首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The process of absorption and desorption of water by two-dimensional transport in wood was studied at a moisture content beyond the fiber saturation point. The transverse directions through a square wood beam were considered. A numerical model capable of describing the process was constructed and successfully tested. It can predict by calculation the kinetics of absorption when wood is immersed into water and the kinetics of desorption when it is exposed to air. The model gives a fuller insight into the process with the profiles of moisture content developed through the cross-section of the wood at any time.This work was carried out with the help and support of the French MRT and Wood Technical Center (CTBA)  相似文献   

2.
Summary The process of absorption of methanol in liquid state by a wood sample, as well as the following step of desorption, is studied. A 3-dimensional transfer takes place within a cubic wood sample, this cube being cut in such a way that the sides of the cube are parallel with the longitudinal, radial and tangential axes of diffusion. A numerical model taking into account all the facts, e. g. diffusion within the solid and constant concentration on the surface during the stage of absorption, and diffusion within the solid and evaporation from the surface during the stage of desorption, is built and successfully tested. A pseudo-equilibrium of absorption is attained after an immersion time of about 3 hours in the liquid, and the whole amount of methanol is evaporated during the stage of desorption. The process can be described by a 3-dimensional diffusion with constant principal diffusivities.  相似文献   

3.
Physical and mechanical properties of wood after moisture conditioning   总被引:1,自引:0,他引:1  
Some properties of wood (hinoki:Chamaecyparis obtusa) moisture-conditioned by an adsorption process from a dry state and by two desorption processes (from a water-saturated state and from a state with a moisture content slightly below the fiber saturation point) were investigated. The moisture contents of wood conditioned by the adsorption process and by the desorption process continued to approach to one another for the moisture-conditioning period of over 50 weeks. Accordingly, sorption hysteresis should be regarded as a transitional phenomenon that occurs during the process of approaching the true equilibrium, which requires a long time. The wood conditioned by the desorption process beginning from a water-saturated state showed slightly smaller dimensions than those conditioned by the adsorption process with the same moisture content; however, the wood conditioned by the desorption process from a moisture content below the fiber saturation point showed slightly larger dimensions than those conditioned by the adsorption process. The wood conditioned by the adsorption process from a dry state showed a higher modulus of elasticity and modulus of rupture than did the wood conditioned from a water-saturated state with the same moisture content. The mechanical properties of the wood also varied based on the states at which the desorption process was started. This is a notable characteristic of the relation between the drying condition and the mechanical properties of wood.  相似文献   

4.
Changes in the modulus of elasticity (MOE), modulus of rupture (MOR), and stress relaxation in the radial direction of wood (hinoki:Chamaecyparis obtusa) moisture-conditioned by the adsorption process from a dry state and by the desorption process from a moisture content slightly below the fiber saturation point were investigated. The MOE and MOR of wood conditioned by the adsorption process showed significant increases during the later stages of conditioning when the moisture content scarcely changed. However, with the desorption process they did not increase as much during later stages of conditioning, though they increased during early stages of conditioning when the moisture content greatly decreased. The stress relaxation of wood decreased with an increase in the conditioning period with both the adsorption and desorption processes. These results suggest that wood in an unstable state, caused by the existing state of moisture differed from that in a true equilibrium state shows lower elasticity and strength and higher fluidity than wood in a true equilibrium state. Furthermore, the present study demonstrates that the unstable states of wood induced during the course of drying, desorption, and possibly adsorption of moisture are slowly modified as wood approaches a true equilibrium state.  相似文献   

5.
泡桐木材流体渗透性与扩散性的研究   总被引:11,自引:1,他引:11  
鲍甫成  胡荣 《林业科学》1990,26(3):239-246
本文论述了泡桐木材流体渗透性,扩散性,吸着水与自由水的吸着与吸收动力学特性,密度和干缩性以及电镜观察结果;阐明了泡桐木材具有流体可渗透及可扩散路径,有着输导流体的天然机制,水、热处理难易一般;泡桐材本身并不具有隔潮耐湿性,但由于它密度低,胀缩小,变形和开裂的可能性亦小,用它干燥后制成的箱盒容器的密封性、隔潮耐湿性较好。  相似文献   

