首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Reduced efficacy of anthelmintics in young compared with adult horses   总被引:3,自引:0,他引:3  
Studies on a Thoroughbred breeding farm in Ohio from 1982 to 1988 demonstrated the value of three anthelmintic pastes (ivermectin, oxibendazole, pyrantel pamoate) in controlling benzimidazole resistant cyathostomes (small strongyles) in adult horses. However, a comparison of drug efficacy in suppressing faecal egg counts for the full period between treatments showed a significant reduction in efficacy of all drugs in yearling horses compared with adults. Mean faecal egg counts of adult horses were generally kept below 100 eggs per gram (epg) of faeces when using oxibendazole or pyrantel pamoate at four to five week intervals and ivermectin at eight week intervals. By contrast, mean counts of young horses rose as high as 655 epg (oxibendazole), 729 epg (pyrantel pamoate) and 852 epg (ivermectin) within the same time period after treatment. Individual counts of treated yearlings sometimes exceeded 3,000 epg. Three distinct mechanisms appeared to be involved in the poor results in young horses. These were 1) anthelmintic refuge, 2) anthelmintic resistance, and 3) anthelmintic avoidance.  相似文献   

2.
The prevalence of benzimidazole-resistant small strongyles was determined in a survey, conducted on 14 thoroughbred studs, which compared the faecal egg counts of groups of horses before and after treatment with the recommended doses of cambendazole (20 mg kg-1 b.w.) or febantel (6 mg kg-1 b.w.). Benzimidazole-resistant cyathostomes were found on all farms examined. Pyrantel pamoate (19 mg kg-1 b.w.), oxibendazole (10 mg kg-1 b.w.) and ivermectin (0.2 mg kg-1 b.w.) reduced the strongyle egg counts on these studs by 97-100% at 2 weeks post-treatment. However, 6 weeks after dosing the reduction of the strongyle egg output had decreased to an average of 67.8% (8.7-97.1%) with pyrantel pamoate and 51.2% (0-95.8%) with oxibendazole, whereas ivermectin still suppressed the egg counts by 98.2% (95-100%).  相似文献   

3.
Moxidectin has broad‐spectrum anti‐nematodal and anti‐arthropodal activities in the horse but is not effective against tapeworms or flukes. Moxidectin and ivermectin have the same efficacy against internal, adult parasites of horses. Moxidectin, however, is highly effective in eliminating encysted and hypobiotic larval stages of cyathostomins, whereas ivermectin is not. Treatment of horses with moxidectin results in an egg‐reappearance period (ERP) of 15–24 weeks. Because of its long ERP, moxidectin is labelled to be used at 12 week intervals. Moxidectin may provide protection against infection by ingested cyathostomin larvae for 2–3 weeks after it is administered. The larvicidal activity of moxidectin has often been compared to that of fenbendazole administered at either 7.5 or 10 mg/kg bwt for 5 consecutive days. The efficacy of fenbendazole, when administered daily for 5 consecutive days at 7.5 or 10 mg/kg bwt, against all stages of cyathostomins is often less than that of moxidectin because resistance of cyathostomins to benzimidazoles is prevalent worldwide, and the 5 day course of fenbendazole does not overcome this resistance. There are now reports of resistance of ascarids to moxidectin. Overt resistance of cyathostomins and a shortened egg re‐emergence period after treatment with moxidectin have been reported. Rapid removal of manure by natural fauna can significantly reduce larval nematode concentrations and thereby reduce intervals of anthelmintic treatment. Of the macrocyclic lactones, moxidectin has the least deleterious effect on faecal fauna.  相似文献   

