首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
班菲尔脐橙可溶性固形物近红外光谱特征谱区选择   总被引:2,自引:0,他引:2  
为探讨快速无损检测班菲尔脐橙可溶性固形物(TSS)含量的方法,利用多元散射校正对脐橙1 000 ~2 500 nm近红外光谱进行了预处理,并用偏最小二乘法(PLS)、区间偏最小二乘法(iPLS)和联合区间偏最小二乘法(siPLS)分别建立预测模型.结果表明,采用siPLS将光谱划分为17个子区间,利用其中的第4(1 267~1355 nm)、5(1 356 ~1 443 nm)、9(1708~1795nm)、15(2 236 ~2 323 nm)号4个子区间联合建立的TSS模型效果最佳,其校正集决定系数和均方根误差分别为0.9109和0.331 2.预测集决定系数和均方根误差分别为0.878 9和0.448 7,主因子数为6个.研究表明,近红外光谱技术结合siPLS可优选出表征班菲尔脐橙TSS含量信息的特征光谱区间简化预测模型,同时提高模型预测能力和精度.  相似文献   

2.
通过区间偏最小二乘法(iPLS)谱区筛选方法、反向区间偏最小二乘法(biPLS)谱区筛选方法和联合区间偏最小二乘法(siPLS)谱区筛选方法优化光谱特征区间,建立黄酮含量分析模型,并与波数范围为4 000~8 000 cm-1的全光谱偏最小二乘(PLS)模型进行比较。结果表明,采用siPLS谱区筛选方法将全光谱均匀划分21个子区间,选择两个子区间(7、12区间)联合时,建立的siPLS谱区筛选模型预测效果最佳,其交互验证均方根误差和预测均方根误差分别为2.950 0和3.000,校正集和预测集相关系数分别为0.938 4和0.943 7。因此采用siPLS谱区筛选方法可以有效选择光谱特征区域,提高建模预测能力,实现银杏叶总黄酮含量的快速检测。  相似文献   

3.
黄瓜叶片叶绿素含量近红外光谱无损检测   总被引:3,自引:0,他引:3  
为了简化黄瓜叶片叶绿素光谱模型和提高模型预测精度,采用联合区间偏最小二乘法( SiPLS)结合净分析物法( NAS)提取近红外光谱的特征信息,建立了黄瓜叶片叶绿素光谱模型.收集了110片新鲜黄瓜叶片,用近红外光谱仪采集光谱数据后立刻用化学分析方法测定叶绿素含量.原始光谱经过SNV预处理和子区间总数优化后,将全光谱均匀划分为29个子区间,用联合区间偏最小二乘法优选出4个特征子区间,在上述特征子区间的基础上,用净分析物法分离光谱中同叶绿素相关的光谱信息,并结合线性回归法建立了叶绿素光谱模型.模型对应的校正集相关系数Rc、校正均方根误差、预测集相关系数Rp和预测均方根误差分别为0.947 2、0.079 5 mg/g、0.925 0和0.090 6 mg/g.结果表明:联合区间偏最小二乘法结合净分析物法能够有效提取叶绿素的特征光谱信息,提高模型精度的同时降低其复杂度.  相似文献   

4.
苹果可溶性固形物近红外在线光谱变量优选   总被引:2,自引:0,他引:2  
为简化近红外光谱模型,提高对苹果可溶性固形物含量的预测精度,将移动窗口偏最小二乘法(MWPLS)与遗传算法、连续投影算法相结合优选特征变量,建立偏最小二乘回归校正模型。其中移动窗口偏最小二乘法和遗传算法相结合优选的36个光谱变量建立的校正模型预测结果最好,可以有效筛选近红外光谱特征波长,模型预测相关系数为0.90,模型的预测均方根误差为0.70°Brix。  相似文献   

5.
基于CARS算法的脐橙可溶性固形物近红外在线检测   总被引:3,自引:0,他引:3  
采用可见/近红外光谱在线检测装置进行赣南脐橙可溶性固形物含量在线检测模型优化研究。样品以5个/s的速度运动,采集可见/近红外漫透射光谱。光谱经过预处理后,分别应用向后区间偏最小二乘法(BiPLS)、遗传算法(GA)和正自适应加权算法(CARS)筛选特征变量,并通过外部验证评价PLS模型预测能力。一阶微分处理后经CARS筛选特征变量建立的PLS模型预测结果最优,预测相关系数和预测均方根误差分别为0.94和0.42%。结果表明CARS算法可有效简化赣南脐橙可溶性固形物可见/近红外光谱在线检测模型并提高模型的预测精度。  相似文献   

