首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G. Singh   《Forest Ecology and Management》2009,258(11):2519-2528
Degraded Aravalli hills in western India require rehabilitation through resource conservation and afforestation for meeting the biomass needs of resource-poor tribes of the region. Rainwater harvesting treatments i.e., control, Contour trench (CT), Gradonie (G), Box trench (BT) and V-ditch (VD) were prepared in <10%, 10–20% and >20% slopes categories and Dendrocalamus strictus L. seedlings were planted in August 2005 with a view to conserve soil and water and increase the productivity of the hills. Soil water content (SWC), survival and height of D. strictus plants were highest (P < 0.05) in <10% slope and all these variables decreased with increase in slope. SWC increased by 27.45% and 25.68% in <10% and >20% slopes, respectively than in 10–20% slope. From lowest in control SWC increased by 11.95%, 20.21%, 17.61% and 11.49% in CT, G, BT and VD treatments, respectively. Growth variables were highest in VD plots but the increase in shoot number was highest (2.9-fold) in CT plots. Increase in effects of rainwater harvesting with time indicated by a change in production pattern from highest (P < 0.05) fresh and dry herbage in <10% slope in 2005 to 10–20% slope (24.66% and 26.09%) in 2006 and >20% slope (42.42% and 48.35%, respectively) in 2007. The increase in herbage was 1.17–2.40-fold in fresh and 1.20–2.52-fold in dry herbage over control. Highest (P < 0.01) production was in V-ditch plots. The treatments order for herbage production was C < CT < G < BT < VD. But the production was highest in BT in <10% and in V-ditch plots in 10–20 and >20% slopes. Conclusively, soil water status is affected by natural slope, stony soil surface and rainwater harvesting structures influencing seedling growth and herbage production. Box trench and V-ditch enhanced surface soil water facilitating herbage growth, whereas contour trench facilitated deep soil water storage, which was made available to the plants after monsoon. Thus rainwater harvesting practices enhanced vegetation cover and productivity of the degraded hills and can be replicated to conserve soil resource and increase biomass for rural poor of the region.  相似文献   

2.
Over-exploitation and rural growth have severely damaged native vegetations of Aravalli hills in Rajasthan, India. This study was conducted to evaluate the effects of different restoration practices (i.e., rainwater harvesting (RWH) and planting of tree seedlings) on improve- ment in soil water and nutrients and growth and biomass of herbaceous vegetation. Contour trench (CT), Gradonie (G), Box trench (BT), V-ditch (VD) and a control were imposed on 75 plots (each of 700 m 2 ) in natural slope gradient defined as <10%, 10% 20% and >20% slopes in 2005. Each plot had three micro-sites of 1-m 2 at up (USP), middle (MSP) and lower (LSP) part of the plot for observation in 2008. The existed gradient (due to soil texture and topographic features) of soil pH, EC, SOC, NH 4 - N, NO 3 -N and PO 4 -P in June 2005 between >20% to <10% slopes were decreased in 2008 after applying RWH techniques. Such improvement in soil status promoted vegetation growth and biomass in higher slope gra- dients. Soil water, species diversity and herbage biomass increased from USP to LSP, and RWH techniques had positive role in improving SOC, nutrients, vegetation population, evenness and growth at MSP. Despite of lowest SWC, regular rain and greater soil water usage enhanced green and dry herbage biomasses in 10% 20% and >20% slopes, compared with <10% slope. The highest diversity in CT treatment was related to herbage biomass, which was enhanced further by highest concentrations of SOC and PO 4 -P. Further, CT treatment was found to be the best treat- ment in minimizing biomass variance in different slopes. Conclusively, soil texture and topographic features controlled soil water and nutrients availability. Rainwater harvesting techniques increased soil water storage and nutrient retention and also enhanced vegetation status and biomass by minimizing the effects of hillslopes. Thus depending upon the site conditions, suitable RWH technique could be adopted to increase herb- age biomass while rehabilitating the degraded hills.  相似文献   

