首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
To provide basic information on self-bonding in kenaf core binderless boards, a series of chemical analyses was conducted on binderless boards and their chemical changes during hot pressing were examined in our previous study. In this study, binderless boards were manufactured under conditions that may accelerate the supposed chemical changes to investigate their effect on the board properties. First, to investigate the influence of the chemical bonds formed by carbonyl compounds on self-bonding, the influence of acetic acid addition prior to board manufacturing was studied and the effect of methanol extractives (containing the carbonyl compounds) was also examined. Second, the influence of the condensation reaction in lignin was discussed from the viewpoint of board density. Last, to examine the influence of thermal softening of lignin, the influences of temperature condition and moisture content, as well as those of microwave pretreatment, were investigated. As a result, the estimated chemical changes were suggested to influence the binderless board properties.  相似文献   

2.
Chemical changes in steam-pressed kenaf core binderless particleboard   总被引:4,自引:0,他引:4  
The effects of chemical changes in kenaf core binderless particleboards on the bonding performance and thickness swelling of boards were investigated by chemical and spectroscopic analyses. Mild steam-injection treatments (0.6–1.0MPa) caused significant degradation of hemicelluloses, lignin, and cellulose. Conventional hot pressing caused a lower degree of degradation of the chemical components. The hot-pressed kenaf core board without any binders showed poor bonding performance. Thus, it was found that partial degradation of the three major chemical components of the kenaf core by mild steam-injection treatment increased the bonding performance and dimensional stability of the binderless boards, and gave better quality binderless boards than those made by hot-pressing treatments.Part of this report was presented at the 4th International Wood Science Symposium, Serpong, Indonesia, September 2002; and at the 53rd Annual Meeting of The Japan Wood Research Society, Fukuoka, March 2003  相似文献   

3.
A two-cycle accelerated aging boil test was conducted on kenaf core binderless boards to estimate their bond durability. This is one of the methods to estimate the bond quality of kenaf core binderless boards, as stipulated by Notification 1539 of the Ministry of Land, Infrastructure, and Transport, October 15, 2001, for the Building Standard Law of Japan. Generally, retention ratios of modulus of rupture (MOR), modulus of elasticity (MOE), and internal bond (IB) strength after the boil test increased with increased pressing temperature. In particular, the MOR retention ratio of boards with a pressing temperature of 200°C (average 106.4%) was higher than that of a commercial medium-density fiberboard (MDF) (melamine-urea-formaldehyde resin) (average 72.7%), and the value sometimes exceeded 100%. The durability of kenaf core binderless boards with a pressing temperature of 200°C compared favorably with that of the commercial MDF (melamine-urea-formaldehyde resin), having almost the same retained strength values after the boil test. Part of this article was presented at the International Symposium on Wood Science and Technology, IAWPS2005, November 27–30, 2005, Yokohama, Japan  相似文献   

4.
We investigated optimum self-bonding conditions of kenaf core composites manufactured by steam treatment, and discussed on the roles of cinnamic acids in the self-bonding mechanism. The presence of cinnamic acids in the kenaf core and its composites were analyzed by pyrolysis gas chromatography-mass spectrophotometry in the presence of tetramethyl ammonium hydroxide (TMAH/Py-GC-MS). The results showed that the optimum bonding properties of kenaf core composites were achieved under these conditions: steam pressure of 0.8–1.0 MPa and pressing time of 10–15 min were able to provide shear strength of 0.40–0.42 MPa while having 2–5% of weight loss. Lignin analysis showed that steam-treated kenaf core composites had a lower proportion of syringyl- to guaiacyl-derived moieties and also cinnamic acids to guaiacyl-derived moieties than its native counterpart. The results indicated that some parts of the ester-linked cinnamic acids were also cleaved due to the degradation of hemicelluloses and lignin during steam treatment. Based on these results, it was concluded that in addition to three main components, the cinnamic acid was also suggested to participate in the self-bonding mechanism of non-wood lignocellulosic binderless boards.  相似文献   

