首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It is still unclear whether elevated CO2 increases plant root exudation and consequently affects the soil microbial biomass. The effects of elevated CO2 on the fate of the C and nitrogen (N) contained in old soil organic matter pools is also unclear. In this study the short and long-term effects of elevated CO2 on C and N pools and fluxes were assessed by growing isolated plants of ryegrass (Lolium perenne) in glasshouses at elevated and ambient atmospheric CO2 and using soil from the New Zealand FACE site that had >4 years exposure to CO2 enrichment. Using 14CO2 pulse labelling, the effects of elevated CO2 on C allocation within the plant-soil system were studied. Under elevated CO2 more root derived C was found in the soil and in the microbial biomass 48 h after labelling. The increased availability of substrate significantly stimulated soil microbial growth and acted as priming effect, enhancing native soil organic matter decomposition regardless of the mineral N supply. Despite indications of faster N cycling in soil under elevated CO2, N availability to plants stayed unchanged. Soil previously exposed to elevated CO2 exhibited a higher N cycling rate but again there was no effect on plant N uptake. With respect to the difficulties of extrapolating glasshouse experiment results to the field, we concluded that the accumulation of coarse organic matter observed in the field under elevated CO2 was probably not created by an imbalance between C and N but was likely to be due to more complex phenomena involving soil mesofauna and/or other nutrients limitations.  相似文献   

2.
This study addresses the issue of carbon (C) fluxes through below ground pools within the rhizosphere of Lolium perenne using the 14C pulse labeling. Lolium perenne was grown in plexiglas chambers on topsoil of a Haplic Luvisol under controled laboratory conditions. 14C‐CO2 efflux from soil, as well as 14C content in shoots, roots, soil, dissolved organic C (DOC), and microbial biomass were monitored for 11 days after the pulsing. Lolium allocates about 48 % of the total assimilated 14C below the soil surface, and roots were the primary sink for this C. Maximum 14C content in the roots was observed 12 hours after the labeling and it amounts to 42 % of the assimilated C. Only half of the 14C amount was found in the roots at the end of the monitoring period. The remainder was lost through root respiration, root decomposition, and rhizodeposition. Six hours after the 14C pulse labeling soil accounted for 11 %, DOC for 1.1 %, and microbial biomass for 4.9 % of assimilated C. 14C in CO2 efflux from soil was detected as early as 30 minutes after labeling. The maximum 14C‐CO2 emission rate (0.34 % of assimilated 14C h—1) from the soil occurred between four and twelve hours after labeling. From the 5th day onwards, only insignificant changes in carbon partitioning occurred. The partitioning of assimilated C was completed after 5 days after assimilation. Based on the 14C partitioning pattern, we calculated the amount of assimilated C during 47 days of growth at 256 g C m—2. Of this amount 122 g C m—2 were allocated to below ground, shoots retained 64 g C m—2, and 70 g C m—2 were lost from the shoots due to respiration. Roots were the main sink for below ground C and they accounted for 74 g C m—2, while 28 g C m—2 were respired and 19 g C m—2 were found as residual 14C in soil and microorganisms.  相似文献   

3.
Abstract

The distribution of photoassimilated C in spring barley plants was determined at different times after the onset of light and at different light intensities during assimilation. The plants were grown in pots in a greenhouse, and at late tillering and late elongation, 14CO2 pulse-labellings of 2 h duration were carried out 1.5, 4 or 8.5 h after the onset of light. At the labelling started after a 4 h photoperiod, two light intensities was included (80 and 170 W m?2).

To analyse samples low in 14C, a 14CO2-trapping system interfaced with a Leco high-temperature induction furnace was developed. The 14CO2 was trapped directly in the scintillation vial in 5 mL of liquid Carbosorb, enabling subsequent liquid 14C-scintillation counting to take place without subsampling.

The proportion of photosynthate translocated below ground tended to be higher early in the morning than later in the day. Labelling 1.5 h after the onset of light, 19.8 and 7.6% was translocated below ground at late tillering and late elongation, respectively. Corresponding values found at later labellings were 15.4–16.0 and 6.0–6.4%.

