首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
为了探讨丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)对烤烟生长及磷石膏农用安全的影响,通过盆栽模拟试验研究了磷石膏(Phosphogypsum,PG)不同添加量[0、40 mg·g-1(PG0、PG40)]和接种两种AMF[Glomus mosseae(GM)、G.aggregatum(GA)]对烤烟(KRK26)苗期生长及其磷(P)、硫(S)、砷(As)吸收的影响。试验结果表明:无论是否接种AMF,磷石膏的添加均显著增加了KRK26地上部生物量及其植株S含量、吸收量及吸收效率;除不接种处理(NM)的烤烟根系外,PG40处理显著增加了KRK26植株P含量、吸收量及吸收效率,并显著降低了NM处理的地上部As含量及吸收量,进而增加了磷砷吸收比。相同PG添加水平下,与不接种相比,接种GM和GA均显著增加了KRK26植株的生物量。除PG0处理的烤烟根系外,接种GM显著增加了KRK26植株P、S含量与吸收量及吸收效率,以及植株As含量及吸收量,并显著增加了PG40处理的植株磷砷吸收比;接种GA也显著增加了KRK26植株P、S含量及吸收量,并显著降低了PG0处理地上部As含量及吸收量。所有复合处理,以添加磷石膏40 mg·g-1和接种GA处理对KRK26的生长促进效果较好,对磷石膏施用造成的As污染有一定抵御作用。  相似文献   

2.
低温胁迫对接种丛枝菌根真菌番茄幼苗生理特性的影响   总被引:3,自引:0,他引:3  
为探明丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)提高番茄幼苗抗冷性的生理机制,以中杂105为材料,研究接种AMF对低温胁迫下番茄幼苗生长和相关生理指标的影响。结果表明:低温胁迫使番茄幼苗株高、地上部和地下部干鲜质量的增长量和相对叶绿素含量减小,并导致电解质渗透率、可溶性蛋白和MDA含量增加,SOD和POD活性升高,而CAT活性呈先升高后降低的趋势;但接种AMF的幼苗在低温胁迫下较普通番茄幼苗各生长指标的增长量、叶片相对叶绿素和可溶性蛋白的含量均有增加,SOD、POD和CAT的活性亦有增加,同时电解质渗透率和MDA含量显著减少。由此可见,接种AMF能减轻低温胁迫对番茄生长的不利影响,从而增强番茄幼苗对低温胁迫的适应性。  相似文献   

3.
丛枝菌根真菌对番茄生长的影响   总被引:1,自引:0,他引:1  
【目的】研究不同种类丛枝菌根真菌(Arbuscular mycorrhizae,AM)对番茄生长的影响,为后续研究和开发菌根菌剂在蔬菜产业的应用和推广提供依据.【方法】利用盆栽试验接种5种不同的AM真菌:单孢球囊霉(Glomus monosporum,G_1)、根内球囊霉(Glomus intraradices,G_2)、地表球囊霉(Glomus versiforme,G_3)、光壁无梗囊霉(Acaulospora laevis,AL)和土著AM真菌black及未接种处理(CK),分析比较了不同AM菌剂处理下对番茄菌根侵染率,地上、地下生物量,株高等生长指标和可溶性糖、可溶性蛋白含量等生理指标的影响.【结果】5种处理均能侵染番茄根系形成菌根,G_1、G_3处理对番茄根系的侵染率最高,分别为64.33%、59.22%;G_1与G_3处理分别显著的增加了植株株高与茎粗;G_1、G_3处理可显著影响植株地上生物量、地下生物量及总生物量;G_1、G_3处理可显著增大气孔大度、减小胞间CO_2浓度,较CK显著提高植株叶片净光合速率70.50%、83.17%;5种处理均能提高叶片可溶性糖和可溶性蛋白含量;G_3处理下显著提高叶片可溶糖含量.【结论】不同的AM真菌对同一宿主的促生效应不尽相同,G_1、G_3处理对番茄植株的促生效应最为显著,具有开发为番茄菌根菌剂的潜力.  相似文献   