5.
An outdoor exposure test was conducted on kenaf core binderless boards (pressing temperatures 200°, 180°, and 160°C; pressing pressure 3.0 MPa, time 10 min, target board thickness 5 mm, target board density 0.8 g/cm3) to estimate their bond durability. Modulus of rupture (MOR), modulus of elasticity (MOE), internal bonding strength (IB), thickness change, weight loss, Fourier transform infrared (FTIR) spectra, and color difference (ΔE*) by the CIE L*a*b* system were measured at various outdoor exposure periods up to 19 months. These values were then compared with those of a commercial medium-density fiberboard (MDF; melamine-urea-formaldehyde resin; thickness 9.0 mm, density 0.75 g/cm3). Generally, dimensional stability and the retention ratios of MOR, MOE, and IB after the outdoor exposure test increased with increased pressing temperature of binderless boards. The MOR retention ratio of the kenaf core binderless boards with a pressing temperature of 200°C was 59.5% after 12 months of outdoor exposure, which was slightly lower than that of the MDF (75.6% after 11 months of outdoor exposure). Despite this, the bond durability of the kenaf core binderless boards should be viewed as favorable, especially when considering the fact that the retention ratio of 59.5% was achieved without binder and without obvious element loss. Part of this report was presented at the International Symposium on Wood Science and Technology, IAWPS2005, November 27-30, 2005, Yokohama, Japan  相似文献   

6.
Abstract Binderless boards were prepared from kenaf core under various manufacturing conditions and their water resistance properties were evaluated. The board properties evaluated were retention ratios of modulus of rupture (MOR) and modulus of elasticity (MOE), internal bonding strength after water treatment (IB), thickness swelling (TS), water absorption (WA), and linear expansion (LE). These values were then compared with those of boards bonded with urea-formaldehyde (UF), urea melamine formaldehyde (UMF), and phenol-formaldehyde (PF) resins, and their water resistance properties were assessed. We found that pressing temperature was one of the most important conditions for the improvement of water resistance properties. The retention ratios of MOR, MOE, and IB of kenaf core chip binderless boards (pressing temperature 200°C, target density 0.8g/cm3, and the three-step pressing of 6MPa for 10min, then 4MPa for 3min, and 2MPa for 3min) were 37.1%, 49.9%, and 55.7%, respectively, compared with values for UMF-bonded boards of 22.5%, 27.1%, and 40.7%, and values for PF-bonded boards of 42.8%, 41.8%, and 54.1%, respectively. The results showed that the water resistance properties of binderless boards were higher than those of UMF-bonded boards and almost as high as those of PF-bonded boards. Part of this article was presented at the 53rd Annual Meeting of the Japan Wood Research Society, Fukuoka, March 2003  相似文献   

7.
Binderless fiberboards with densities of 0.3 and 0.5 g/cm3 were developed from kenaf core material using the conventional dry-manufacturing process. The effects of steam pressure (0.4–0.8 MPa) and cooking time (10–30 min) in the refining process, fiber moisture content (MC) (10%, 30%), and hot-pressing time (3–10 min) on the board properties were investigated. The results showed that kenaf core binderless fiberboards manufactured with high steam pressure and long cooking time during the refining process had high internal bond (IB) strength, low thickness swelling (TS), but low bending strength values. The binderless fiberboards made from 30% MC fibers showed better mechanical and dimensional properties than those from air-dried fibers. Hot-pressing time was found to have little effect on the IB value of the binderless board at the refining conditions of 0.8 MPa/20 min, but longer pressing time resulted in lower TS. At a density of 0.5 g/cm3, binderless fiberboard with the refining conditions of 0.8 MPa/20 min recorded a modulus of rupture (MOR) of 12 MPa, modulus of elasticity (MOE) of 1.7 GPa, IB of 0.43 MPa, and 12% TS under the optimum board manufacturing conditions. Part of this article was presented at the 54th Annual Meeting of the Japan Wood Research Society, Hokkaido, August 3–5, 2004  相似文献   

8.
不同热压方法对无胶竹碎料板力学性能影响   总被引:1,自引:0,他引:1  
分别采用普通热压和喷蒸热压两种热压方法制备了无胶竹碎料板,对它们的物理力学性能进行了对比研究与分析.结果表明,与普通热压法相比,喷蒸热压法制备的无胶竹碎料板的静曲强度、弹性模量与内结合强度明显提高,吸水厚度膨胀率显著减小,这可能是因为两种热压法热压过程中竹碎料发生的化学变化不同所致.  相似文献   