4.
Fifty-one per cent of 110 questionnaires, designed for obtaining information on helminth control practices and management on Thoroughbred stud farms in South Africa, were completed by farmers during 2000. The number of horses per farm included in the questionnaire survey ranged from 15 to 410. Foals, yearlings and adult horses were treated with anthelmintics at a mean of 7.3 +/- 3.0, 6.6 +/- 2.7 and 5.3 +/- 2.3 times per year, respectively. An average of 3.4 different drugs were used annually, with ivermectin being used bymost farmers during 1997-2000. On 43% of farms the weights of horses were estimated by weigh band and 45% of farmers estimated visually, while both were used on 7% of farms and scales on the remaining 5%. Doses were based on average group weight on 50% ofthe farms and on individual weights on 46%. Forty-three per cent of farmers performed faecal egg count reduction tests (FECRT). Most farmers rotated horses between pastures and treated new horses at introduction. Faecal removal was practiced on 61% of farms and less than 50% of farmers used alternate grazing with ruminants. Faecal egg count reduction tests were done on 283 horses, using oxibendazole, ivermectin and moxidectin on 10,9 and 5 farms, respectively, in the Western Cape Province during 2001. While the efficacy of oxibendazole was estimated by FECRT to range from 0-88% and moxidectin from 99-100%, ivermectin resulted in a 100% reduction in egg counts. Only cyathostome larvae were recovered from post-treatment faecal cultures.  相似文献   

5.
Eighty horses were involved in a comparative, controlled, and randomised field study conducted in Australia and Brazil. This study was undertaken to address the duration of efficacy (by faecal egg count reduction) of four anthelmintic pastes and to measure the time required between treatments on horses naturally infected by gastrointestinal nematodes. The treatment interval was based on the egg reappearance period (ERP), defined as "the period after treatment when horses have reached a positive egg count equal or superior to 200 eggs per gram (epg) of faeces". Horses were ranked according to pre-treatment faecal egg counts and randomly allocated on Day 0 to one of the four treatment groups (n=16). Group A received a combination of ivermectin at 200 microg/kg and praziquantel at 1.5mg/kg, Group B received an ivermectin paste at 200 microg/kg, Group C received a reference product containing ivermectin at 200 microg/kg, Group D received a moxidectin paste at 400 microg/kg, and Group E received a placebo. Horses were individually faecal sampled at weekly interval from Days 0 to 70 after treatment and coprocultures were made on pooled samples at the pre-treatment time on D-7 in Brazil and D-6 in Australia.The nematode population was mainly composed of small strongyles (Cyathostominae, Gyalocephalus spp., Triodontophorus spp.). All products were efficient (>90% efficacy) until Day 42 with no statistical difference between groups. From Day 49 onwards, Group C reached the threshold, while Group B exceeded this threshold on Day 56. Groups A and D remained below 200 epg for the entire study period (70 days). The interval between two anthelmintic treatments can vary according to the threshold. The ERP was defined as the period after treatment while the output of eggs is negligible or considered as acceptable. The mean number of days calculated to recurrence of 200 epg and more was, respectively, 60 days for product A, 56 days for products B and C, and 64 days for product D. If treatments are combined with other methods of limiting exposure to infective larvae on pasture, the number of treatments required will be reduced even further.  相似文献   

6.
A study was undertaken to evaluate and compare faecal excretion of moxidectin and ivermectin in horses after oral administration of commercially available preparations. Ten clinically healthy adult horses, weighing 390-446 kg body weight (b.w.), were allocated to two experimental groups. Group I was treated with an oral gel formulation of moxidectin at the manufacturer's recommended therapeutic dose of 0.4 mg/kg b.w. Group II was treated with an oral paste formulation of ivermectin at the recommended dose of 0.2 mg/kg b.w. Faecal samples were collected at different times between 1 and 75 days post-treatment. After faecal drug extraction and derivatization, samples were analysed by High Performance Liquid Chromatography using fluorescence detection and computerized kinetic analysis.For both drugs the maximum concentration level was reached at 2.5 days post administration. The ivermectin treatment groups' faecal concentrations remained above the detectable level for 40 days (0.6 +/- 0.3 ng/g), whereas the moxidectin treatment group remained above the detectable level for 75 days (4.3 +/- 2.8 ng/g). Ivermectin presented a faster elimination rate than moxidectin, reaching 90% of the total drug excreted in faeces at four days post-treatment, whereas moxidectin reached similar levels at eight days post-treatment. No significant differences were observed for the values of maximum faecal concentration (C(max)) and time of C(max)(T(max)) between both groups of horses, demonstrating similar patterns of drug transference from plasma to the gastrointestinal tract. The values of the area under the faecal concentration time curve were slightly higher in the moxidectin treatment group (7104 +/- 2277 ng.day/g) but were not significantly different from those obtained in the ivermectin treatment group (5642 +/- 1122 ng.day/g). The results demonstrate that although a 100% higher dose level of moxidectin was used, attaining higher plasma concentration levels and more prolonged excretion and gut secretion than ivermectin, the concentration in faeces only represented 44.3+/- 18.0% of the total parental drug administered compared to 74.3 +/- 20.2% for ivermectin. This suggests a higher level of metabolization for moxidectin in the horse.  相似文献   