Higher proportions tended to be translocated below ground when plants were exposed to low light intensity. Exposing plants to low light intensity caused below ground translocation to be 15.4 and 6.0% of the 14C recovered at late tillering and late elongation, respectively, compared with 12.1 and 5.2% after exposure to a higher light intensity. Further experiments are needed to substantiate the observations of this study. The results suggest that the distribution of photoassimilates varies during the daytime and light intensity during the labelling.  相似文献   

4.
Elevated CO2 may increase nutrient availability in the rhizosphere by stimulating N release from recalcitrant soil organic matter (SOM) pools through enhanced rhizodeposition. We aimed to elucidate how CO2-induced increases in rhizodeposition affect N release from recalcitrant SOM, and how wild versus cultivated genotypes of wheat mediated differential responses in soil N cycling under elevated CO2. To quantify root-derived soil carbon (C) input and release of N from stable SOM pools, plants were grown for 1 month in microcosms, exposed to 13C labeling at ambient (392 μmol mol−1) and elevated (792 μmol mol−1) CO2 concentrations, in soil containing 15N predominantly incorporated into recalcitrant SOM pools. Decomposition of stable soil C increased by 43%, root-derived soil C increased by 59%, and microbial-13C was enhanced by 50% under elevated compared to ambient CO2. Concurrently, plant 15N uptake increased (+7%) under elevated CO2 while 15N contents in the microbial biomass and mineral N pool decreased. Wild genotypes allocated more C to their roots, while cultivated genotypes allocated more C to their shoots under ambient and elevated CO2. This led to increased stable C decomposition, but not to increased N acquisition for the wild genotypes. Data suggest that increased rhizodeposition under elevated CO2 can stimulate mineralization of N from recalcitrant SOM pools and that contrasting C allocation patterns cannot fully explain plant mediated differential responses in soil N cycling to elevated CO2.  相似文献   

5.
A greenhouse experiment was conducted by growing oats (Avenasativa L.) in a continuously 13CO2 labeled atmosphere. The allocation of 13C-labeled photosynthates in plants, microbial biomass in rhizosphere and root-free soil, pools of soil organic C, and CO2 emissions were examined over the plant's life cycle. To isolate rhizosphere from root-free soil, plant seedlings were placed into bags made of nylon monofilament screen tissue (16 μm mesh) filled with soil. Two peaks of 13C in rhizosphere pools of microbial biomass and dissolved organic carbon (DOC), as well as in CO2 emissions at the earing and ripeness stages were revealed. These 13C maxima corresponded to: (i) the end of rapid root growth and (ii) beginning of root decomposition, respectively. The δ13C values of microbial biomass were higher than those of DOC and of soil organic matter (SOM). The microbial biomass C accounted for up to 56 and 39% of 13C recovered in the rhizosphere and root-free soil, respectively. Between 4 and 28% of 13C assimilated was recovered in the root-free soil. Depending on the phenological stage, the contribution of root-derived C to total CO2 emission from soil varied from 61 to 92% of total CO2 evolved, including 4-23% attributed to rhizomicrobial respiration. While 81-91% of C substrates used for microbial growth in the root-free soil and rhizosphere came from SOM, the remaining 9-19% of C substrates utilized by the microbial biomass was attributable to rhizodeposition. The use of continuous isotopic labelling and physical separation of root-free and rhizosphere soil, combined with natural 13C abundance were effective in gaining new insight on soil and rhizosphere C-cycling.  相似文献   