6.
Summary A mathematical model based on numerical method with finite differences is able to describe the process of absorption and desorption by wood contacted with various atmospheres. The relative humidity of the atmosphere can either be kept constant or varied with a constant rate, at the same temperature of 30°C. The transverse transport of moisture is controlled by transient diffusion with a concentration-dependent diffusivity. The model takes this fact into account, as well as the dependence of the moisture content at equilibrium with the relative humidity. Not only the model gives kinetics in good agreement with experiments, but also it is able to attain the profiles of concentration of moisture developed throughout the wood.This research work has been accomplished with the help and support of the French Centre Technique du Bois (CTB), 10 Avenue St.-Mandé, Paris  相似文献   

7.
The objective of this study was to investigate the moisture absorption process for wood-based composites subjected to over-saturated moisture conditions. Two stages are comprised in the moisture transfer process at the over-saturated moisture conditions, an initial stage which is the moisture transfer process mainly under fiber saturation point (FSP), and a second stage which is the moisture transfer process beyond the FSP. A model was developed based on two-part equations to describe the process, from which three coefficients (k 1 , k 21 , and k 22) can be used to quantitatively describe the moisture transfer process under the conditions. Two different wood-based composites, wood fiberboard and wood fiber/polymer composites (polymer content: 30%), were used to test the model at four different ambient temperatures (30, 45, 62, and 80°C). It was shown that the two-part equation can accurately describe the moisture absorption process under over-saturated moisture conditions. The moisture absorption rate in the initial stage was about 30–60% greater than that in the second stage for most of the cases evaluated in this study. The higher the temperature, the greater moisture absorption parameters were obtained. At both moisture absorption stages (below FSP and above FSP), the calculated activation energy for the moisture absorption rate of wood fiberboard was very close to that of wood fiber/polymer composites.  相似文献   

8.
To elucidate the origin of the shrinking anisotropy of wood during the drying process, as well as to begin to gain an understanding of the interaction between the moisture and the cell wall components, the shrinking process of a single wood fiber regarding water desorption was simulated by using an analytical model which was developed in the previous report (Part 1). Resulting data were compared with the experimental ones in this paper. The following conclusions were obtained: (1) The matrix substance, as a skeleton in the secondary wall, tends to shrink isotropically. However, the cellulose microfibrils, as a rigid framework of the cell wall, almost did not shrink at all due to the water desorption. As result, wood shrinks anisotropically during a drying process. The microfibril angle in the S2 layer is one of the most important factors related to the degree of shrinking anisotropy of the wood while drying. (2) According to the simulation, the expansive strain caused in the matrix skeleton by the water sorption increases by 15% (= 150,000 micro-strains) from the oven-dried condition to the green condition. Based on this value, the moisture content at the fiber saturation point is calculated to be about 35%, which is close to the experimentally obtained one. These results give quantitative evidences that the hygroexpansion of the wood cell wall is controlled by the mechanism of the reinforced matrix hypothesis. Received: 28 July 1998  相似文献   

9.
Summary Diffusion analysis can be used to estimate the time required to dry lumber. However, more accurate calculations require additional information on the relationship between the diffusion coefficient as a function of moisture content and on the effects of temperature, equilibrium moisture content, board thickness, and air velocity on drying time and moisture gradients. The primary objectives of this study were (1) to determine the diffusion coefficient of northern red oak (Quercus rubra) as a function of moisture content and (2) to compare experimentally determined sorption times and moisture content gradients with those calculated by the diffusion model. The diffusion coefficient was found to increase approximately exponentially with moisture content over a range of 6 to 30 percent at 43°C. This relationship was similar in both adsorption and desorption tests. Experimental adsorption and desorption times and desorption moisture content gradients were compared with finite difference solutions to the diffusion equation. Practical uses of solutions to the diffusion equation are illustrated for kiln drying wood that has first been predried to below the fiber saturation point. Drying time is also related to variable kiln conditions and board thickness.This research was partially funded under the U. S. Department of Agriculture Competitive Grant programThe Forest Products Laboratory is maintained in cooperation with the University of Wisconsin. This article was written and prepared by U.S. Government employees on official time  相似文献   