9.
Bamboo (Phyllostachys pubescens) internode was subjected to steam explosion treatment to produce an excellent fiber for binderless boards. Lignin was isolated from extract-free bamboo meal with Björkman’s procedure and steam-exploded pulp. The self binding-mechanism was discussed by scanning electron microscopy (SEM), thermo-gravimetry (TG), differential scanning calorimetry (DSC) and analytical ozonation. It is well-known that steam explosion treatment liberates lignin from the cell wall to the fiber surface, which is the most important component relevant to binderless board production. Results of TG and DSC analyses showed that steam-exploded bamboo pulp started mass loss at lower temperature compared to bamboo internode meal. The thermal softening temperature of lignin prepared from steam-exploded pulp was much lower than that of lignin prepared from extract-free bamboo meal. This suggests that intermonomer linkages of lignin, especially β-aryl-ether linkage which is the major intermonomer linkage of lignin, were cleaved during steam explosion treatment resulting in low molecular weight phenolic compounds. The cleavage of β-aryl-ether intermonomer linkage of lignin was also confirmed by ozonation analysis.  相似文献   

10.
bamboo(Phyllostachys edulis) residue was subjected to steam explosion treatment to produce superior fibers for binderless boards.Then,lignin was isolated from extract-free bamboo meal,steam exploded pulp,and binderless boards with characteristics being determined by thermo-gravimetry (TG),differential scanning calorimetry (DSC),and fourier transform infrared spectroscopy (FTIR).Results showed that:1) the yield of lignin directly extracted with dioxane-water from steam exploded bamboo pulp(SEBPL) and binderless board (SEBBL) was higher than that of milled bamboo lignin (MBL).Also,the yield of SEBBL was lower than that of SEBPL.2) FTIR results showed cleavage of ester and ether bonds between lignin and p-coumaric acid during steam explosion treatment.3) SEBBL showed two glass transitions at 115℃and 200℃, while MBL gave one glass transitions at 155℃.And 4) the modulus of rupture(MOR) and modulus of elasticity(MOE) decreased with an increase in steaming time;whereas internal bonding(IB) increased.In all cases the dimensional stability of boards did not exceed the maximum requirements for type GB/T 11718- 1999.  相似文献   

11.
 Kenaf (Hibiscus cannabinus) plants are widely known for their contribution to the global and regional environment because of their ability to fix CO2. On the other hand, some scientists have doubts about CO2 fixation by kenaf and have misgivings about the effect of kenaf on the ecosystem. We have characterized the structural characteristics of cell walls of bast fibers, cores, roots, and leaves of kenaf during the maturation of plants and investigated the rate of photosynthesis. During maturation of the kenaf plant the cellulose (bast fiber 52–59%, core 44–46%) and lignin (bast fiber 9.3–13.2%, core 18.3–23.2%) contents increased significantly. The aromatic composition of the lignin of bast fiber was significantly different from that of the core lignin and of other plants. The lignin of bast fiber appears similar to pure syringyl lignin. Fixation of CO2 by kenaf plants and their contribution to the global environment are discussed. A significatly high rate of photosynthesis of kenaf plants was observed compared to that of woody plants in Japan, but the amount of CO2 fixation depends on the characteristics of the plantation. If the kenaf was planted in high density, about twice as much CO2 was fixed as was fixed by trees in a tropical rain forest. Received: April 22, 2002 / Accepted: July 24, 2002 Acknowledgments This project was supported by the Science and Technology Agency (STA) fellowship of the Japan International Science and Technology Exchange Center (JISTEC), which has been successfully applied by Dr. Shuji Hosoya, Forestry and Forest Products Research Institute. We thank Dr. Toshio Sumizono and Mr. Masao Sakurai, Forestry and Forest Products Research Institute, for their kind help in determining the rate of photosynthesis and cultivating the kenaf plants, respectively. We also express our appreciation to Dr. Quang Hung Le, College of Agriculture and Forestry, Ho Chi Minh City, Vietnam for offering information about the cultivation of kenaf at Thu Duc District, Ho Chi Minh City.  相似文献   

