首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The virulence factors of avian pathogenic Escherichia coli (APEC) isolated in Japan were investigated. Serogroups O, serotypes K1 and K5, and genes cva C, iss, iutA, papA, tsh, and usp, which have been thought to be related to virulence, were examined for their association with E. coli strains isolated from diseased and healthy chickens. The frequently recognized serogroups O1, O2, and O78 were found in 56 of 125 (44.8%) strains of diseased chickens (APEC) versus 13 of 100 (13.0%) strains of healthy chickens (commensal E. coli), a significant difference at risk ratio < 0.01. Although iss, iutA, and tsh were widely distributed in the APEC irrespective of O serogroup, papA, usp, and the K1 serotype were detected in serogroup O2 of APEC. The kfiD gene related to the K5 capsule and VT, LT, and ST genes related to exotoxins were not detected in any strains examined.  相似文献   

2.
3.
Avian pathogenic Escherichia coli (APEC)   总被引:5,自引:0,他引:5  
Infections with avian pathogenic Escherichia coli (APEC) cause colibacillosis, an acute and mostly systemic disease resulting in significant economic losses in poultry industry worldwide. Avian colibacillosis is a complex syndrome characterized by multiple organ lesions with airsacculitis and associated pericarditis, perihepatitis and peritonitis being most typical. Environmental factors as well as the constitution of poultry or initial viral infections influence the outcome of APEC-infections. However, several challenge experiments in chickens proofed the role of virulent APEC strains as the single aetiological agent. Currently serotypes O1:K1, O2:K1 and O78:K80 are recognized as the most prevalent, however the number of published serotypes is increasing. In addition, single APEC isolates vary profoundly in virulence, and knowledge about the molecular basis of this variability is still scarce. Known virulence factors of APEC are adhesins (F1- and P-fimbriae), iron acquisition systems (aerobactin and yersiniabactin), hemolysins (hemolysinE and temperaturesensitive hemagglutinin), resistance to the bactericidal effects of serum and phagocytosis (outer membrane protein, iss protein, lipopolysaccharide, K/1)-capsule and colilcin production) as well as toxins and cytotoxins (heat stable toxin, cyto-/verotoxin and flagella toxin). Esperimental studies have shown that the respiratory tract, principally the gas-exchange region of the lung and the interstitium of the air sacs are the most important sites of entry for avian pathogenic E. coli. APEC strains adhere to the epithelial cells of air sacs presumably through F1-fimbriae. After colonization and multiplication the bacteria enter the bloodstream, and the temperature-sensitive hemagglutinin (tsh) seems to be important int his step. After invading the bloodstream APEC cause a septicemia resulting in massive lesins in multiple internal organs and in sudden death of the birds. The ability of the bacteria to acquire iron and the resistance to the bactericidal effects of serum, predominantly conferred by the increased serum survival (iss)--protein, enables APEC to multiply quickly in their hosts. Iss is regarded a specific genetic marker for avian pathogenic E. colistrains. A critical review of the literature published so far on APEC reveals, that these pathotypes are not defined appropriately. This findings urge investigations on the population structure of APEC, enabling the establishment of appropriate diagnostic tools and avoiding the obsolete use of serotyping for APEC diagnosis. So far more than 20 APEC strains have been investigated in animal experiments, explaining contrary published results. Thus, the lack of knowledge in pathogenicity and in immunity of APEC infections urges further experimental studies. As APEC share not only identical serotypes with human pathogens but also specific virulence factors, their zoonotic potential is under consideration.  相似文献   

4.
Escherichia coli infections are being increasingly detected among poultry flocks, indicating the growing importance of this pathogen to the industry. The infection begins as a respiratory infection of the trachea, followed by colonization of the air sacs and lungs, from where it invades the blood-stream, leading to infection of the deeper organs (liver, heart, oviduct, and peritoneum). A number of factors play a crucial role in the virulence and pathogenesis of infection. The F1 and P pili are particularly important in establishing the infection at the level of the tracheal epithelium cell. Other important factors are aerobactin, capsule, and serum resistance. Treatment is with antibiotics, but the growing bacterial resistance of avian E. coli and stricter regulations mean that attention is turning to prophylactic, preventative, measures, such as vaccination. Current vaccines provide limited homologous protection against the pathogen. Research is needed to develop a good, broad-spectrum vaccine.  相似文献   