6.
Plant response to increasing atmospheric CO2 partial pressure (pCO2) depends on several factors, one of which is mineral nitrogen availability facilitated by the mineralisation of organic N. Gross rates of N mineralisation were examined in grassland soils exposed to ambient (36 Pa) and elevated (60 Pa) atmospheric pCO2 for 7 years in the Swiss Free Air Carbon dioxide Enrichment experiment. It was hypothesized that increased below-ground translocation of photoassimilates at elevated pCO2 would lead to an increase in immobilisation of N due to an excess supply of energy to the roots and rhizosphere. Intact soil cores were sampled from Lolium perenne and Trifolium repens swards in May and September, 2000. The rates of gross N mineralisation (m) and NH4+ consumption (c) were determined using 15N isotopic dilution during a 51-h period of incubation. The rates of N immobilisation were estimated either as the difference between m and the net N mineralisation rate or as the amount of 15N released from the microbial biomass after chloroform fumigation. Soil samples from both swards showed that the rates of gross N mineralisation and NH4+ consumption did not change significantly under elevated pCO2. The lack of a significant effect of elevated pCO2 on organic N turnover was consistent with the similar size of the microbial biomass and similar immobilisation of applied 15N in the microbial N pool under ambient and elevated pCO2. Rates of m and c, and microbial 15N did not differ significantly between the two sward types although a weak (p<0.1) pCO2 by sward interaction occurred. A significantly larger amount of NO3 was recovered at the end of the incubation in soil taken from T. repens swards compared to that from L. perenne swards. Eleven percent of the added 15N were recovered in the roots in the cores sampled under L. perenne, while only 5% were recovered in roots of T. repens. These results demonstrate that roots remained a considerable sink despite the shoots being cut at ground level prior to incubation and suggest that the calculation of N immobilisation from gross and net rates of mineralisation in soils with a high root biomass does not reflect the actual immobilisation of N in the microbial biomass. The results of this study did not support the initial hypothesis and indicate that below-ground turnover of N, as well as N availability, measured in short-term experiments are not strongly affected by long-term exposure to elevated pCO2. It is suggested that differences in plant N demand, rather than major changes in soil N mineralisation/immobilisation, are the long-term driving factors for N dynamics in these grassland systems.  相似文献   

7.
Rising levels of atmospheric CO2 have often been found to increase above and belowground biomass production of C3 plants. The additional translocation of organic matter into soils by increased root mass and exudates are supposed to possibly increase C pools in terrestrial ecosystems. Corresponding investigations were mostly conducted under more or less artificial indoor conditions with disturbed soils. To overcome these limitations, we conducted a 14CO2 pulse-labelling experiment within the German FACE project to elucidate the role of an arable crop system in carbon sequestration under elevated CO2. We cultivated spring wheat cv. “Minaret” with usual fertilisation and ample water supply in stainless steel cylinders forced into the soil of a control and a FACE plot. Between stem elongation and beginning of ripening the plants were repeatedly pulse-labelled with 14CO2 in the field. Soil born total CO2 and 14CO2 was monitored daily till harvest. Thereafter, the distribution of 14C was analysed in all plant parts, soil, soil mineral fractions and soil microbial biomass. Due to the small number of grown wheat plants (40) in each ring and the inherent low statistical power, no significant above and belowground growth effect of elevated CO2 was detected at harvest. But in comparison to ambient conditions, 28% more 14CO2 and 12% more total CO2 was evolved from soil under elevated CO2 (550 μmol CO2 mol−1). In the root-free soil 27% more residual 14C was found in the FACE soil than in the soil from the ambient ring. In soil samples from both treatments about 80% of residual 14C was found in the clay fraction and 7% in the silt fraction. Very low 14C contents in the CFE extracts of microbial biomass in the soil from both CO2 treatments did not allow assessing their influence on this parameter. Since the calculated specific radioactivity of soil born 14CO2 gave no indication of an accelerated priming effect in the FACE soil, we conclude that wheat plants grown under elevated CO2 can contribute to an additional net carbon gain in soils.  相似文献   

8.
A theoretical approach to the partitioning of carbon dioxide (CO2) efflux from soil with a C3 vegetation history planted with maize (Zea mays), a C4 plant, into three sources, root respiration (RR), rhizomicrobial respiration (RMR), and microbial soil organic matter (SOM) decomposition (SOMD), was examined. The δ13C values of SOM, roots, microbial biomass, and total CO2 efflux were measured during a 40-day growing period. A three-source isotopic mass balance based on the measured δ13C values and on assumptions made in other studies showed that RR, RMR, and SOMD amounted to 91%, 4%, and 5%, respectively. Two assumptions were thoroughly examined in a sensitivity analysis: the absence of 13C fractionation and the conformity of δ13C of microbial CO2 and that of microbial biomass. This approach strongly overestimated RR and underestimated RMR and microbial SOMD. CO2 efflux from unplanted soil was enriched in 13C by 2.0‰ compared to microbial biomass. The consideration of this 13C fractionation in the mass balance equation changed the proportions of RR and RMR by only 4% and did not affect SOMD. A calculated δ13C value of microbial CO2 by a mass balance equation including active and inactive parts of microbial biomass was used to adjust a hypothetical below-ground CO2 partitioning to the measured and literature data. The active microbial biomass in the rhizosphere amounted to 37% to achieve an appropriate ratio between RR and RMR compared to measured data. Therefore, the three-source partitioning approach failed due to a low active portion of microbial biomass, which is the main microbial CO2 source controlling the δ13C value of total microbial biomass. Since fumigation-extraction reflects total microbial biomass, its δ13C value was unsuitable to predict δ13C of released microbial CO2 after a C3-C4 vegetation change. The second adjustment to the CO2 partitioning results in the literature showed that at least 71% of the active microbial biomass utilizing maize rhizodeposits would be necessary to achieve that proportion between RR and RMR observed by other approaches based on 14C labelling. The method for partitioning total below-ground CO2 efflux into three sources using a natural 13C labelling technique failed due to the small proportion of active microbial biomass in the rhizosphere. This small active fraction led to a discrepancy between δ13C values of microbial biomass and of microbially respired CO2.  相似文献   