12.
Low-density binderless particleboards from kenaf core were successfully developed using steam injection pressing. The target board density ranged from 0.10 to 0.30g/cm3, the steam pressure used was 1.0MPa, and the steam treatment times were 7 and 10min. The mechanical properties, dimensional stability, and thermal and sound insulation performances of the boards were investigated. The results showed that the low-density kenaf binderless particleboards had good mechanical properties and dimensional stability relative to their low board densities. The board of 0.20g/cm3 density with a 10-min treatment time produced the following values: modulus of rupture 1.1MPa, modulus of elasticity 0.3GPa, internal bond strength 0.10MPa, thickness swelling in 24h water immersion 6.6%, and water absorption 355%. The thermal conductivity of the low-density kenaf binderless particleboards showed values similar to those of insulation material (i.e., rock wool), and the sound absorption coefficient was high. In addition, the boards are free from formaldehyde emission. Kenaf core appears to be a potential raw material for low-density binderless panels suitable for sound absorption and thermally resistant interior products.Part of this report was presented at the 52th Annual Meeting of the Japan Wood Research Society, Gifu, Japan, April 2002  相似文献   

13.
分别用氢氧化钾和亚氯酸钠处理木材原料,以移去木材原料中的一部分半纤维素和木素。用这些特制浆料压制的无胶纤维板,无论是板的强度性能还是板的耐水性能都比未处理木材原料制造的无胶纤维板的性能有明显的下降。这一结果表明,木材原料中的半纤维素和木素都对纤维间自生胶粘因素的形成具有重要的影响  相似文献   

14.
Binderless particleboards were manufactured from sugarcane (Saccharum officinarum L.) bagasse by steam-injection pressing and by using hot pressing as a reference method. The inner layer (core/pith) and the outer hard fibrous layer (face/rind) of bagasse were used as raw materials. The effects of bagasse type, manufacturing process, and storage method on the mechanical properties of binderless particleboards were investigated. The results showed that the bagasse pith particles provided better board properties than bagasse rind particles. It seemed that bagasse pith particles were more easily deformed than bagasse rind particles, enlarging the bonding contact area. The severe conditions of steam-injection pressing caused delamination on the bagasse pith binderless boards with densities of 0.6 g/cm3 or higher, and gave poor bonding quality. However, steam-pressed boards showed relatively higher board properties than hot-pressed boards. The storage method of sugarcane bagasse affected the chemical composition and the board properties. It was shown that the extent of self-bonding formation depends on the chemical and morphological properties of lignocellulosic materials, as well as on the manufacturing conditions. Part of this paper was presented at the 5th International Wood Science Symposium, Kyoto, Japan, September 2004  相似文献   

15.
Binderless particleboards were successfully developed from kenaf core using the steam-injection press. The effects of board density, steam pressure, and treatment time on the properties of the board were evaluated. The target board densities were relatively low, ranging from 0.40 to 0.70g/cm3. The properties [i.e., moduli of rupture (MOR) and elasticity (MOE) in both dry and wet conditions, internal bonding strength (IB), and water absorption (WA)] of the boards increased linearly with increasing board density. Steam pressure and treatment time also affected the board properties. The bending strength and IB were improved with increased steam pressure. A long steam treatment time contributed to low thickness swelling (TS) values and thus better dimensional stability. The appropriate steam pressure was 1.0MPa, and the treatment time was 10–15min. The properties for 0.55g/cm3 density boards under optimum conditions were MOR 12.6MPa, MOE 2.5GPa, IB 0.49MPa, TS 7.5%, and wet MOR 2.4MPa. Compared with the requirement of JIS 5908, 1994 for particleboard, kenaf binderless boards showed excellent IB strength but relatively poor durability.Part of this report was presented at the 19th Annual Meeting of the Japan Wood Technological Association, Tokyo, October 2001  相似文献   

16.
The properties of the binderless boards of moso bamboo depending on the harvest seasons and the parts of the height were reported and the optimum harvesting conditions investigated. The binderless boards were prepared from the powdered bamboo harvested each month from June to May, and the parts in height. The hot water extract (HWE), lignin, α-cellulose, and hemicelluloses contents were examined. The board properties were evaluated with internal bonding (IB), water absorption (WA), and thickness swelling (TS). From the experiment, the boards prepared between March and October had higher HWE content and higher IB and lower WA and TS than the ones prepared in other months. The board from the top part showed lower IB and higher WA and TS than the bottom and the middle. The boards prepared from the residue after extraction of HWE showed lower IB than the unextracted samples. These results indicated that for producing board from bamboo, the suitable harvesting season is when HWE contents are higher and that the suitable parts in height for harvesting are the bottom and the middle where lignin contents are not low.  相似文献   