5.
The temperature-sensitive hemagglutinin (Tsh) expressed by strains of avian pathogenic Escherichia (E.) coli (APEC) has both agglutinin and protease activities. Tsh is synthesized as a 140 kDa precursor protein, whose processing results in a 106 kDa passenger domain (Tshs) and a 33 kDa β-domain (Tshβ). In this study, both recombinant Tsh (rTsh) and supernatants from APEC, which contain Tshs (106 kDa), caused proteolysis of chicken tracheal mucin. Both rTsh (140 kDa) and pellets from wild-type APEC, which contain Tshβ (33 kDa), agglutinated chicken erythrocytes. On Western blots, the anti-rTsh antibody recognized the rTsh and 106 kDa proteins in recombinant E. coli BL21/pET 101-Tsh and in the supernatants from APEC grown at either 37℃ or 42℃. Anti-rTsh also recognized a 33 kDa protein in the pellets from APEC13 cultures grown in either Luria-Bertani agar, colonization factor antigen agar, or mucin agar at either 26℃, 37℃, or 42℃, and in the extracts of outer membrane proteins of APEC. The 106 kDa protein was more evident when the bacteria were grown at 37℃ in mucin agar, and it was not detected when the bacteria were grown at 26℃ in any of the culture media used in this study. Chicken anti-Tsh serum inhibited hemagglutinating and mucinolytic activities of strain APEC13 and recombinant E. coli BL21/pET101-Tsh. This work suggests that the mucinolytic activity of Tsh might be important for the colonization of the avian tracheal mucous environment by APEC.  相似文献   

6.
Eleven isolates of H2S-producing Escherichia coli were recovered from necropsy materials of chickens with symptoms and lesions of colisepticemia on Saudi Arabian broiler farms. Results of 19 out of 20 biochemical reactions studied were typical for E. coli. Hydrogen sulfide production by the E. coli isolates was used as an epidemiological marker to pinpoint a breeding farm as the probable source of these strains, which were then transferred to progeny farms, where colisepticemia occurred. This finding was confirmed by the presence of the same antigenic structure (O78:H-) and by the same drug-resistance pattern (a multiple resistance to streptomycin, sulfathiazole, and tetracycline) in the isolates.  相似文献   

7.
Twenty-one isolates of Escherichia coli recovered from chickens and turkeys were evaluated for pathogenicity in 1-week-old chicks. Fifteen produced coli-septicemia (pathogenic) and six were innocuous (nonpathogenic). Both pathogenic and nonpathogenic E. coli were tested for their ability to selectively absorb Congo red (CR) dye incorporated into agar medium. Eight of 15 pathogenic E. coli (somatic antigen types O1, O78, O11, O88, and OX9) absorbed the dye and produced red colonies (CR+) between 48 to 72 hours of incubation. All serotypes of E. coli with homologous somatic antigen O78 were CR+, while those of O2 antigen were CR- (white colonies). Five of six nonpathogenic E. coli also were CR+. In contrast to pathogenic E. coli, however, nonpathogenic isolates absorbed CR early, between 18 to 24 hours of incubation. Although CR dye binding did not correlate well with pathogenicity, it may be an identifiable property of some serotypes of E. coli.  相似文献   