7.
Three groups of horses and ponies (N = 13, 13 and 12) were treated with ivermectin paste (0.2 mg/kg p.o.), avermectin B1 solution (0.2 mg/kg p.o.), or fenbendazole suspension (10 mg/kg via nasogastric tube). The avermectin B1 was a 1% solution in a propylene glycolglycerol formal base. Faecal strongyle egg counts were performed before, and 14, 28, 42, 56 and 70 d, after treatment. Full-thickness skin biopsies from the neck, pectoral and umbilical regions were examined for Onchocera microfilaria before treatment, and again 14 and 70 d later. Ivermectin therapy produced a significant (P less than 0.01) decrease in mean strongyle egg counts 14, 28, 42 and 56 d after treatment. Avermectin B1 therapy resulted in significant (P less than 0.01) decreases in mean strongyle egg counts 14, 28 and 42 d after treatment. All horses given ivermectin or avermectin B1 had zero strongyle egg counts 14 and 28 d after treatment. Fenbendazole failed to significantly decrease strongyle egg counts. Both ivermectin and avermectin B1 resulted in zero microfilaria counts in all horses 14 d after treatment. On day 70 the percentage decrease in microfilaria counts were 100% and 99.6% respectively. Fenbendazole failed to significantly decrease microfilaria counts. The oral administration of this formulation of avermectin B1 appeared to be highly efficacious against intestinal strongyles and Onchocera microfilaria. The duration of anti-strongyle activity was, however, significantly (P less than 0.01) shorter than that of ivermectin paste.  相似文献   

8.
The in vivo effects of ivermectin and moxidectin on egg viability and larval development of ivermectin-resistant Haemonchus contortus were examined over time after anthelmintic treatment of sheep. Twenty merino sheep, (12 months old) were allocated to five treatment groups and infected with ivermectin-resistant H. contortus. Thirty one days later, the sheep were treated with intraruminal ivermectin capsules, oral ivermectin, oral moxidectin or injectable moxidectin at the manufacturer's recommended dosages, or left untreated. At various times up to 112 days after treatment, faecal egg counts (FEC) were determined and development rates of infective larvae (L3) cultured in faeces or on agar were measured. Eggs in faecal cultures from ivermectin capsule treated sheep showed reduced L3 development percentages in comparison to faecal cultures from untreated sheep. Eggs from ivermectin capsule treated sheep, isolated from faeces, and cultured on agar showed similar L3 development to eggs from control sheep. These results demonstrate an inhibitory effect of excreted ivermectin in faeces on larval development of ivermectin-resistant H. contortus. L3 development in faecal culture from animals receiving oral ivermectin were reduced for only 3 days after treatment. Faecal egg counts and development of L3 larvae in both culture systems from moxidectin treated sheep were low, due to the high efficacy of the drug. Egg counts in moxidectin treated sheep were reduced by approximately 90% 24h after treatment, before decreasing to almost 100% at 48h, suggesting that the current quarantine recommendation of holding sheep off pasture for 24h after treatment may still lead to some subsequent pasture contamination with worm eggs.  相似文献   