9.
Photosynthesis of higher plants drives carbon (C) allocation below-ground and controls the supply of assimilates to roots and to rhizosphere microorganisms. To investigate the effect of limited photosynthesis on C allocation, redistribution and reutilization in plant and soil microorganisms, perennial grass Lolium perenne and legume Medicago sativa were clipped or shaded. Plants were labelled with three 14C pulses to trace allocation and reutilization of C assimilated before clipping or shading. Five days after the last 14C pulse, plants were clipped or shaded and the total CO2 and 14CO2 efflux from the soil was measured. 14C in above- and below-ground plant biomass and bulk soil, rhizosphere soil and microorganisms was determined 10 days after clipping or shading.After clipping, 2% of the total assimilated 14C originating mainly from root reserves were detected in the newly grown shoots. This corresponded to a translocation of 5 and 8% of total 14C from reserve organs to new shoots of L. perenne and M. sativa, respectively. The total CO2 efflux from soil decreased after shading of both plant species, whereas after clipping, this was only true for L. perenne. The 14CO2 efflux from soil did not change after clipping of both species. An increased 14CO2 efflux from soil under shading for both plants indicated that lower assimilation was compensated by higher utilization of the reserve C for root and rhizomicrobial respiration.We conclude that C stored in roots is an important factor for plant recovery after limiting photosynthesis. This stored C is important for shoot regrowth after clipping, whereas after shading, it is utilized mainly for maintenance of root respiration. Based on these results as well as on a review of several studies on C reutilization for regrowth after clipping, we conclude that because of the high energy demand for nitrogen fixation, legumes use a higher portion (9–10%) of stored C for regrowth compared to grasses (5–7%). The effects of limited photosynthesis were of minor importance for the exudation of the reserve C and thus, have no effect on the uptake of this C by microorganisms.  相似文献   

10.
Plants link atmospheric and soil carbon pools through CO2 fixation, carbon translocation, respiration and rhizodeposition. Within soil, microbial communities both mediate carbon-sequestration and return to the atmosphere through respiration. The balance of microbial use of plant-derived and soil organic matter (SOM) carbon sources and the influence of plant-derived inputs on microbial activity are key determinants of soil carbon-balance, but are difficult to quantify. In this study we applied continuous 13C-labelling to soil-grown Lolium perenne, imposing atmospheric CO2 concentrations and nutrient additions as experimental treatments. The relative use of plant- and SOM-carbon by microbial communities was quantified by compound-specific 13C-analysis of phospholipid fatty acids (PLFAs). An isotopic mass-balance approach was applied to partition the substrate sources to soil respiration (i.e. plant- and SOM-derived), allowing direct quantification of SOM-mineralisation. Increased CO2 concentration and nutrient amendment each increased plant growth and rhizodeposition, but did not greatly alter microbial substrate use in soil. However, the increased root growth and rhizosphere volume with elevated CO2 and nutrient amendment resulted in increased rates of SOM-mineralisation per experimental unit. As rhizosphere microbial communities utilise both plant- and SOM C-sources, the results demonstrate that plant-induced priming of SOM-mineralisation can be driven by factors increasing plant growth. That the balance of microbial C-use was not affected on a specific basis may suggest that the treatments did not affect soil C-balance in this study.  相似文献   