8.
Avian pathogenic Escherichia coli (APEC).   总被引:14,自引:0,他引:14  
Avian pathogenic Escherichia coli (APEC) cause aerosacculitis, polyserositis, septicemia and other mainly extraintestinal diseases in chickens, turkeys and other avian species. APEC are found in the intestinal microflora of healthy birds and most of the diseases associated with them are secondary to environmental and host predisposing factors. APEC isolates commonly belong to certain serogroups, O1, O2 and O78, and to a restricted number of clones. Several experimental models have been developed, permitting a more reliable evaluation of the pathogenicity of E. coli for chickens and turkeys. Hence, virulence factors identified on APEC are adhesins such as the F1 and P fimbriae, and curli, the aerobactin iron sequestering system, K1 capsule, temperature-sensitive hemagglutinin (Tsh), resistance to the bactericidal effects of serum and cytotoxic effects. Experimental infection studies have shown that the air-exchange regions of the lung and the airsacs are important sites of entry of E. coli into the bloodstream of birds during the initial stages of infection and that resistance to phagocytosis may be an important mechanism in the development of the disease. They have also demonstrated that F1 fimbriae are expressed in the respiratory tract, whereas P fimbriae are expressed in the internal organs of infected chickens. The role of these fimbrial adhesins in the development of disease is not yet, however, fully understood. The more recent use of genetic approaches for the identification of new virulence factors will greatly enhance our knowledge of APEC pathogenic mechanisms. Diagnosis of APEC infections is based on the clinical picture, lesions and isolation of E. coli. This may be strengthened by serotyping and identification of virulence factors using immunological or molecular methods such as DNA probes and PCR. Approaches for the prevention and control of APEC infections include the control of environmental contamination and environmental parameters such as humidity and ventilation. Antibiotherapy is widely used, although APEC are frequently resistant to a wide range of antibiotics. Vaccines containing killed or attenuated virulent bacteria protect against infection with the homologous strain but are less efficient against heterologous strains. Hence, vaccination for colibacillosis is not widely practised because of the large variety of serogroups involved in field outbreaks.  相似文献   

9.
致病性鸡大肠杆菌typel菌毛fimC基因的克隆与序列测序   总被引:1,自引:0,他引:1  
根据国外发表的人致病性大肠杆菌fimC基因序列,在其保守区设计了带有BamHⅠ/HindⅢ酶切位点的一对引物,应用PCR技术以鸡致病性大肠杆菌02基因组DNA为模板扩增到一个片段,大小约为700kp,将扩增产物克隆到pMD18-T载体上,并转化于大肠杆菌TG1宿主菌,经酶切和筛选,得到阳性重组质粒。通过对阳性重组质粒核酸序列测定,确定此DNA片段为鸡大肠杆菌fimC基因。  相似文献   

10.
根据国外发表的人致病性大肠杆菌fimC基因序列,在其保守区设计了带有BamHⅠ/HindⅢ酶切位点的一对引物,应用PCR技术以鸡致病性大肠杆菌O2基因组DNA为模板扩增到一个片段,大小约为700bp,将扩增产物克隆到pMD18-T载体上,并转化于大肠杆菌TG1宿主菌,经酶切和筛选,得到阳性重组质粒.通过对阳性重组质粒核酸序列测定,确定此DNA片段为鸡大肠杆菌fimC基因.  相似文献   

11.
An avian pathogenic Escherichia coli (APEC) strain designated SHS4, isolated from a chicken with clinical signs of swollen head syndrome (SHS), adhered to but did not invade Hep-2 and tracheal epithelial cells. The PCR amplified fimA, csgA and tsh gene sequences. It produced Ia, Ib, E1, E3, K, and B colicins, but not colicin V and aerobactin. It harboured two plasmids of 60 and 98MDa and was resistant to streptomycin and tetracycline. Conjugation with a nalidixic acid (Na) resistant K-12 recipient strain (MS101) showed that the 98MDa plasmid did not transfer, whereas transfer of the 60MDa plasmid resulted in concomitant transfer of adhesion to Hep-2 and tracheal epithelial cells, production of the colicins Ia, E1, E3, and K, and the tsh-related DNA sequence. Transposon (TnphoA) mutagenesis of strain TR4 gave rise to strain Mut23, which lost its adhesive capacities, but was still able to express the same colicins as did strain TR4. PCR was able to amplify the tsh-related DNA sequence in this strain and a molecular probe based on transposon TnphoA indicated that the transposon was inserted in the 60MDa plasmid. Based on these results, we suggest that the 60MDa plasmid have adhesion genes, which may be responsible for the initial colonization of the upper respiratory tract of chickens.  相似文献   