9.
Anthelmintic products form the basis of helminth control practices on horse stud farms at present. Regular evaluation of the efficacy of these products is advisable, as it will provide information on the worm egg reappearance period and the resistance status in the worm population. The aim of this study was to evaluate the efficacy of doramectin, pyrantel pamoate, ivermectin and moxidectin on a Thoroughbred stud farm in the Western Cape Province, South Africa. The study also compared the anthelmintic efficacy of two moxidectin formulations administered at their recommended dosages (an injectable, at 0.2 mg/kg, not registered for horses, and an oral gel at 0.4 mg/kg, registered for horses). Two mixed-sex groups of 30 yearlings and 40 weaners were tested in 2001 and 2002, respectively, divided into 3 and 4 groups of equal size. In 2001, moxidectin was one of 3 drugs administered orally and at a dose rate of 0.4 mg/kg. In 2002, pyrantel pamoate and ivermectin were orally administered at 19 and 0.2 mg/kg. Moxidectin and doramectin (the latter not registered for horses) were administered by intramuscular injection at a dose of 0.2 mg/kg, the dosage registered for other host species. The faecal egg count reduction test was used to determine the anthelmintic efficacies in both years. Each animal acted as its own control and the arithmetic mean faecal egg count and lower 95% confidence limit was calculated for each of the groups. A 100% reduction in the faecal egg counts and a 100% lower 95% confidence limit was recorded for moxidectin (0.4 mg/kg) in 2001. In 2002, a 99% and 96% reduction was recorded for pyrantel pamoate and ivermectin, respectively. In the same year doramectin and moxidectin (both injectable and given at 0.2 mg/kg) did not have any effect on worm egg counts. Of the 4 drugs tested in 2002, only pyrantel pamoate recorded lower 95% confidence limits above 90%.  相似文献   

10.
Thirty resident horses at a boarding stable in Alberta were used to evaluate the relative efficacies of ivermectin, oxibendazole, and pyrantel pamoate in reducing fecal egg output in adult horses under routine management conditions during spring and early summer, and to more clearly define the duration of suppression of fecal egg production following anthelmintic treatment. Horses were blocked according to pretreatment egg counts and randomly assigned to one of three treatments: pyrantel pamoate at 6.6 mg/kg body weight; oxibendazole at 10 mg/kg body weight; or ivermectin at 200 μg/kg body weight. All treatments were administered orally as a paste on day 0.Fecal samples were collected for examination by the modified Wisconsin procedure before treatment, and then at 4-11 day intervals up to day 72.

Very few if any strongyle eggs were found in the feces of any horses up to day 35. On days 42, 50 and 57, the geometric mean egg count for the ivermectin group was significantly (p<0.05) lower than that for the oxibendazole or pyrantel pamoate groups. Based on a survival curve analysis of the data, the mean number of days for recurrence of eggs in the feces was significantly longer for the ivermectin group than for the oxibendazole and pyrantel pamoate groups.

Under conditions encountered in this study, the posttreatment interval to resumption of fecal egg out-put in horses treated with ivermectin was eight to nine weeks, compared with five to six weeks for horses treated with oxibendazole or pyrantel pamoate.

  相似文献   

11.
The impact of a late fall treatment on the spring rise of fecal egg counts was evaluated in a controlled study with Canadian horses treated with 2 different dewormers immediately after removal from pasture for winter housing. The horses were stabled until the end of the trial period. Seventeen weanlings, 20 yearlings, and 15 2-year-old horses located in Ontario, which were presumed to be naturally infected with cyathostomins after pasture grazing, were randomly allocated to either a group treated with 0.4 mg/kg of moxidectin and 2.5 mg/kg of praziquantel or a group treated with 0.2 mg/kg of ivermectin and 1.5 mg/kg of praziquantel. Three weeks after treatment, all strongyle fecal egg counts were reduced to zero for both treatment groups. However, at 5 months post-treatment, mean geometric fecal egg counts were statistically higher for the yearlings and 2-year-old horses treated with ivermectin than for the yearlings and 2-year-old horses treated with moxidectin (P < 0.0001).  相似文献   