11.
The effects of enriched CO2 atmosphere on partitioning of recently assimilated carbon were investigated in a plant-soil-microorganism system in which Lolium perenne seedlings were planted into cores inserted into the resident soil within a sward that had been treated with elevated CO2 for 9 consecutive years, under two N fertilisation levels (Swiss FACE experiment). The planted cores were excavated from the ambient (35 Pa pCO2) and enriched (60 Pa pCO2) rings at two dates, in spring and autumn, during the growing season. The cores were brought back to the laboratory for 14C labelling of shoots in order to trace the transfer of recently assimilated C both within the plant and to the soil and microbial biomass. At the spring sampling, high N supply stimulated shoot and total dry matter production. Consistently, high N enhanced the allocation of recently fixed C to shoots, and reduced it to belowground compartments. Elevated CO2 had no consequences for DM or the pattern of C allocation. At the autumn sampling, at high N plot, yield of L. perenne was stimulated by elevated CO2. Consistently, 14C was preferentially allocated aboveground and, consequently belowground recent C allocation was depressed and rhizodeposition reduced. At both experimental periods, total soil C content was similar in all treatments, providing no evidence for soil carbon sequestration in the Swiss Free Air CO2 Enrichment experiment (FACE) after 9 years of enrichment. Recently assimilated C and soil C were mineralised faster in soils from enriched rings, suggesting a CO2-induced shift in the microbial biomass characteristics (structure, diversity, activity) and/or in the quality of the root-released organic compounds.  相似文献   

12.
We used a continuous labeling method of naturally 13C-depleted CO2 in a growth chamber to test for rhizosphere effects on soil organic matter (SOM) decomposition. Two C3 plant species, soybean (Glycine max) and sunflower (Helianthus annus), were grown in two previously differently managed soils, an organically farmed soil and a soil from an annual grassland. We maintained a constant atmospheric CO2 concentration at 400±5 ppm and δ13C signature at −24.4‰ by regulating the flow of naturally 13C-depleted CO2 and CO2-free air into the growth chamber, which allowed us to separate new plant-derived CO2-C from original soil-derived CO2-C in soil respiration. Rhizosphere priming effects on SOM decomposition, i.e., differences in soil-derived CO2-C between planted and non-planted treatments, were significantly different between the two soils, but not between the two plant species. Soil-derived CO2-C efflux in the organically farmed soil increased up to 61% compared to the no-plant control, while the annual grassland soil showed a negligible increase (up to 5% increase), despite an overall larger efflux of soil-derived CO2-C and total soil C content. Differences in rhizosphere priming effects on SOM decomposition between the two soils could be largely explained by differences in plant biomass, and in particular leaf biomass, explaining 49% and 74% of the variation in primed soil C among soils and plant species, respectively. Nitrogen uptake rates by soybean and sunflower was relatively high compared to soil C respiration and associated N mineralization, while inorganic N pools were significantly depleted in the organic farm soil by the end of the experiment. Despite relatively large increases in SOM decomposition caused by rhizosphere effects in the organic farm soil, the fast-growing soybean and sunflower plants gained little extra N from the increase in SOM decomposition caused by rhizosphere effects. We conclude that rhizosphere priming effects of annual plants on SOM decomposition are largely driven by plant biomass, especially in soils of high fertility that can sustain high plant productivity.  相似文献   

13.
Although extreme climatic events such as drought have important consequences for belowground carbon (C) cycling, their impact on the plant-soil system of mixed plant communities is poorly understood. Our objective was to study the effect of drought on C allocation and rhizosphere-mediated CO2 fluxes under three plant species: Lolium perenne, Festuca arundinacea and Medicago sativa grown in monocultures or mixture. The conceptual approach included 14CO2 pulse labeling of plants grown under drought and optimum water conditions in order to be able to follow above- and belowground C allocation. After 14C pulse labeling, we traced 14C allocation to shoots and roots, soil and rhizospheric CO2, dissolved organic carbon (DOC) and microbial biomass.Drought and plant community composition significantly affected assimilate allocation in the plant-soil system. Drought conditions changed the source sink relationship of monocultures, which transferred a relatively larger portion of assimilates to their roots compared to water sufficient plants. In contrast, plant mixture showed an increase in 14C allocation to shoots when exposed to drought.Under drought stress, root respiration was reduced for all monocultures except under the legume species. Microbial respiration remained similar in all cases showing that microbial activity was less affected by drought than root activity. This may be explained by strongly increased assimilate allocation to easily available exudates or rhizodeposits under drought. In conclusion, plant community composition may modify the impact of climatic changes on carbon allocation and belowground carbon fluxes. The presence of legume species attenuates drought effects on rhizosphere processes.  相似文献   