3.
杉木纯林、混交林土壤微生物特性和土壤养分的比较研究   总被引:6,自引:0,他引:6  
王清奎  汪思龙 《林业研究》2008,19(2):131-135
本文于2005年5月份,在中国科学院会同森林生态实验站选择了一块15年生的杉木纯林和两块15年生杉阔混交林作为研究对象,调查了林地土壤有机碳、全氮、全磷、硝态氮、有效磷和土壤微生物碳、氮、磷、基础呼吸以及呼吸熵,比较了纯林和混交林土壤微生物特性和土壤养分.结果表明,杉阔混交林的土壤有机碳、全氮、全磷硝态氮和有效磷含量高于杉木纯林;在混交林中,土壤微生物学特性得到改善.在0(10 cm和10(20 cm两层土壤中,杉阔混交林土壤微生物氮含量分别比杉木纯林高69%和61%.在0(10 cm土层,杉阔混交林土壤微生物碳、磷和基础呼吸分别比杉木纯林高11%、14%和4%;在10(20 cm土层,分别高6%、3%和3%.但是,杉阔混交林土壤微生物碳:氮比和呼吸熵较杉木纯林低34%和4%.另外,土壤微生物与土壤养分的相关性高于土壤呼吸、微生物碳:氮比和呼吸熵与土壤养分的相关性.由此可知,在针叶纯林中引入阔叶树后,土壤肥力得以改善,并有利于退化森林土壤的恢复.  相似文献   

4.
The conversion of silvopasture to different land use systems cause effective changes in soil carbon distribution, due to disturbances in soil aggregation promoted by soil management and changes in crop residues inputs and decomposability. We evaluate the C and N stocks, and organic C fractions in soils under continuous arable land (AR) and silvopasture with apple trees and grass (SP); and after 4 years of conversion from silvopasture to arable land (SP-AR) and grassland (SP-GL). Total N (TN) and organic C (TOC), as well as microbial biomass carbon (CMB), light fraction (CLF) and heavy fraction (CHF) were evaluated at two different depths (0–10 and 10–20 cm). After 4 years of conversion, SP-AR and SP-GL presented C and N stocks similar to the observed for SP when the 0–20 cm depth was considered. However, AR presented TOC and TN stocks around 21 and 10% lower than SP, respectively. SP-AR tended to present the lowest CMB stocks and was positively correlated with salt extractable organic C (r 2 = 0.60, P < 0.001). CLF values declined by 62% from 0–10 to the 10–20 cm at SP and SP-GL, however there was no variation with increasing depth for AR and SP-AR. CHF represented the highest C fraction in soil, corresponding to 82% of TOC. Except for AR, δ13C values of the light fraction increased with increasing depth. In general, heavy fraction tended to be more enriched in δ13C than light fraction. In a long-term, conventional tillage can significantly contribute to reduce TOC and TN stocks when compared to the silvopastoral system.  相似文献   

5.
Soil enzyme activities and water stable aggregates have been identified as sensitive soil quality indicators, but few studies exist comparing those parameters within buffers, grazed pastures and row-crop systems. Our objective was to examine the effects of these land uses on the activities of selected enzymes (β-glucosidase, β-glucosaminidase, fluorescein diacetate (FDA) hydrolase, and dehydrogenase), proportion of water stable aggregates (WSA), soil organic carbon and total nitrogen content. Four management treatments [grazed pasture (GP), agroforestry buffer (AgB), grass buffer (GB) and row crop (RC)] were sampled in 2009 and 2010 at two depths (0 to 10- and 10 to 20-cm) and analyzed. Most of the soil quality indicators were significantly greater under perennial vegetation when compared to row crop treatments. Although there were numerical variations, soil quality response trends were consistent between years. The β-glucosaminidase activity increased slightly from 156 to 177 μg PNP g−1 dry soil while β-glucosidase activity slightly decreased from 248 to 237 μg PNP g−1 dry soil in GB treatment during 2 years. The surface (0–10 cm depth) had greater enzyme activities and WSA than sub-surface (10–20 cm) samples. WSA increased from 178 to 314 g kg−1 in row crop areas while all other treatments had similar values during the 2 year study. The treatment by depth interaction was significant (P < 0.05) for β-glucosidase and β-glucosaminidase enzymes in 2009 and for dehydrogenase and β-glucosaminidase in 2010. Soil enzyme activities were significantly correlated with soil organic carbon content (r ≥ 0.94, P < 0.0001). This is important because soil enzyme activities and microbial biomass can be enhanced by perennial vegetation and thus improve several other soil quality parameters. These results also support the hypothesis that positive interactions among management practices, soil biota and subsequent environmental quality effects are of great agricultural and ecological importance.  相似文献   