12.
A total of 114 avian pathogenic Escherichia coli (APEC) isolates were collected from cases of colisepticaemia occurring in broilers (77) and layers (37) within Ireland. In addition 45 strains isolated from faeces of healthy birds were included for comparison. All isolates were serogrouped, and examined for known virulence factors, mostly by PCR. The O78 serogroup represented 55 and 27% of broiler and layer colisepticaemic isolates respectively. All isolates were positive for curli fimbriae (crl, csg) and negative for afimbrial adhesin (afa). S-fimbrial (sfa) sequences were present in 8.8% of septicaemic isolates and 8.9% of healthy bird isolates. The majority of E. coli from cases of colisepticaemia (97.4%) and healthy bird (95.6%) isolates were positive for aerobactin (aer), and temperature sensitive haemagglutinin (tsh) was similarly detected in high numbers in 93.9 and 93.3%, respectively. In comparison to E. coli isolates from the faeces of healthy birds, a significantly higher percentage of isolates from septicaemic cases possessed Type 1 fimbriae (fimC) and increased serum survival (iss) gene sequences. Forty-seven (41.2%) isolates from septicaemic birds possessed P-fimbriae (pap) gene sequences, compared with only 15.6% from E. coli isolated from healthy birds. Haemolysin (hlyE) sequences were detected in 46.7% of isolates from healthy birds in comparison with 6.1% of septicaemic isolates. Sequences encoding colicin V (cvaC) were detected in 99.1% of septicaemic isolates and 82.2% of isolates from healthy birds. The K1 capsule was only present in two septicaemic isolates, both taken from layers. Motility was detected in 36.8% of E. coli isolated from cases of septicaemia, compared with 93.3% of isolates from healthy birds. These results demonstrate the presence of 11 virulence genes in E. coli isolated from cases of colisepticaemia within Ireland, and indicate the prevalence of iss and fimC.  相似文献   

13.
Here we describe the application of a random amplified polymorphic DNA (RAPD) analysis for molecular genetic typing avian pathogenic Escherichia coli (APEC) strains. The RAPD technique was shown to be highly reproducible. Stable banding patterns with a high discriminatory capacity were obtained using two different primers. Overall, 55 E. coli strains were analyzed with a RAPD technique. The RAPD analysis showed that the E. coli strains isolated from poultry in Thailand and Sweden could be grouped into 50 of RAPD types by using these two different primer sets. Most of these different E. coli RAPD types were not geographically restricted. There was, as expected, a tendency of higher genetic relationship among E. coli strains isolated from the same farm. It is suggested that the RAPD technique may provide a rapid, low cost, simple and powerful tool to study the clonal epidemiology of avian E. coli infections.  相似文献   

14.
Extraintestinal infections by avian pathogenic strains of Escherichia coli (APEC) are commonly reported in poultry, but there is little information on infections by APEC in other bird species. Here we report on the characterization of extraintestinal E. coli isolated from a domesticated peacock, from the south of Brazil, that died of colisepticemia. Necropsy examination revealed congested liver, hypertrophied kidneys, peritonitis, severe typhlitis suggestive of coligranuloma, pneumonia, and airsacculitis--typical signs of colisepticemia. The isolates from lungs, kidney, heart, intestine, liver, and bone marrow all harbored the same virulence-associated factors (iucD, colV, iss, mat, fimC, ompA, traT crl, csgA vgrG, and hcp), yielded the same band pattern in amplified ribosomal DNA restriction analysis, and were allocated to the Escherichia coli Reference Collection group B1. The isolates were resistant to bacitracin, trimethoprim, and tetracycline, but displayed slight differences in their resistance to other antimicrobials. The isolates also differed in their virulence in 1-day-old chickens, but none displayed high virulence in vivo. We conclude that the peacock died of colisepticemia after it was infected with an extraintestinal E. coli strain of low virulence that nevertheless harbored virulence factors generally associated with APEC. This study represents the first characterization of an APEC isolated from a nonpoultry bird species.  相似文献   

15.
In this study we sequenced and analysed the fimH and fimA genes of 24 avian pathogenic Escherichia coli (APEC) isolates, in order to investigate their possible conserved nature. Additional parameters (serotype, presence of aerobactin receptor, expression of F1 pili and virulence for chickens) were investigated to look for correlations with the obtained sequences. The sequence analysis demonstrated that FimH is highly conserved among all investigated APEC strains (>99% homology), whereas the major subunit FimA is less conserved, presenting 6 variable regions distributed along the protein. A hydrophilicity analysis suggested several variable domains of FimA to be potential epitopes. We were able to classify the investigated strains into three main groups, on the basis of the amino-acid sequences of the variable regions. This grouping was consistent throughout all variable regions and was independent of serotype, leading to an improved classification of the F1 pili. No correlation was found between the fimH and fimA sequences and the following parameters: avian species, organ of isolation, serotype, presence of aerobactin receptor and virulence for chickens. This study elucidated the molecular structure and the degree of conservation of FimH and FimA among various avian pathogenic E. coli strains.  相似文献   