4.
为研究砷(As)污染条件下菌根真菌对番茄植株生长和砷吸收的效应,采用盆栽法,以全生育期的番茄植株为材料,对生长在不同砷浓度土壤中的番茄植株接种菌根真菌进行研究。结果表明:无论是接种还是不接种处理,基质砷添加水平增加植株总根长和比根长均呈现减少趋势;砷添加浓度从0 mg/kg增加到100mg/kg时,植株根冠比增加,但砷添加浓度为200 mg/kg时,对照植株根冠比在整个生育期明显增加,而在开花期和坐果期接种显著降低了植株根冠比;添加砷显著增加地上部分和根系砷含量,加砷后结果率显著降低,未接种植株结果量明显减少且质量下降,在200 mg/kg时,接种还是未接种植株均不结果实,但加砷条件下接种降低番茄果实中的含砷量和砷吸收量。  相似文献   

5.
[目的]研究不同丛枝菌根真菌(AMF)对番茄植株生长和抗盐胁迫效应,探究筛选出能够延缓盐分对番茄生理活性的抑制,提升植株光合碳同化能力和耐盐性能力的最佳AMF真菌.[方法]针对土壤盐渍化对番茄的不良效应,通过土培法对番茄植株进行不同盐浓度(0、100 mmol·L?1)处理,经初筛得到摩西(F.m)、根内(R.i)两种...  相似文献   

6.
丛枝菌根真菌对番茄植株内源激素含量的影响   总被引:3,自引:0,他引:3  
于温室盆栽条件下对番茄(Lycospersicon esukurentamu)幼苗接种丛枝菌根(AM)真菌摩西球囊霉(Glomusmosseae)、地表球囊霉(Glomus versiforme)、根内球囊霉(Glomus intraradices)、幼套球囊霉(Glomus etunicatum)或珠状巨孢囊霉(Gigaspora margarita)10d后定期采样,应用间接酶联免疫吸附分析法(ELISA)测定各处理番茄植株根和叶片内源激素吲哚乙酸(IAA)、赤霉素(GA)、玉米素核苷(ZR)和脱落酸(ABA)含量。接种20d G.mosseae处理的番茄根系菌根侵染率高达68.5%,显著高于其他接种处理;供试AM真菌显著增加了番茄植株鲜重、株高、地上部和地下部干重、其根或叶内IAA、GA、ZR和ABA含量均显著高于不接种对照,以G.mosseae处理的根或叶中IAA、GA、ZR和ABA含量最高。  相似文献   

7.
目的 阐明不同磷(P)高效基因型大豆在不同生育期对接种丛枝菌根真菌的反应及其与P效率的关系,为接种丛枝菌根真菌提高作物P效率的研究提供理论依据。方法 以3个基因型大豆‘威廉姆斯82’‘粤春04-5’和‘巴西10号’为试验材料,设置接种和不接种丛枝菌根真菌2个处理,在开花期和结荚期采样,分析接种丛枝菌根真菌对大豆植株干质量、菌根侵染率、P营养状况、根系性状以及菌根诱导的P转运蛋白基因表达的影响。结果 不同基因型大豆在不同生育期对接种丛枝菌根真菌的菌根反应存在显著差异。与不接菌相比,接菌在开花期显著提高了3个菌根诱导表达的P转运蛋白基因GmPT8GmPT9GmPT10在3个基因型大豆根系中的表达,从而显著提高了3个基因型大豆根部的P浓度;接菌在结荚期显著提高了3个基因型大豆的根部干质量,以及‘巴西10号’的地上部干质量、P浓度和总P吸收量;此外,在开花期,不接菌的‘威廉姆斯82’和‘粤春04-5’的地上部干质量、总P吸收量、总根长和根表面积均显著高于‘巴西10号’,而接菌的‘巴西10号’的菌根生长反应和菌根P反应显著高于‘威廉姆斯82’和‘粤春04-5’。结论 ‘威廉姆斯82’和‘粤春04-5’具有更高的P效率,而‘巴西10号’具有更高的菌根依赖性;大豆生育期的延长有利于菌根植物吸收的P转化为生物量,促进大豆与菌根真菌的有益共生。  相似文献   

8.
锌污染土壤接种丛枝菌根真菌对玉米苗期生长的影响   总被引:8,自引:0,他引:8  
通过三个土壤锌水平上的盆栽玉米试验,研究了丛枝菌根真菌在锌污染时对玉米苗期生长的影响。研究表明,即使在土壤锌施入量达600mg·kg-1时,菌根真菌对玉米仍有近50%的侵染率,说明菌根真菌对重金属锌具有相当的抗性。锌污染土壤中菌根共生体的建立,明显地改善了植株对磷素的吸收和运输,有助于植株在重金属污染逆境中的生长。更为重要的是,菌根植物在未增加体内锌浓度的前提下,较对照显著提高了叶和根中的锌吸收量,表明菌根植物在重金属锌污染的土壤上具有一定的生物修复作用。  相似文献   

