首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A primary consequence of plate tectonics is that basaltic oceanic crust subducts with lithospheric slabs into the mantle. Seismological studies extend this process to the lower mantle, and geochemical observations indicate return of oceanic crust to the upper mantle in plumes. There has been no direct petrologic evidence, however, of the return of subducted oceanic crustal components from the lower mantle. We analyzed superdeep diamonds from Juina-5 kimberlite, Brazil, which host inclusions with compositions comprising the entire phase assemblage expected to crystallize from basalt under lower-mantle conditions. The inclusion mineralogies require exhumation from the lower to upper mantle. Because the diamond hosts have carbon isotope signatures consistent with surface-derived carbon, we conclude that the deep carbon cycle extends into the lower mantle.  相似文献   

2.
The lithospheric mantle beneath the Kaapvaal-Zimbabwe craton of southern Africa shows variations in seismic P-wave velocity at depths within the diamond stability field that correlate with differences in the composition of diamonds and their syngenetic inclusions. Middle Archean mantle depletion events initiated craton keel formation and early harzburgitic diamond formation. Late Archean accretionary events involving an oceanic lithosphere component stabilized the craton and contributed a younger Archean generation of eclogitic diamonds. Subsequent Proterozoic tectonic and magmatic events altered the composition of the continental lithosphere and added new lherzolitic and eclogitic diamonds to the Archean diamond suite.  相似文献   

3.
Valley JW  Cavosie AJ  Fu B  Peck WH  Wilde SA 《Science (New York, N.Y.)》2006,312(5777):1139; author reply 1139
Harrison et al. (Reports, 23 December 2005, p. 1947) proposed that plate tectonics and granites existed 4.5 billion years ago (Ga), within 70 million years of Earth's formation, based on geochemistry of >4.0 Ga detrital zircons from Australia. We highlight the large uncertainties of this claim and make the more moderate proposal that some crust formed by 4.4 Ga and oceans formed by 4.2 Ga.  相似文献   

4.
The neodymium isotope and samarium-neodymium systematics of 2.7-billion-year-old mantle-derived magmas indicate that the lifetime of chemical heterogeneities was much shorter in the Archean mantle than in the modern mantle. Isotopic evidence is compatible with a Rayleigh number 100 times larger and convection 10 times faster in the Late Archean compared with the present-day mantle. Modern plate tectonics thus may be an improbable analog for the Archean. Chemical heterogeneities in the mantle may originate upon magma migration and mineralogical phase changes rather than by recycling of oceanic and continental crust.  相似文献   

5.
The long-favored paradigm for the development of continental crust is one of progressive growth beginning at approximately 4 billion years ago (Ga). To test this hypothesis, we measured initial 176Hf/177Hf values of 4.01- to 4.37-Ga detrital zircons from Jack Hills, Western Australia. epsilonHf (deviations of 176Hf/177Hf from bulk Earth in parts per 10(4)) values show large positive and negative deviations from those of the bulk Earth. Negative values indicate the development of a Lu/Hf reservoir that is consistent with the formation of continental crust (Lu/Hf approximately 0.01), perhaps as early as 4.5 Ga. Positive epsilon(Hf) deviations require early and likely widespread depletion of the upper mantle. These results support the view that continental crust had formed by 4.4 to 4.5 Ga and was rapidly recycled into the mantle.  相似文献   

6.
Tackley PJ 《Science (New York, N.Y.)》2000,288(5473):2002-2007
Plate tectonics and convection of the solid, rocky mantle are responsible for transporting heat out of Earth. However, the physics of plate tectonics is poorly understood; other planets do not exhibit it. Recent seismic evidence for convection and mixing throughout the mantle seems at odds with the chemical composition of erupted magmas requiring the presence of several chemically distinct reservoirs within the mantle. There has been rapid progress on these two problems, with the emergence of the first self-consistent models of plate tectonics and mantle convection, along with new geochemical models that may be consistent with seismic and dynamical constraints on mantle structure.  相似文献   

7.
Birth of the Kaapvaal tectosphere 3.08 billion years ago   总被引:1,自引:0,他引:1  
The crustal remnants of Earth's Archean continents have been shielded from mantle convection by thick roots of ancient mantle lithosphere. The precise time of crust-root coupling (tectosphere birth) is poorly known but is needed to test competing theories of continental plate genesis. Our mapping and geochronology of an impact-generated section through the Mesoarchean crust of the Kaapvaal craton indicates tectosphere birth at 3.08 +/- 0.01 billion years ago, roughly 0.12 billion years after crust assembly. Growth of the southern African mantle root by subduction processes occurred within about 0.2 billion years. The assembly of crust before mantle may be common to the tectosphere.  相似文献   