12.
In order to assess the resistance situation against macrocyclic lactones in Parascaris equorum and against tetrahydropyrimidine derivatives in strongyles in Finnish trotter horses, 112 foals on 18 farms, mostly 1 year old, were examined for these parasites with a modified McMaster faecal flotation method. P. equorum positive foals (n=24) were given ivermectin orally at a dose of 200 μg/kg b.w., while strongyle positive but P. equorum negative foals (n=38) received pyrantel embonate orally at a dose of 19 mg/kg. Sixteen P. equorum infected foals, treated with ivermectin, also harboured strongyles. During the anthelmintic treatment visit to the farm, Faecal Egg Count Reduction Test (FECRT) reference (first) samples were collected. Fourteen days later, the second sampling (reduction samples) was done. The FECR was calculated for each foal/parasite combination. The reduction efficacies of ivermectin against P. equorum (mean 52%, calculated from the individual egg count reductions) and pyrantel against strongyles (43%) were strongly indicative of widespread resistance. Also indication of ivermectin resistance among strongyles was seen. The widespread use of anthelmintics for Finnish horses obviously has resulted in resistance, as has happened elsewhere, too.  相似文献   

13.
Four groups of 10 horses (mares) each were treated with a 1% solution of ivermectin (200 micrograms/kg of body weight) in a propylene glycol-glycerol formal base orally, a 1% solution of ivermectin (200 micrograms/kg) in a propylene glycol-glycerol formal base via nasogastric tube, a 1.87% paste of ivermectin (200 micrograms/kg) orally, or a 22.7% paste of oxibendazole (10 mg/kg) orally. Fecal examinations were done before treatment and on posttreatment days (PTD) 14, 28, 42, 56, and 70. Strongyle egg per gram counts and sugar flotation fecal examinations were performed. Results of fecal examinations before treatment were similar in all horses. All horses treated with ivermectin had similar percentages of reductions in mean strongyle egg per gram counts after treatment; 100% on PTD 14, 28, and 56 and 93.4% to 98.7% on PTD 70. All ivermectin treatment groups had 0 horses detected as passing strongyle eggs on PTD 14 and 28, 0 to 2 on PTD 42, 3 to 5 on PTD 56, and 8 to 9 on PTD 70. Horses treated with oxibendazole had 99.9%, 99.7%, 92.9% 78.6%, and 54.5% reductions in mean strongyle egg per gram counts and 5, 7, 8, 9, and 9 horses detected as passing strongyle eggs on PTD 14, 28, 42, 56, and 70, respectively. Adverse reactions to treatment were not observed.  相似文献   

14.
Investigations into the efficacy of parenteral ivermectin (Pandex) administration for strongylidosis control in donkeys were carried out. The preparation was applied subcutaneously at a dose of 0.2 mg/kg (1 ml/50 kg body weight). One day prior to the treatment and 14 days post-treatment, individual coprological samples were obtained for faecal nematode egg counts and larval culture. The study was performed on 263 donkeys originating from different regions of Bulgaria. Prior to the treatment and 20 days after that, blood samples were obtained from 64 previously infected animals for monitoring of changes in eosinophil leukocyte counts. The subcutaneous application of ivermectin had an efficacy of 96% in terms of reduction of faecal egg counts. In 92.2% of infected donkeys, a complete reduction of faecal eggs count occurred (0 eggs per gram of faeces epg), whereas in the remaining 7.8% of the infected donkeys, the egg counts were reduced by 72%. The reduction in faecal egg counts did not result in changes in eosinophil counts. The results obtained as well as the lack of local changes after the subcutaneous application of ivermectin in donkeys allow us to recommend its use for control of strongyles in donkeys.  相似文献   