10.
The water state of one tropical (Robinia coccinea) and two temperate (Acer saccharum and Fagus grandifolia) hardwoods was determined at different equilibrium moisture contents (EMC) during desorption at 25°C. NMR technique was used to separate different components of water in wood. The species studied presented different structures, which were apparent on the spin–spin relaxation T2 values. Three different water components were separated: slow T2 (liquid water in vessel elements), medium T2 (liquid water in fiber and parenchyma elements) and fast T2 (bound or cell wall water). The NMR results showed that even at equilibrated conditions a region exists where loss of liquid water and bound water takes place simultaneously. This region will vary according to the wood structure. Finally, liquid water was present at EMC lower than the fiber saturation point, which contradicts the concept of this point when considered as a bulk property of wood.  相似文献   

11.
Summary The process of absorption of water in a piece of solid wood, as well as the following stage of desorption is studied, when the water content is beyond the fiber saturation point. A model based on a numerical method with finite differences is built and successfully tested. This model takes into account a 3-dimensional transport of water controlled by diffusion, with three principal axes of diffusion and three various principal diffusivities. The model is able to predict the kinetics of absorption or desorption when the three principal diffusivities are known, as well as the operational conditions.Symbols C (i, j, k) Concentration at the position of the coordinates i, j, k and at the time t - CN (i, j, k) Concentration at the same position, at the time t + t - Cs Moisture content at the surface - DL Longitudinal diffusivity - DT Tangential diffusivity - DR Radial diffusivity - L Increment of space along the longitudinal axis - T Increment of space along the tangential axis - R Increment of space along the radial axis - t Increment of time - EMC or Ceq Moisture concentration at equilibrium - K Factor of evaporation (cm/s) - L, T, R Dimensions of the board along the longitudinal, tangential, radial directions, respectively - ML Dimensionless number for the longitudinal axis - MT Dimensionless number for the tangential axis - MR Dimensionless number for the radial axis - Th Thickness of a sheet (in Eq. 15)  相似文献   

12.
Wood Science and Technology - The distribution of liquid and bound water in wood samples under equilibrium moisture contents (EMC) below fiber saturation point (FSP) was assessed by magnetic...  相似文献   

13.
Summary The transport of heat and moisture during the convective drying of southern pine was examined experimentally. Moisture distribution within the wood samples was measured using gamma attenuation. The accuracy of these measurements was found to be moisture content dependent with estimated uncertainties ranging from 29.5% at 10% moisture content to 6.8% at 120% moisture content. Local moisture content measurements reveal large inflections at high moisture contents. Peaks in moisture content are closely correlated with low fwood density and vice versa. Above the fiber saturation point the measured drying rate is not a well defined function of the moisture content. This is perhaps due to the biological variability of wood as well as grain orientation, although no definite conclusions could be drawn from the data with regard to the effect of grain orientation. The drying rate does not appear to be highly temperature dependent at high moisture contents. Below the fiber saturation point where diffusion is expected to be the dominant transport mechanism, the drying rate is less affected by biological variability and grain orientation, however, the effects of temperature are evident.The authors wish to acknowledge the support of this work by the National Science Foundation under Grant Number CME-7906367. We must also express our appreciation to staff members at Weyerhaeuser Technology Center who supplied us with wood samples. In addition to the authors, Mr. T. R. Brown, S. H. Moen, and D. Chow played a critical role in gathering much of the data  相似文献   

14.
Changes in physical and mechanical properties of wood were analyzed using sorption tests combined with dimensional measurements and perpendicular-to-the-grain tangential compression tests. In order to determine the influence of wood structure on these changes, three hardwood species (Fagus grandifolia, Brosimum alicastrum and Cariniana domestica) presenting different anatomical structures were studied. Two experimental techniques were used to perform moisture sorption tests at 25°C. The first technique used saturated salt solutions (from 33 to 90% relative humidity) and the second used the pressure membrane method (above 96% relative humidity). Special attention was given to the “fiber saturation region”, where changes in wood properties started to take place. Results showed that at equilibrium moisture content (EMC), radial, tangential and volumetric shrinkage, as well as changes in transverse strength occurred above the fiber saturation point (FSP). This behavior can be explained by the effect of hysteresis at saturation on wood properties. This hysteresis indicates that loss of bound water takes place in the presence of liquid or capillary water, which contradicts the concept of FSP. The initial EMC at which bound water starts to be removed varied largely among the wood species.  相似文献   