8.
A change in the geodynamics of continental growth 3 billion years ago   总被引:2,自引:0,他引:2  
Models for the growth of continental crust rely on knowing the balance between the generation of new crust and the reworking of old crust throughout Earth's history. The oxygen isotopic composition of zircons, for which uranium-lead and hafnium isotopic data provide age constraints, is a key archive of crustal reworking. We identified systematic variations in hafnium and oxygen isotopes in zircons of different ages that reveal the relative proportions of reworked crust and of new crust through time. Growth of continental crust appears to have been a continuous process, albeit at variable rates. A marked decrease in the rate of crustal growth at ~3 billion years ago may be linked to the onset of subduction-driven plate tectonics.  相似文献   

9.
Laboratory experiments suggest that a convective regime characterized by two length scales of motion is a reasonable model for circulations in the earth's upper mantle. The flows of largest horizontal scale represent a likely plate-driving mechanism, required by some theories of plate tectonics. It is also suggested that the small-scale circulations could influence the chemical evolution of the mantle by extracting primitive mantle material that is otherwise entrained in the large-scale flow.  相似文献   

10.
Crust formation and plate motion in the early archean   总被引:4,自引:0,他引:4  
Mounting evidence for voluminous continental crust formation in the early Archean involving intracrustal melting and selective preservation of granitoid rocks suggests that initial crust formation crust formation and growth were predominantly by magmatic underplating in plumegenerated Iceland-type settings. Collision of these early islands to give rise to larger blocks is suggested by extensive horizontal shortening in both supracrustal and granitoid assemblages. Preservation of early Archean high-grade gneisses that were once at depths of 20 to 30 kilometers implies that these blocks developed thick, subcrustal roots despite high mantle heat flow. Rigid continental plates must have existed since at least 3.5 billion years ago, and greenstone belts (composed of mixed metavolcanic and metasedimentary sequences intruded by granitoid plutons) probably developed on or near these microcontinents. Paleomagnetic data with good age control from at least one ancient craton suggest that plate motion was at normal minimum average velocities of about 17 millimeters per year with respect to the poles during the period 3.5 billion to 2.4 billion years ago. If this is true on a global scale, Archean plate motion was not faster than in later geologic times.  相似文献   

11.
The introduction and evolution of the plate tectonics hypothesis during the past two decades has sparked the current renaissance of research in the earth sciences. An outgrowth of active geophysical and geological exploration of the oceans, the plate tectonics model has come under intense scrutiny by geologists, geochemists, and geophysicists who have attempted to apply the model to the origin and growth of continents, the generation of oceanic and continental crust, and the nature of the lithosphere, asthenosphere, and underlying mantle with respect to their evolution through time and to the driving mechanism or mechanisms for plate tectonics. The study of other terrestrial planets and moons has been helpful in understanding the earth model. The unequal distribution of geological features, both in the continents and oceans, emphasizes the need for ongoing studies of international scope such as the recently completed International Geodynamics Project and its successor, the International Lithosphere Program, both stressing studies related to the dynamics of the lithosphere.  相似文献   

12.
Diamond occurs in ultrahigh pressure metamorphic rocks from Dabie Shan, Anhui Province, eastern China. Diamond-bearing rocks include eclogite, gamet-pyroxenite, and jadeitite. Diamond occurs in a mineral assemblage with coesite and jadeite. The diamonds and diamondiferous rocks of Dabie Shan are interpreted to be the products of ultrahigh pressure metamorphism in the undérthrust basement of the Yangtze continental plate during the early Mesozoic, at greater than 4.0 gigapascals and 900 degrees C. This interpretation is based on the distribution of rock units, the stability field of diamond, and isotopic data indicating a crustal origin for the rocks. Most diamonds occur as euhedral inclusions in garnets and are 10 to 60 micrometers across, although some are up to 700 micrometers across.  相似文献   

13.
Populations of sulfide inclusions in diamonds from the Orapa kimberlite pipe in the Kaapvaal-Zimbabwe craton, Botswana, preserve mass-independent sulfur isotope fractionations. The data indicate that material was transferred from the atmosphere to the mantle in the Archean. The data also imply that sulfur is not well mixed in the diamond source regions, allowing for reconstruction of the Archean sulfur cycle and possibly offering insight into the nature of mantle convection through time.  相似文献   

14.
Temporal evolution of depleted mantle thorium-uranium-niobium systematics constrain the amount of continental crust present through Earth's history (through the niobium/thorium ratio) and date formation of a globally oxidizing atmosphere and hydrosphere at approximately 2.0 billion years ago (through the niobium/uranium ratio). Increase in the niobium/thorium ratio shows involvement of hydrated lithosphere in differentiation of Earth since approximately 3.8 billion years ago. After approximately 2.0 billion years ago, the decreasing mantle thorium/uranium ratio portrays mainly preferential recycling of uranium in an oxidizing atmosphere and hydrosphere. Net growth rate of continental crust has varied over time, and continents are still growing today.  相似文献   