15.
AIM: To evaluate the efficacy of ivermectin oral, moxidectin oral and moxidectin injectable formulations against an ivermectin-resistant strain of Trichostrongylus colubriformis in sheep. METHODS: Twenty-four mixed breed lambs were infected with 15,000 infective third-stage larvae of an ivermectin-resistant strain of T. colubriformis which had originally been isolated from a goat farm in Northland in 1997. Twenty-six days post infection, the lambs were divided into 3 treatment groups and a control group (n=6 lambs/group). Treatment consisted of either ivermectin oral formulation (0.2 mg/kg), moxidectin oral formulation (0.2 mg/kg), or moxidectin injectable formulation (0.2 mg/kg). Faecal egg counts (FECs) were determined at 0, 3, 5, 7 and 10 days after treatment. All animals were necropsied 12 days after treatment and worm counts were performed. Larval development assays were conducted 24 days post infection. A further 3 lambs were infected with 15,000 infective third-stage larvae of a fully susceptible strain of T. colubriformis for comparative purposes in the larval development assay. The efficacy of the moxidectin injectable formulation was also confirmed in these 3 lambs. RESULTS: The FEC reduction test at day 10 after treatment revealed 62%, 100% and 0% reductions in arithmetic-mean FECs for ivermectin oral, moxidectin oral and moxidectin injectable groups, respectively. The ivermectin oral, moxidectin oral and moxidectin injectable formulations achieved 62%, 98% and 4% reductions in arithmetic-mean worm burdens, respectively. Larval development assays showed resistance ratios for ivermectin of 4:1, avermectin B2 of 2.7:1, ivermectin aglycone of 37:1, moxidectin of 1.4:1, thiabendazole of 14.6:1 and levamisole of 1.8:1. CONCLUSIONS: The moxidectin oral formulation provided a high degree of control against ivermectin-resistant T. colubriformis whereas the moxidectin injectable formulation had very low efficacy. Ivermectin aglycone was the analogue of choice for diagnosis of ivermectin resistance in T. colubriformis in the larval development assay.  相似文献   

16.
Thirty-six young horses were allocated to three similar groups. Horses in Group 1 were treated with moxidectin gel on Days 0, 90, and 180, Group 2 horses received ivermectin paste on Days 0, 60, 120, and 180, and horses in Group 3 were untreated controls. All horses were maintained on a common pasture for the first 180 days. Immediately after the final scheduled deworming, each group was moved to a separate, clean pasture where it remained until Day 360. At monthly intervals, fecal egg counts, body weights, body condition scores, and pasture larval counts were measured. The cumulative costs of both deworming regimens were calculated. Young horses treated three times at 90-day intervals with moxidectin gel had significantly lower monthly fecal egg counts than untreated controls from Days 30 through 300. Horses given ivermectin paste four times at 60-day intervals had significantly lower egg counts than controls 30 days after each treatment and 60 days after the third dose. Average daily gains of treated horses were significantly greater than controls from Days 120 through 360 (moxidectin) and from Days 210 through 360 (ivermectin). Quarterly moxidectin treatments reduced egg counts more effectively and cost less than ivermectin given bimonthly.  相似文献   

17.
The efficacies of ivermectin, nemadectin and moxidectin were evaluated when administered orally to lambs infected with either a susceptible laboratory strain of Haemonchus contortus or a strain reported to be resistant to ivermectin. Groups of 24 Dorset cross Cheviot cross Suffolk lambs were infected with either the susceptible or resistant strain of H contortus and allocated to treatment groups according to their faecal egg counts 27 days after infection. One day later the lambs were dosed orally with one of the three anthelmintics at 0.2 mg/kg bodyweight, and they were killed and surviving worms were recovered 13 or 14 days after treatment. Against the ivermectin resistant strain, ivermectin did not significantly reduce the egg count or the numbers of adult H contortus; however, both nemadectin and moxidectin reduced the nematode egg counts and the numbers of H contortus by 99 and 100 per cent, respectively. Against the susceptible strain, all the anthelmintics reduced the egg counts by 100 per cent as early as four days after treatment and reduced the numbers of susceptible H contortus by 100 per cent. No adverse reactions to any of the drugs were observed.  相似文献   