16.
17.
Sixty-three Escherichia coli strains isolated from broilers with respiratory problems were examined for virulence factors, hemolysin synthesis ability, motility, hemagglutination capacity, operon pap presence, colicin production, and serum resistance. The capacity to hemagglutinate guinea pig erythrocytes was found in 53 (84.1%) of the samples, but only 30 (47.6%) agglutinated chicken erythrocytes. D-mannose-sensitive hemagglutination against guinea pig erythrocytes was found in 19 (30.2%) samples and against chicken erythrocytes, in 15 (23.8%) samples, whereas the D-mannose-resistant hemagglutination with guinea pig erythrocytes was found in 34 (54%) samples, and 13 of these (20.6%) showed this characteristic against chicken erythrocytes. Operon pap, P fimbria codifier, was detected in 26 samples in a total of 34 D-mannose-resistant samples. Colicin production was observed in 55 (87.3%) of the strains, and 41.8% presented V colicin production. Of the samples analyzed, 56 (88.9%) presented serum resistance, six (9.5%) were intermediate, and only one (1.6%) was sensitive to the action of the complement. The diversity of virulence profiles detected in the samples in this study explains in part the multifactorial characteristics of avian colibacillosis.  相似文献   

18.
为了解耶尔森菌强毒力岛(HPI)在禽致病性大肠杆菌(APEC)中的流行情况,根据HPI结构基因irp2和fyuA参考序列设计了引物,用PCR方法和斑点杂交法对从江苏等地分离的APEC基因组进行了扩增和检测,并对E.coli NTJC040406菌株相关基因进行了克隆和序列分析。结果表明,216株APEC中有44.9%的菌株携带有HPI,序列分析表明相关基因与GenBank中参考序列的同源性高达98%以上。提示HPI在APEC中广泛存在,经进一步分析,发现分离菌株是否携带HPI与O78等特定血清型有一定的相关性。  相似文献   

19.
Avian pathogenic Escherichia coli (APEC) are often found in poultry and are responsible for a set of diseases, commonly referred to as avian colibacillosis. One of the important virulence factors is adhesion to different epithelial surfaces, which is mediated by pili. P pili are thought to play a role by means of their PapG adhesin, which occurs in three molecular variants: PapGI, PapGII and PapGIII. This study is the first to determine and analyse the distribution of the different papG alleles in APEC. Our results show a significant predominance of the papGII allele above all other alleles or allele combinations. No statistically significant associations could be found between papG allele distribution and the type of bird, organ of isolation and O serogroup. Finally, the papGII and papGIII sequences showed high homology with mammalian (including human) source papG sequences.  相似文献   

20.
Avian pathogenic Escherichia coli (APEC) causes economically significant infections in poultry. The genetic diversity of APEC and phylogenetic relationships within and between APEC and other pathogenic E. coli are not yet well understood. We used multilocus sequence typing (MLST), PCR-based phylogrouping and virulence genotyping to analyse 75 avian E. coli strains, including 55 isolated from outbreaks of colisepticaemia and 20 from healthy chickens. Isolates were collected from 42 commercial layer and broiler chicken farms in Sri Lanka. MLST identified 61 sequence types (ST) with 44 being novel. The most frequent ST, ST48, was represented by only six isolates followed by ST117 with four isolates. Phylogenetic clusters based on MLST sequences were mostly comparable to phylogrouping by PCR and MLST further differentiated phylogroups B1 and D into two subgroups. Genotyping of 16 APEC associated virulence genes found that 27 of the clinical isolates and one isolate from a healthy chicken belonged to highly virulent genotype according to previously established classification schemes. We found that a combination of four genes, ompT, hlyF, iroN and papC, gave a comparable prediction to that of using five and nine genes by other studies. Four STs (ST10, ST48, ST117 and ST2016) contained APEC isolates from this study and human UPEC isolates reported by others, suggesting that these STs are potentially zoonotic. Our results enhanced the understanding of APEC population structure and virulence association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号