9.
研究了牛蒡幼苗接种根内球囊霉(GI)、摩西球囊霉(GM)、地表球囊霉(GV),在0(CK)、0.1%、0.2%、0.3%的NaCl胁迫下丛枝菌根真菌对牛蒡幼苗的侵染情况、生长发育及矿质营养吸收的影响。结果表明:接种菌根真菌可以提高盐胁迫下牛蒡幼苗的鲜重和根长;但不同的菌种效果不一样,GV在不同盐浓度下侵染率均最高,对提高植株鲜重和根长效果最好,在盐浓度0~0.2%条件下,能显著提高植株氮、磷的含量,3个菌种对钾的含量均没有显著作用。  相似文献   

10.
丛枝菌根真菌对有机基质性状及番茄生长的影响   总被引:1,自引:0,他引:1  
[目的]为番茄实际生产中应用丛枝菌根真菌(AMF)提供理论依据。[方法]盆栽条件下有机基质和普通土壤均设接种AMF菌系GM、GV和不接菌3个处理,在番茄植株生长过程中分8个时期测量相关指标,研究AMF对有机基质栽培番茄生长的影响。[结果]在有机基质中接种GM的植株生长势强于接种GV的植株和未接种植株;而在土壤基质中接种GV的植株生长较好。接种AMF对番茄的根冠比和干物质生产具有明显的促进作用,在有机基质中促进效果要优于在普通土壤中,接种GM要好于接种GV;干鲜比和总鲜重均表现出相同趋势。接种同种AMF,相同处理的离子浓度表现为Cl-相似文献   

11.
The effects of arbuscular mycorrhizal fungi (AMF), Glomus mosseae, on oxygen radical scavenging system of tomato under salt stress were studied in potted culture experiments. The response of tomato (Lycopersieon eseulentum L.) cultivar Zhongza 9 seedlings with AMF inoculation and control to salt stress (0, 0.5 and 1.0% NaCl solution, respectively) was investigated. The results showed that the salt stress significantly reduced the dry matter content of roots, stems and leaves, and also the leaf area as compared with the control treatment. However, arbuscular mycorrhizal-inoculated (AM) significantly improved the dry matter and the leaf area in the salt-stressed plants. The effect of AMF on dry matter was more pronounced in aerial bromass than in root biomass which might be due to AM colonization. The activities of SOD, POD, ASA-POD, and CAT in leaves and roots of mycorrhizal and non-mycorrhizal treatment of tomato plants were increased and had different rules under different NaCl concentrations (solution of 0, 0.5 and 1% NaCl), but all enzymes had a rise in the beginning of treatment under salt stress conditions. The AMF did not change the rule of tomato itself under salt stress, but AMF increased these enzyme activities in different levels. The AMF treatment significantly increased SOD, POD and ASA-POD activities in leaves and roots, whereas it had little effects on CAT in root. O2- production rate and MDA content in leaves increased continuously, which showed a positive line correlation with salt stress concentration. O2- production rate and MDA content in tomato plants significantly decreased by AM treatment compared with nonmycorrhizal treatment. In conclusion, AM could alleviate the growth limitations imposed by saline conditions, and thereby play a very important role in promoting plant growth under salt stress in tomato.  相似文献   

12.
丛枝菌根真菌对彩叶草耐寒性的影响   总被引:2,自引:0,他引:2  
于盆栽条件下研究了丛枝菌根(AM)真菌:Glomus mosseae、Glomus versiforme及其群落(G.mosseae、G.versiforme和Glomus intraradices)对观叶植物彩叶草(Coleus blumei)耐寒性的影响。结果表明,在15~5℃低温范围内,接种AM真菌处理能显著提高彩叶草叶片中SOD活性、可溶性蛋白和可溶性糖含量;降低叶片中丙二醛(MDA)含量和膜透性,其中以AM真菌群落接种的效果最佳。认为AM真菌能提高彩叶草的耐寒性。  相似文献   