14.
Two processes contribute to changes of the δ13C signature in soil pools: 13C fractionation per se and preferential microbial utilization of various substrates with different δ13C signature. These two processes were disentangled by simultaneously tracking δ13C in three pools - soil organic matter (SOM), microbial biomass, dissolved organic carbon (DOC) - and in CO2 efflux during incubation of 1) soil after C3-C4 vegetation change, and 2) the reference C3 soil.The study was done on the Ap horizon of a loamy Gleyic Cambisol developed under C3 vegetation. Miscanthus giganteus - a perennial C4 plant - was grown for 12 years, and the δ13C signature was used to distinguish between ‘old’ SOM (>12 years) and ‘recent’ Miscanthus-derived C (<12 years). The differences in δ13C signature of the three C pools and of CO2 in the reference C3 soil were less than 1‰, and only δ13C of microbial biomass was significantly different compared to other pools. Nontheless, the neglecting of isotopic fractionation can cause up to 10% of errors in calculations. In contrast to the reference soil, the δ13C of all pools in the soil after C3-C4 vegetation change was significantly different. Old C contributed only 20% to the microbial biomass but 60% to CO2. This indicates that most of the old C was decomposed by microorganisms catabolically, without being utilized for growth. Based on δ13C changes in DOC, CO2 and microbial biomass during 54 days of incubation in Miscanthus and reference soils, we concluded that the main process contributing to changes of the δ13C signature in soil pools was preferential utilization of recent versus old C (causing an up to 9.1‰ shift in δ13C values) and not 13C fractionation per se.Based on the δ13C changes in SOM, we showed that the estimated turnover time of old SOM increased by two years per year in 9 years after the vegetation change. The relative increase in the turnover rate of recent microbial C was 3 times faster than that of old C indicating preferential utilization of available recent C versus the old C.Combining long-term field observations with soil incubation reveals that the turnover time of C in microbial biomass was 200 times faster than in total SOM. Our study clearly showed that estimating the residence time of easily degradable microbial compounds and biomarkers should be done at time scales reflecting microbial turnover times (days) and not those of bulk SOM turnover (years and decades). This is necessary because the absence of C reutilization is a prerequisite for correct estimation of SOM turnover. We conclude that comparing the δ13C signature of linked pools helps calculate the relative turnover of old and recent pools.  相似文献   

15.
The cycling of root-deposited photosynthate (rhizodeposition) through the soil microbial biomass can have profound influences on plant nutrient availability. Currently, our understanding of microbial dynamics associated with rhizosphere carbon (C) flow is limited. We used a 13C pulse-chase labeling procedure to examine the flow of photosynthetically fixed 13C into the microbial biomass of the bulk and rhizosphere soils of greenhouse-grown annual ryegrass (Lolium multiflorum Lam.). To assess the temporal dynamics of rhizosphere C flow through the microbial biomass, plants were labeled either during the transition between active root growth and rapid shoot growth (Labeling Period 1), or nine days later during the rapid shoot growth stage (Labeling Period 2). Although the distribution of 13C in the plant/soil system was similar between the two labeling periods, microbial cycling of rhizodeposition differed between labeling periods. Within 24 h of labeling, more than 10% of the 13C retained in the plant/soil system resided in the soil, most of which had already been incorporated into the microbial biomass. From day 1 to day 8, the proportion of 13C in soil as microbial biomass declined from about 90 to 35% in rhizosphere soil and from about 80 to 30% in bulk soil. Turnover of 13C through the microbial biomass was faster in rhizosphere soil than in bulk soil, and faster in Labeling Period 1 than Labeling Period 2. Our results demonstrate the effectiveness of using 13C labeling to examine microbial dynamics and fate of C associated with cycling of rhizodeposition from plants at different phenological stages of growth.  相似文献   