6.
梨可溶性固形物含量NIR与变量筛选无损检测   总被引:2,自引:1,他引:1  
为提高利用近红外光谱技术快速检测梨可溶性固形物含量的精度和稳定性,结合区间偏最小二乘和遗传算法(iPLS-GA)来筛选校正模型中的特征光谱区和变量,通过交互验证法确定模型中的主成分因子数和筛选的变量,并以预测均方根误差(RMSEP)和相关系数(Rp)作为模型评价标准。试验结果显示:iPLS-GA最优模型包含5个光谱区、50个变量和10个主成分因子。最佳预测模型相关系数(Rp)和RMSEP 分别为0.9398和0.3250,研究结果表明近红外光谱结合iPLS-GA算法可以准确、无损检测梨的可溶性固形物含量。  相似文献   

7.
基于机器学习算法的土壤有机质 质量比估算   总被引:2,自引:0,他引:2  
为快速高效地估测干旱、半干旱地区土壤有机质(soil organic matter, SOM)质量比,提出了一种结合竞争适应重加权法(CARS)和随机森林(RF)的估测模型.以内陆干旱区艾比湖流域为研究区,测定土壤高光谱反射率和SOM质量比,经预处理后,利用CARS对原始光谱(R)、一阶导数(R′)、吸光度(log(1/R))及吸光度一阶导数[log(1/R)]′4种光谱变量的可见-近红外光谱进行筛选,并结合RF算法,建立全谱段RF模型与CARS-RF模型.结果表明,基于CARS方法对光谱进行变量筛选后,得出4种光谱变量的优选变量集个数分别为35,26,34和121;在4种光谱变量中,R′和[log(1/R)]′的SOM估测模型精度较高,以[log(1/R)]′为基础数据获得的模型精度最高;CARS-RF模型精度优于全谱段RF模型,模型验证集决定系数(R2)、均方根误差(RMSE)、相对分析误差(RPD)分别为0.881,6.438 g/kg和2.177.该研究在预处理的基础上通过变量优选,应用较少的变量个数获得较高的估测精度,为干旱、半干旱区SOM高光谱估测提供了适宜高效的方法.  相似文献   

8.
生菜叶中磷含量的光谱定量分析   总被引:1,自引:0,他引:1  
为快速、准确检测生菜叶内的磷含量,提出了应用光谱技术结合化学计量法无损检测生菜叶内磷含量的方法。通过获取不同施磷量下生菜叶片于波长350~2500nm处的反射光谱,对光谱数据进行5点平滑和一阶导数变换后,利用联合区间偏最小二乘算法(siPLS)提取了与生菜叶磷元素相关的4个特征波段,即950~1070nm, 1430~1549nm,1906~2025nm和2144~2263nm。进一步利用连续投影算法(SPA)对全光谱波段和4个特征波段进行特征波长提取,分别筛选出变量63个和25个。分别对4个特征波段、63个和25个特征波长进行主成分降〖JP2〗维,当主成分数分别为7、5和4时,隐含层神经元数分别为7、5和3时,建立了siPLS+BPANN,SPA+BPANN,siPLS+〖JP〗SPA+BPANN生菜叶磷含量检测模型。研究结果表明:siPLS+SPA+BPANN模型的预测结果优于其他模型,验证集相关系数为0.911,验证均方根误差为479mg/kg。  相似文献   

9.
针对设施作物营养水平无损检测技术,着重描述了基于近红外光谱数据岭回归分析的甜椒氮素检测试验研究过程.利用近红外反射光谱成像技术对目标作物进行叶片尺度的光谱图像采集,应用计算机图像分析软件进行光谱数字图像处理、提取光谱数据,经过统计分析对数据完成筛选作为变量,结合化学分析试验结果建立作物营养检测模型,检验模型得出结论.为了解决自变量间存在的多重共线性造成模型难以建立的问题,在数据处理阶段,采用了在农业探测领域内并不多见的岭回归分析方法,利用其特殊的有偏估计算法,拟合建立回归方程.同时,由于岭回归分析可以用于进一步筛选特征波段,最终得到的是基于三特征波段近红外光谱反射率数据的甜椒叶片氮营养检测模型.经过模型检验,模型的调整R2为0.843,RMSE为0.105.  相似文献   