17.
This paper describes the features of binderless particleboard manufactured from sugarcane bagasse, under a high pressing temperature of 200–280 °C. Mechanical properties [i.e., modulus of rupture (MOR) and elasticity (MOE) in dry and wet conditions, internal bonding strength (IB)] and dimensional stability [i.e., thickness swelling (TS)] of the board were evaluated to investigate the effect of high pressing temperature. Recycled chip binderless particleboards were manufactured under the same conditions for comparison, and particleboards bonded with polymeric methylene diphenyl diisocyanate (PMDI) resin were manufactured as reference material. The target density was 0.8 g/cm3 for all of the boards. The results showed that the mechanical properties and dimensional stability of both types of binderless boards were improved by increasing the pressing temperature. Bagasse showed better performance than that of recycled chip as a raw material in all evaluations. Bagasse binderless particleboard manufactured at 260 °C had an MOE value of 3.5 GPa, which was equivalent to the PMDI particleboard, and a lower TS value of 3.7 % than that of PMDI particleboard. The MOR retention ratio under the dry and wet conditions was 87.0 %, while the ratio for the PMDI particleboard was only 54.6 %. The obtained results showed the possibility of manufacturing high-durability binderless particleboard, with good dimensional stability and water resistance, which previously were points of weakness for binderless boards. Manufacturing binderless boards under high temperature was effective even when using particles with poor contact area, and it was possible to express acceptable properties to allow the manufacture of particleboards. Further chemical analysis indicated a contribution of a saccharide in the bagasse to the improvement of the board properties.  相似文献   

18.
探讨了以竹材为主要原料的竹重组板材热压工艺的优化,研究了热压工艺对竹重组板材力学性能的影响,讨论分析了热压压力、热压时间、热压温度对竹重组板材吸水厚度膨胀率、耐沸水性、静曲强度、弹性模量、耐磨性、耐化学腐蚀性、浸渍剥离率和甲醛释放量等性能的影响。通过正交试验,得出的优化热压工艺为:①热压压力2.0MPa、热压温度145℃、热压时间1.7min/mm,热压压力对竹重组板材耐酸性、静曲强度和弹性模量等影响显著,对耐沸水性、耐碱性、耐盐性、耐磨性和浸渍剥离率等影响不显著。②热压时间对竹重组板材静曲强度有显著影响,对其他试验指标影响不显著。③热压温度对竹重组板材各试验检测指标均有一定的影响,但不显著。  相似文献   

19.
The bast and core of kenaf,Hibiscus cannabinus L., have markedly different chemical components and alkaline cooking responses. The bast had about double the hot-water extractives content and only about half the lignin content of the core. The core contained a large amount of hemicellulose, mostly composed of xylan. The lignin structures of bast and core were also quite different: The former had a significant abundance of syringyl structures. Evidence showed that the bast was much more easily delignified than the core. When the bast and core were cooked together in alkaline condition, the pulp yields at the same kappa number were higher than those of the individual pulpings of bast and core. The bast-core pulping gave a positive effect on the yield of bast pulp in the sodaanthraquinone and kraft pulpings. On the other hand, kenaf was abundant in the hot water extractives. These extractives consumed alkali during cooking to a relatively large extent but acted as a protector of hemicellulose and slightly increased the pulp yields.Part of this paper was presented at the 48th and 49th Annual Meetings of the Japan Wood Research Society, Shizuoka, April 3–5, 1998 and Tokyo, April 3–5, 1999  相似文献   

20.
制定了红麻秆(Hibiscus cannabinus)材料在无任何添加剂的条件下制作无胶碎料板的相关工艺,探讨了红麻杆无胶碎料板的密度与其物理力学性能(静曲强度、内结合强度、吸水厚度膨胀率)间的关系,根据国家标准GB/T4897.2-2003干燥状态下使用的普通刨花板要求评价了红麻杆无胶碎料板的性能,结果表明:当密度大于0.7g/cm3时,红麻秆无胶碎料板的性能即能够满足标准要求。并使用傅里叶红外光谱研究了其在热压过程中的官能团变化,进而初步分析红麻秆无胶碎料板的胶合机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号