16.
A greenhouse rhizobox experiment was carried out to quantify the incorporation of 13C- and 15N-labelled rhizodeposits into different soil pools, especially into the rhizosphere microbial biomass, with increasing distances to the root surface of Lolium perenne. Five layers were analysed over 0-4.2 mm distance to an artificial root surface. C and N derived from rhizodeposition were 4.2% of total C and 2.8% of total N in soil at 0-1.0 mm distance and decreased rapidly with increasing distance. Microbial biomass C and N increased significantly towards the roots. At 0-1.0 mm distance microbial biomass C and N accounted for 66% and 29% of C and N derived from rhizodeposition, respectively. These percentages declined with increasing distance to the roots, but were still traceable up to 4.2 mm distance. Only small amounts of root released C and N were found in the 0.05 M K2SO4-extractable fraction. Extractable C and N derived from rhizodeposition varied around means of 4% of total C and N derived from rhizodeposition and increased only marginally with increasing distance to the roots. C derived from rhizodeposition in the non-extractable soil organic matter increased from 65 to 89% of total C derived from rhizodeposition at 0-3.4 mm distance. Conversely, microbial biomass C derived from rhizodeposition decreased from 33 to 4%. N derived from rhizodeposition in the non-extractable soil organic matter increased from 61 to 79% of total N derived from rhizodeposition at 0-2.6 mm distance, followed by a decline to roughly 55% in the two outer layers. Microbial biomass N decreased from 37 to 16% at 0-2.6 mm distance, followed by an increase to roughly 41% in the two outer layers. The C/N ratio of total C and N derived from rhizodeposition as well as that of extractable C and N derived from rhizodeposition increased with increasing distance to the roots to values above 30. In contrast, the C/N ratio of incorporated rhizodeposition C and N into the microbial biomass decreased to values less than 5 at 2.6-4.2 mm distance. The data indicate differential microbial response to C and N derived from rhizodeposition at a high spatial resolution from the root surface. The turnover of C and N derived from rhizodeposition in the rhizosphere as a function of the distance to the root surface is discussed.  相似文献   

17.
Summary Maize plants were grown for 42 days in a sandy soil at two different mineral nutrient levels, in an atmosphere containing 14CO2. The 14C and total carbon contents of shoots, roots, soil and soil microbial biomass were measured 28, 35 and 42 days after germination. Relative growth rates of shoots and roots decreased after 35 days at the lower nutrient level, but were relatively constant at the higher nutrient level. In the former treatment, 2% of the total 14C fixed was retained as a residue in soil at all harvests while at the higher nutrient level up to 4% was retained after 42 days. Incorporation of 14C into the soil microbial biomass was close to its maximum after 35 days at the lower nutrient level, but continued to increase at the higher level. Generally a good agreement existed between microbial biomass, 14C contents and numbers of fluorescent pseudomonads in the rhizosphere. Numbers of fluorescent pseudomonads in the rhizosphere were maximal after 35 days at the lower nutrient level and continued to increase at the higher nutrient level. The proportions of the residual 14C in soil, incorporated in the soil microbial biomass, were 28% to 41% at the lower nutrient level and 20%6 – 30% at the higher nutrient level. From the lower nutrient soil 18%6 – 52%6 of the residual soil 14C could be extracted with 0.5 N K2SO4, versus 14%6 – 16% from the higher nutrient soil.Microbial growth in the rhizosphere seemed directly affected by the depletion of mineral nutrients while plant growth and the related production of root-derived materials continued.  相似文献   