10.
基于近红外光谱技术的紫薯贮藏期间花青素含量检测   总被引:1,自引:0,他引:1  
紫薯采后贮藏过程中,受环境因素影响,紫薯花青素会逐渐发生降解,导致紫薯色泽变化,营养品质下降。应用近红外光谱技术对贮藏期间的紫薯花青素含量变化进行了分析,建立了快速无损检测模型。实验采集了不同贮藏时间紫薯样本(120个)的近红外光谱,基于全波长范围4 000~10 000 cm-1结合不同光谱信号预处理方法(数据卷积平滑、一阶求导、标准正态变量变换(SNV))建立紫薯花青素的PLS(偏最小二乘)、SNV-PLS、i PLS(区间偏最小二乘)、GA-PLS(遗传算法-偏最小二乘)定量预测模型。结果显示,全波段经SNV为最优的原始光谱预处理方法。对经SNV预处理的光谱进行i PLS、GA特征波段筛选,所建立的GA-PLS模型预测效果最佳,预测集决定系数R2v和均方根误差为0. 913 6和7. 239 8 mg/(100 g),剩余预测偏差为3. 339 7。研究结果表明,应用近红外光谱技术可以较好地检测紫薯花青素含量,研究结果可为紫薯加工原料智能筛选以及贮藏品质监测提供一种可靠手段。  相似文献   

11.
马铃薯干物质含量高光谱检测中变量选择方法比较   总被引:5,自引:1,他引:5  
为提高利用高光谱成像技术快速检测马铃薯干物质含量的精度,比较了主成分分析法(PCA)、组合间隔偏最小二乘法(siPLS)、遗传偏最小二乘法(GA-PLS)、无信息变量消除法(UVE)以及竞争性自适应重加权算法(CARS)等变量选择方法。在此基础上提出一种竞争性自适应重加权算法与连续投影算法(SPA)相结合的波长选择方法,最终将原始光谱变量从678个减少到了27个。用27个变量建立多元线性回归模型,模型预测集相关系数Rp为0.86,预测均方根误差为1.06%。实验结果表明:高光谱成像技术能够对马铃薯干物质含量进行检测,同时CARS-SPA是一种有效的变量选择方法。  相似文献   

12.
针对土壤Cd高光谱遥感定量反演中的机理性不足及数据冗余问题,提出一种基于有机质特征谱段的反演方法。该方法首先提取土壤光谱中对重金属Cd具有吸附作用的有机质特征谱段,进而通过竞争性自适应重加权采样法(Competitive adaptive reweighted sampling,CARS)优选特征谱段,采用偏最小二乘回归法(Partial least squares regression,PLSR)建立重金属Cd的反演模型,并利用郴州矿区土壤实验室光谱数据和哈密黄山南矿区野外光谱数据进行方法验证。研究表明:有机质特征谱段提取在降低数据冗余的同时提高了重金属Cd的反演精度,CARS算法相对于相关系数法(Correlation coefficient,CC)和遗传算法(Genetic algorithm,GA)特征选择具有更高的反演精度,基于有机质特征谱段的CARS-PLSR算法在土壤实验室光谱和野外实测光谱所得验证精度R2分别为0.94和0.80,表明该算法对于实验室和野外光谱均具有一定适用性。研究可为土壤重金属含量高光谱反演的特征波段选择和算法优选提供参考。  相似文献   

13.
黄绵土风干过程中土壤含水率的光谱预测   总被引:2,自引:0,他引:2  
以2014年两次在陕西省乾县田间采集的129个黄绵土土壤样本为研究对象,建立土壤含水率定量反演模型。在土壤风干过程中测量光谱反射率及含水率,分析土壤含水率与光谱反射率之间的关系,并利用一元线性及指数回归建立土壤含水率光谱预测模型。结果表明在400~1 340、1 460~1 790、1 960~2 390 nm波长范围内,与含水率相关性最大的反射率对应的波长分别为570、1 460、1 960 nm;吸收深度最大的波长位于490、1 460、1 960 nm。土壤光谱特征指标与含水率之间的线性相关关系优于指数相关关系。以特征波长1 980 nm(C1980)、1 980 nm的吸收深度(D1980)和1 480 nm的吸收深度(D1480)为自变量建立的线性模型为土壤含水率预测的最优模型,校正和验证的决定系数R2大于0.92,相对预测偏差(RPD)大于2.5,均方根误差(RMSE)小于2.5%。研究表明利用自然土样,在风干过程中进行土壤含水率光谱快速预测是完全可行的,从而为遥感实时、快速监测土壤水分含量及大面积土壤水分反演提供了参考。  相似文献   