18.
In order to determine whether the efficacy of moxidectin against Ostertagia circumcincta is enhanced by its persistency, therapeutic efficacy was compared at intervals after treatment and with that of ivermectin, a closely related but more transient endectocide. Groups of 7-month-old New Zealand Romney lambs were infected with a strain of O. circumcincta known to be resistant to moxidectin. At patency of the infections, groups of lambs were treated with either moxidectin or ivermectin at the manufacturer's recommended dosages, or left untreated. At 3, 6 and 10 days post-treatment, faecal egg count was measured and groups of lambs were slaughtered for estimation of adult worm burden. Drug-resistant worm burdens were significantly reduced in those animals treated with moxidectin but not in those treated with ivermectin. No effect of time of slaughter on worm burden was observed with either drug, demonstrating that the higher therapeutic efficacy of moxidectin against this parasite was not due to an increased period of drug exposure. Faecal egg counts in the moxidectin treated animals increased with time after treatment indicating a temporary suppression of egg output by surviving worms. The implications of these findings on selection for anthelmintic resistance are discussed.  相似文献   

19.
A study was performed on two horse farms to evaluate the use of age-clustered pooled faecal samples for monitoring worm control in horses. In total 109 horses, 57 on farm A and 52 on farm B, were monitored at weekly intervals between 6 and 14 weeks after ivermectin treatment. This was performed through pooled faecal samples of pools of up to 10 horses of the groups 'yearlings' (both farms), '2-year-old' (two pools in farm A), '3-year-old' (farm A) and adult horses (four pools on farm A and five pools on farm B), which were compared with the mean individual faecal egg counts of the same pools. A very high correlation between the faecal egg counts in pooled samples and the mean faecal egg counts was seen and also between the faecal egg counts in pooled samples and larval counts from pooled faecal larval cultures. Faecal egg counts increased more rapidly in yearlings and 2-year-old horses than in older horses. This implied that in these groups of young animals faecal egg counts of more than 200 EPG were reached at or just after the egg reappearance period (ERP) of 8 weeks that is usually indicated for ivermectin. This probably means that, certainly under intensive conditions, repeated treatment at this ERP is warranted in these young animals, with or without monitoring through faecal examination. A different situation is seen in adult animals. Based on the mean faecal egg counts on both farms and on the results of pooled samples in farm A, using 100 EPG as threshold, no justification for treatment was seen throughout the experimental period. However, on farm B values of 100 EPG were seen at 9 and 11, 13 and 14 and 14 weeks after ivermectin treatment in pools 10, 12 and 13, respectively. This coincided with the presence of one or two horses with egg counts above 200 EPG. The conclusion is that random pooled faecal samples of 10 adult horses from a larger herd, starting at the ERP and repeating it at, for instance, 4-week intervals, could be used for decisions on worm control. However, there would be a certain risk for underestimating pasture contamination through missing high-egg excreters. An alternative use of pooled samples would be as a cheap first screening to detect which adult horses really contribute to pasture contamination with worm eggs on a farm. All horses should be sampled and subsequently animals from 'positive' pools can be reexamined individually.  相似文献   

20.
The efficacy of ivermectin, fenbendazole, pyrantel pamoate and doramectin was evaluated under field conditions at 2 sites in the Free State Province of South Africa. The study involved 25 horses at each site, divided into 5 groups of equal size. Ivermectin, fenbendazole and pyrantel pamoate were administered orally at doses of 0.2, 10 and 19 mg/kg respectively. Doramectin was administered by intramuscular injection at a dose of 0.2 mg/kg. Treatment efficacy was based on the mean faecal egg count reduction 14 days post treatment. At site A a faecal egg count reduction of 100% was found after treatment with ivermectin, fenbendazole and doramectin. A 96.1% reduction was found after treatment with pyrantel pamoate. At site B ivermectin and doramectin produced a 100% reduction in faecal egg counts, fenbendazole produced an 80.8% reduction and pyrantel pamoate a 94.1% reduction. Doramectin produced a 100% reduction in faecal egg counts at both sites, despite not being registered for use in horses. In addition, the results indicated reduced efficacy of fenbendazole at site B, which suggested benzimidazole resistance. Larval cultures showed that cyathostomes accounted for between 86 and 96% of pre-treatment parasite burdens at both sites. Other helminths identified in the faecal samples were Strongylus spp. and Trichostrongylus axei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号