13.
丛枝菌根真菌和细菌肥料对水稻生长的影响   总被引:3,自引:0,他引:3  
丛枝菌根真菌能与多数旱地植物共生 ,形成菌根。菌根的形成能促进植物对营养元素 ,特别是磷素的吸收 ,并增强植物的多种抗逆性 ,从而达到促进植物生长 ,提高产量的目的。水稻是我国的主要粮食作物 ,需要在淹水条件下生长 ,而菌根真菌是好氧性微生物 ,在淹水条件下不能形成菌根 ,因而至今还未见到将菌根真菌应用于水稻栽培的报导。但是在旱育条件下 ,能否通过接种菌根真菌 ,帮助秧苗形成菌根 ,培育出健壮的秧苗 ,从而提高水稻的产量 ?这是本试验的目的。在测试菌根真菌效果的同时 ,为了探讨菌根真菌与细菌肥料的协同关系 ,在试验中加入了细菌…  相似文献   

14.
AM真菌对彩叶草光合特性的影响   总被引:1,自引:0,他引:1  
以彩叶草‘奇才—晚霞色’种子为材料,分别接种丛枝菌根(AM)真菌Glomus mosseae、G.versiforme及G.mosseae、G.versiforme与G.intraradice的混合菌种,以不接种为对照,研究了不同AM真菌对彩叶草光合特性的影响。结果表明,以AM真菌混合菌种的侵染率最高,为68%。接种AM真菌能显著提高彩叶草实生苗叶绿素a和总叶绿素含量,其中G.versiforme的效果最佳。AM真菌显著提高了彩叶草根系活力、叶片净光合速率、蒸腾速率、气孔导度,以混合菌种效果最佳。  相似文献   

15.
在温室盆栽条件下,研究了接种丛枝菌根真菌Glomusrnosseae(Nicol&Gerd)Gerdemann&Trap对不同水分(20%、16%和12%土壤含水量)条件下的枳(Poncirus trifoliata(L.)Raf.)实生苗生长、光色素和水分状况的影响。结果表明.菌根侵染率随着土壤含水量的下降而降低。在3种不同土壤含水下。接种处理均不同程度增加了地上部鲜重、地下部鲜重、植株鲜重.促进了叶绿素a和总叶绿素含量。提了叶片相对含水量.但降低叶片饱和亏。接种处理植株的盆栽土水分亏缺量明显高于未接种处理的盆土。由此表明.丛枝菌根真菌的接种能促进植株的生长和改善叶片水分状况。  相似文献   

16.
赵慧敏 《安徽农业科学》2009,37(15):7096-7097
丛枝菌根是AM真菌与植物根系所建立的互惠共生体,遍布各生态系统。从其种质多样性、宿主多样性以及生境多样性等方面介绍了近年来在AM真菌生物多样性研究中取得的进展,并探讨了未来的研究动向。  相似文献   

17.
丛枝菌根真菌对黄瓜立枯病的影响   总被引:1,自引:0,他引:1  
采用盆栽试验研究了接种丛枝菌根真菌(Glomus versiform)对黄瓜立枯病及抗病相关酶活性的影响。结果表明,黄瓜接种丛枝菌根真菌可显著促进黄瓜生长,并能显著抑制立枯病的发生,相对防治效果达67.1%,并可诱导黄瓜根系苯丙氨酸解氨酶、β-1,3-葡聚糖酶和几丁质酶3种抗病相关酶的活性,激活植物早期防御反应。  相似文献   

18.
玉米叶片蛋白对AM菌根接种和(或)砷胁迫的应答   总被引:1,自引:0,他引:1  
【目的】研究接种菌根与砷胁迫条件下玉米叶片组织相关蛋白质的变化。【方法】以玉米植株叶片为材料,采用双向凝胶电泳技术(2-DE)研究玉米叶片蛋白表达谱对丛枝菌根(AM菌根)接种和(或)砷胁迫的应答。【结果】经软件分析并搜索NCBInr数据库,结果显示,砷胁迫植株叶片中有7个蛋白点被成功鉴定,其中有3个未知蛋白,其余4个分别为2-phosphoglycerate kinase、oxidoreductase、MAP3K delta-1 protein kinase和Os06g0262800。接种且加砷处理植株叶片中有11个蛋白点被成功鉴定,有4个未知蛋白,其余蛋白分别为oxygen-evolving enhancer protein 3-1、putative M protein、SNF1-related protein kinase 2.2、ATP synthase CF1 beta subunit、ATP synthase CF1 alpha subunit、pathogenesis-related protein 10、 MAP kinase kinase和MEI1 protein。【结论】菌根接种促进加砷处理玉米植株生长,并显著降低玉米植株地下部砷浓度。玉米植株叶片蛋白表达量及种类的变化,表明砷胁迫条件下菌根接种有可能激发与植物生长、养分吸收以及抗性有关的蛋白产生应答,有助于提高玉米对砷毒的抗性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号