14.
针对小麦腥黑穗病轻度患病籽粒易与健康籽粒混淆,人工识别难度大的问题,将校正光谱序列融合技术与深度学习模型相结合,实现小麦腥黑穗病籽粒快速、精准分类。以健康、轻度患病、重度患病各300粒小麦籽粒的高光谱数据为样本,通过多元散射校正算法(MSC)和标准正态变换算法(SNV)对原始光谱进行预处理,并利用二维相关光谱法(2D-COS)分析SNV与MSC算法处理后的光谱之间的互补性。使用校正光谱序列融合技术将原始光谱、SNV预处理光谱与MSC预处理光谱三者进行融合得到序列融合光谱,以充分利用不同光谱预处理数据间的互补信息。最终,利用序列融合光谱数据建立基于ResNet 50算法的小麦腥黑病分类模型。试验结果表明,序列融合光谱ResNet 50模型总体准确率最高为93.89%,F1值为93.87%,分类性能优于单一预处理光谱建立的ResNet 50模型。为进一步评估模型分类效果,使用序列融合光谱分别建立偏最小二乘判别分析(PLS-DA)、支持向量机(SVM)以及集成学习算法模型随机森林(RF)与极端梯度提升树(XGBoost)模型,并进行对比,结果显示:SVM、PLS-DA、RF与XGBoost总体准确率分别为81.67%、84.44%、89.44%与90.55%,F1值分别为81.59%、84.04%、89.49%与90.59%,ResNet 50总体准确率与F1值优于传统光谱分析模型。因此,本研究表明校正光谱序列融合技术结合深度学习模型,能够实现对不同患病程度腥黑穗病籽粒的有效分类。  相似文献   

15.
为辨别农作物所受重金属胁迫种类,以受重金属铜(Cu)、铅(Pb)胁迫的玉米叶片为研究对象,利用ASD地物光谱仪获得叶片高光谱数据,通过分数阶微分(FD)对原始光谱数据进行处理,采用竞争性自适应重加权采样法(CARS)提取特征波段,最后通过多层感知机(MLP)、K-最近邻(KNN)、支持向量机(SVM) 3种模型对受胁迫的叶片光谱进行辨别,选择最优的MLP构建的FD-CARS-MLP模型,进行玉米生长铜铅污染信息光谱辨别。结果表明,FD-CARS-MLP模型对于受胁迫叶片光谱辨别的能力相较于传统方式有所提高,试验集辨别精度均可达到98%以上,0.1、0.2阶分数阶微分辨别精度可达到99%以上。选取苗期与抽穗期的玉米叶片,对其进行FD-CARS-MLP模型的可行性测试,经验证可得,FD-CARS-MLP模型辨别受重金属胁迫玉米叶片光谱数据的精度更高且更稳定,可为监测谷类作物不同重金属胁迫提供技术与方法。  相似文献   

16.
成熟期农作物的识别在农作物种植面积估算、农业生产及产量统计方面具有重要作用。为提供一种简便的成熟期农作物遥感识别方法,利用Sentinel-2A数据,以安徽省滁州市凤阳县为研究区,通过归一化植被指数(Normalized difference vegetation index, NDVI)与归一化光谱分离指数(Normalized spectral separation index, NSSI)构成的空间,提取光合植被、非光合植被、裸土的纯端元,由像元三分模型,得到非光合植被覆盖度及成熟期农作物的空间分布。为进一步提取研究区内具有相同成熟期的冬小麦与油菜,利用油菜开花期Sentinel-2A数据,由Hue saturation value(HSV)图像变换方法,分别提取出成熟期冬小麦与油菜。与地面观测数据和辅助数据相比,提取的成熟区冬小麦、油菜的总体精度为95.34%,Kappa系数为0.904,高于支持向量机方法(总体精度91.66%,Kappa系数为0.813)与决策树方法(总体精度92.39%,Kappa系数为0.838)的提取精度。结果表明,NDVI-NSSI空间与HSV变换相...  相似文献   

17.
基于近红外光谱的核桃仁品种快速分类方法   总被引:2,自引:0,他引:2  
采用傅里叶变换近红外光谱仪,采集了4个不同品种的200份核桃仁样本的近红外漫反射光谱,建立了核桃仁品种分类模型。光谱范围为3 800~9 600 cm -1 ,预处理方法采用多元散射校正法和标准正态化方法;通过主成分分析法优选出5个主成分因子,光谱信息累计贡献率达到99.21%;采用随机抽取法建立建模集和验证集,以主成分因子为输入变量,建立了基于支持向量机分类模型,并采用网格搜索法对RBF核函数参数 λ和δ 进行寻优。分析结果表明,建立的核桃仁分类识别模型对4个核桃仁品种的总体正确识别率达到96%,为核桃仁品种的快速无损识别提供了一种可行的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号