15.
Diamonds and the african lithosphere   总被引:1,自引:0,他引:1  
Data and inferences drawn from studies of diamond inclusions, xenocrysts, and xenoliths in the kimberlites of southern Africa are combined to characterize the structure of that portion of the Kaapvaal craton that lies within the mantle. The craton has a root composed in large part of peridotites that are strongly depleted in basaltic components. The asthenosphere boundary shelves from depths of 170 to 190 kilometers beneath the craton to approximately 140 kilometers beneath the mobile belts bordering the craton on the south and west. The root formed earlier than 3 billion years ago, and at that time ambient temperatures in it were 900 degrees to 1200 degrees C; these temperatures are near those estimated from data for xenoliths erupted in the Late Cretaceous or from present-day heat-flow measurements. Many of the diamonds in southern Africa are believed to have crystallized in this root in Archean time and were xenocrysts in the kimberlites that brought them to the surface.  相似文献   

16.
Analytical transmission electron microscopy, electron microprobe analyses, and singlecrystal x-ray diffraction data support the conclusion that high potassium contents, up to 1.5 weight percent K(2)O, of some diopside and omphacite inclusions from diamonds represent valid clinopyroxene compositions with K in solid solution. This conclusion contradicts the traditional view of pyroxene crystal chemistry, which holds that K is too large to be incorporated in the pyroxene structure. These diopside and omphacite inclusions have a high degree of crystal perfection and anomalously large unit-cell volumes, and a defect-free structure is observed in K-bearing regions when imaged by transmission electron microscopy. These observations imply that clinopyroxene can be a significant host for K in the mantle and that some clinopyroxene inclusions and their diamond hosts may have grown in a highly K-enriched environment.  相似文献   

17.
The Precambrian record is interpreted in terms of an evolutionary progression that moves in the direction of increasing continental stability. An early, highly mobile microplate tectonics phase progressed through a more stable, largely intracratonic, ensialic, mobile belt phase to the modern macroplate tectonics phase that involves large, rigid lithospheric plates. Various phases are characterized by distinctive crustal associations. Three controls-bulk earth heat production, crustal fractionation and cratonization, and atmospheric oxygen accumulation-are viewed as the cumulative cause of the trends and events that characterize the crust at different stages of development, from its inception approximately 4.6 billion years ago to the present.  相似文献   

18.
The oldest decipherable rock complexes within continents (more than 2.5 billion years old) are largely basaltic volcanics and graywacke. Recent and modern analogs are the island arcs formed along and adjacent to the unstable interface of continental and oceanic crusts. The major interfacial reactions (orogenies) incorporate pre-existing sial, oceanic crust, and mantle into crust of a more continental type. Incipient stages of continental evolution, more than 3 billion years ago, remain obscure. They may involve either a cataclysmic granite-forming event or a succession of volcanic-sedimentary and granite-forming cycles. Intermediate and recent stages of continental evolution, as indicated by data for North America, involve accretion of numerous crustal interfaces with fragments of adjacent continental crust and their partial melting, reinjection, elevation, unroofing, and stabilization. Areas of relict provinces defined by ages of granites suggest that continental growth is approximately linear. But the advanced differentiation found in many provinces and the known overlaps permit wide deviation from linearity in the direction of a more explosive early or intermediate growth.  相似文献   

19.
In plate tectonic theory, lithosphere that descends into the mantle has a largely derivative composition, because it is produced as a refractory residue by partial melting, and cannot be resorbed readily by the parent mantle. We suggest that lithosphere sinks through the asthenosphere, or outer mantle, and accumulates progressively beneath to form an accretionary mesosphere, or inner mantle. According to this model, there is an irreversible physicochemical evolution of the mantle and its layers. We make the key assumption that the rate at which mass has been transferred from the lithosphere to the mesosphere is proportional to the rate of radiogenic heat production. Calculations of mass transfer with time demonstrate that the entire mass of the present mesosphere could have been produced in geologically reasonable times (3 x 10(9) to 4.5 x 10(9) years). The model is consistent with the generation of the continental crust during the last 3 x 1O(9) years and predicts an end to plate tectonic behavior within the next 10(9) years.  相似文献   

20.
A three-dimensional model of mantle convection in which the known history of plate tectonics is imposed predicts the anomalous Cretaceous vertical motion of Australia and the present-day distinctive geochemistry and geophysics of the Australian-Antarctic Discordance. The dynamic models infer that a subducted slab associated with the long-lived Gondwanaland-Pacific converging margin passed beneath Australia during the Cretaceous, partially stagnated in the mantle transition zone, and is presently being drawn up by the Southeast Indian Ridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号