18.
Experimentation with dynamics of soil carbon pools as affected by elevated CO2 can better define the ability of terrestrial ecosystems to sequester global carbon. In the present study, 6 N HCl hydrolysis and stable-carbon isotopic analysis (δ13C) were used to investigate labile and recalcitrant soil carbon pools and the translocation among these pools of sorghum residues isotopically labeled in the 1998-1999 Arizona Maricopa free air CO2 enrichment (FACE) experiment, in which elevated CO2 (FACE: 560 μmol mol−1) and ambient CO2 (Control: 360 μmol mol−1) interact with water-adequate (wet) and water-deficient (dry) treatments. We found that on average 53% of the final soil organic carbon (SOC) in the FACE plot was in the recalcitrant carbon pool and 47% in the labile pool, whereas in the Control plot 46% and 54% of carbon were in recalcitrant and labile pools, respectively, indicating that elevated CO2 transferred more SOC into the slow-decay carbon pool. Also, isotopic mixing models revealed that increased new sorghum residue input to the recalcitrant pool mainly accounts for this change, especially for the upper soil horizon (0-30 cm) where new carbon in recalcitrant soil pools of FACE wet and dry treatments was 1.7 and 2.8 times as large as that in respective Control recalcitrant pools. Similarly, old C in the recalcitrant pool under elevated CO2 was higher than that under ambient CO2, indicating that elevated CO2 reduces the decay of the old C in recalcitrant pool. Mean residence time (MRT) of bulk soil carbon at the depth of 0-30 cm was significantly longer in FACE plot than Control plot by the averages of 12 and 13 yr under the dry and wet conditions, respectively. The MRT was positively correlated to the ratio of carbon content in the recalcitrant pool to total SOC and negatively correlated to the ratio of carbon content in the labile pool to total SOC. Influence of water alone on the bulk SOC or the labile and recalcitrant pools was not significant. However, water stress interacting with CO2 enhanced the shift of the carbon from labile pool to recalcitrant pool. Our results imply that terrestrial agroecosystems may play a critical role in sequestrating atmospheric CO2 and mitigating harmful CO2 under future atmospheric conditions.  相似文献   

19.
Elevated atmospheric carbon dioxide (CO2) levels generally stimulate carbon (C) uptake by plants, but the fate of this additional C largely remains unknown. This uncertainty is due in part to the difficulty in detecting small changes in soil carbon pools. We conducted a series of long-term (170-330 days) laboratory incubation experiments to examine changes in soil organic matter pool sizes and turnover rates in soil collected from an open-top chamber (OTC) elevated CO2 study in Colorado shortgrass steppe. We measured concentration and isotopic composition of respired CO2 and applied a two-pool exponential decay model to estimate pool sizes and turnover rates of active and slow C pools. The active and slow C pools of surface soils (5-10 cm depth) were increased by elevated CO2, but turnover rates of these pools were not consistently altered. These findings indicate a potential for C accumulation in near-surface soil C pools under elevated CO2. Stable isotopes provided evidence that elevated CO2 did not alter the decomposition rate of new C inputs. Temporal variations in measured δ13C of respired CO2 during incubation probably resulted mainly from the decomposition of changing mixtures of fresh residue and older organic matter. Lignin decomposition may have contributed to declining δ13C values late in the experiments. Isotopic dynamics during decomposition should be taken into account when interpreting δ13C measurements of soil respiration. Our study provides new understanding of soil C dynamics under elevated CO2 through the use of stable C isotope measurements during microbial organic matter mineralization.  相似文献   

20.
After 8-y of elevated CO2, we previously detected greater amounts of total soil nitrogen, suggesting that rates of ecosystem N flux into or out of tallgrass prairie had been altered. Denitrification and associative N fixation rates are the two primary biological processes that are known to control N loss and accumulation in tallgrass prairie soil. Therefore, our objective was to assess the natural abundance of plant and soil 15N isotopes as a cumulative index of potential change in efflux or influx of N into and out of the tallgrass prairie after 8-y of exposure to elevated CO2. Aboveground plant delta 15N values of Andropogon gerardii were close to zero and more positive as a result of elevated CO2, but whole-soil values at the 5-30 cm depth were significantly reduced (6.8 vs 7.3; P<0.05) under elevated CO2-chamber (EC) relative to ambient CO2- chamber (AC). Total, aboveground plant biomass, root-in-growth, extractable N, microbial biomass N, and soil pools collectively exhibited a range of delta 15N values from −2.8 to 7.3. Measurements of surface soil 15N indicate that a change in N inputs and outputs has occurred as a result of elevated atmospheric CO2. In addition to possible changes in denitrification and N2 fixation, other sources of N such as the re-translocation of N to the surface from deeper soil layers are needed to explain how soil N accrues in surface soils as a consequence of elevated CO2. Our results support the notion that C accrual may promote N accrual, possibly driven by high plant and microbial N demand amplified by soil N limitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号