施药次数不超过3次,施药间隔期7d,采收安全间隔期14d,此条件下食用收获期的马铃薯可靠安全。  相似文献   

18.
[目的]探讨不同剂型保水剂残留后效对两年宿根蔗的持续影响.[方法]采用田间试验,新植蔗下种时设施用胶体型保水剂,颗粒型保水剂和不施用保水剂处理,各处理宿根蔗期均不再施保水剂.观测调查宿根蔗的发株、分蘖和株高等生长指标,分区验收各处理产量.[结果]施用保水剂处理在两年宿根蔗中仍表现增产,胶体型保水剂和颗粒型保水剂与对照相比,宿根第1年分别增产6.97%、8.01%,宿根第2年分别增产3.20%、3.96%.[结论]两种剂型保水剂在土壤中的残留后效对宿根蔗均具有增产作用,其增产效果随施入土壤时间的延长而降低.  相似文献   

19.
李华  邓林 《广东农业科学》2013,40(11):169-170
研究了农田区域中铅矿区土壤中铅的存在形态,发现铅在土壤中的存在形态按含量大小依次为:残渣态、有机结合态、铁锰氧化物结合态、碳酸盐态、交换态、水溶态.其中,40%以上的铅存在形态具有生物有效性,铅的污染指数远大于1.通过矿区种植卷心菜和茼蒿研究了矿区蔬菜的安全性,结果表明,随着离矿区距离越远,土壤和蔬菜中的铅含量都呈下降趋势,且蔬菜中的铅含量与土壤中的铅浓度呈正相关.蔬菜根的铅含量远高于叶的铅含量,茼蒿较卷心菜高,同时,叶、根的富集系数也相差较大,结果证明,在矿区1 km范围内农田种植的两种蔬菜均不适合食用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号