15.
Summary In both Douglas-fir and aspen wood, the fiber saturation point of early wood is greater than that of late wood, solvent extraction lowers the fiber saturation point, and the fiber saturation point for reaction wood is less than that for whole wood.  相似文献   

16.
Summary Chemicals used for protection of wood against fungi may be released in water when the sample comes into contact with water. The process of release of pentachlorophenol in water was studied in this paper, when the presaturated wood specimen is immersed in a finite volume of water up to a time at which equilibrium is not attained. The wood sample is then dried and immersed again in water. This process is continued many times. Moreover a finite coefficient of matter transfer at the wood surface is observed. A numerical model with finite differences was successfully tested by comparing the kinetics of release obtained either by experiments and calculation. The process was simplified in the sense that only the transfer of the chemical through the water located in the wood was considered. The model is thus able to provide the kinetics of release and the profiles of concentration.  相似文献   

17.
This paper deals with an adsorption/desorption model in order to predict evolutions of boundary conditions during the mass transfer process versus time in timber elements. This model is derived from a thermodynamic balance between the free water and its saturated vapor pressure, and is generalized for the bound water phase. It allows describing a realistic adsorption and desorption phenomena characterized by a moisture content hysteresis induced by cyclic variations of the relative humidity and the temperature. The sorption isotherm explains the equilibrium between the bound water phase in wood and the vapor pressure in the environment. The model includes different latent heats for the adsorption and desorption process. An analytic explanation allows to model partial variations in terms of relative humidity domain.  相似文献   

18.
Unmodified and acetylated cedar wood specimens were swollen in various liquids and dried under radial compression. Two stress relaxation processes were observed during drying, and the second process observed below the fiber saturation point was responsible for the drying-set and the temporary fixation of compressive deformation. The fixed shape of acetylated wood was partly recovered by soaking it in water and toluene and completely recovered in acetone. The effective shape fixation and recovery of toluene-swollen samples implied that the intermolecular hydrogen bonding was not necessary for the drying-set of acetylated wood. The degree of shape recovery was not explained by initial softening, while the acetylated wood always exhibited greater recoverability than unmodified wood. Although 85% stiffness was lost after large compression set and recovery of unmodified wood, such a stiffness loss was limited to 39% when the acetylated wood was processed with organic liquids. This indicated that the swelling of the hydrophobic region in the acetylated wood was effective in preventing mechanical damage due to large compressive deformation.  相似文献   

19.
This study focuses on liquid water transport in wood above the fiber saturation point in the nonhygroscopic region. The liquid water transport of hygroscopic porous materials including wood is usually described by Darcy’s law. It requires knowledge of capillarity and intrinsic and relative permeabilities. In this study, the capillary pressure-water relation and relative permeability were investigated using experimental data for wood available in the literature. The performance of three models (Brooks-Corey model, van Genuchten model, and Durner’s bimodal pore-size distribution model) was investigated for the capillary pressure-water relation. These models have advantages in that each shape parameter has qualitative physical meaning for the pore-size distribution. Most species had unimodal pore distributions except for aspen, which had a bimodal pore distribution. The van Genuchten model represented the capillary pressure-water relation better than the Brooks-Corey model. Durner’s bimodal model was found to be the most appropriate for the capillary pressure-moisture relation of aspen. The relative permeability was calculated by using Mualem’s model, which was compared with the value from the Couture model. From the results, the liquid water diffusivity divided by intrinsic permeability of wood was estimated. This approach may be promising for adopting the liquid water diffusivity for the numerical simulation of drying and sorption, although there might be considerable variation within and between trees.  相似文献   

20.
木材导热系数的研究   总被引:8,自引:2,他引:8  
侯祝强 《林业科学》1992,28(2):153-160
本文运用非平衡态热力学线性理论分析了含水率在纤维饱和点以下木材的传热,结果表明木材中的水蒸汽和束缚水参与了传热,木材导热系数由传导导热系数与因水蒸汽和束缚水扩散产生的两个等效导热系数组成。推广Siau关于木材细胞的导热理论,依据水分吸附和扩散的原理,导出了木材弦向和径向导热系数计算公式,与已发表的36种气干材弦向实验值和23种气干材径向实验值符合较好。分析木材径向传热的方法也适用于木材纵向传热。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号