6.
The distribution of root biomass was studied in different soil layers (0–10, 10–20, 20–30, 30–40 cm) by means of a “study plot” method for various plant species in the Shangshe Catchment area in the Dabie Mountains, Anhui Province. The number and lengths of root samples were recorded. In each study plot, anti-scourability of soils in corresponding soil layers was measured with a C.C. Suoboliefu anti-scourability instrument. The results showed the following: 1) The root system was largely distributed in the 0–40 cm soil layer and the number of roots was the largest in the surface soil layer. Fine roots<1 mm in diameter predominated in root length. 2) In the same section, the anti-scourability indices of the surface soil layer were larger than those of other soil layers in the various plant species. The tree root system, especially the fine roots<1 mm in diameter, are highly instrumental in controlling soil losses. Correlation coefficients of length, number and density of fine roots and the anti-scourability index were 0.8173, 0.7159 and 0.6434, respectively. The length of fine root is a key factor in the anti-scourability soil index. This index is closely correlated with the non-capillarity of each soil type, indicating that forests have a strong soil stabilizing function, because their root systems improve physical soil properties and ultimately are responsible for the establishment of a biosoil system with an anti-scourability index. __________ Translated from Science of Water and Soil Conservation, 2007, 5(6): 15–20 [译自: 中国水土保持科学]  相似文献   

7.
Soil fertility restoration depends on natural fallows in the slash-and-burn system of eastern Madagascar. In the Beforona-Vohidrazana study zone, none of the fallow species are able to withstand the slashing, burning and cropping frequencies of 3–5 years. Eventually soils are abandoned for agriculture. Along the degradation sequence, this study quantifies fallow biomass, nutrient stocks and soil nutrient availability of four dominant fallow species Trema orientalis, Psiadia altissima, Rubus moluccanus, and Imperata cylindrica. At 3 years, the shrubs Psiadia and Rubus were more productive (11–14.4 t/ha aboveground biomass or AGB) than the tree species Trema (8.5 t/ha). Only after 5 years did tree productivity (24.7 t/ha) exceed that of shrubs (17–20 t/ha). Imperata’s biomass stagnated at 5.5 t/ha after 3 years. A sharp decline in fallow productivity was observed with advancing fallow cycles after deforestation. While Psiadia produced highest AGB in the second fallow cycle (C2) being 100%, C1 achieved 89% of that, C3 74%, and C4 only 29%. With the ability to propagate vegetatively and to accumulate important amounts of nutrients in roots, Rubus and Imperata, both exotic and invasive species, showed improved adaptation mechanisms towards frequent disturbances compared to the two indigenous species Trema and Psiadia. Available soil nutrients P, K, Mg were highest under forest and declined rapidly with increasing fallow cycles. Ca and pH rose momentarily in the first fallow cycle before declining with advanced soil use. Al concentrations increased steadily with time. As lengthened fallow periods are not practical, there is a need to intensify upland systems based on improved nutrient cycling, targeted inputs, fire-less land management, and land use diversification. Allowing regrading tree and bush fallows to accumulate biomass (above- and belowground carbon) will significantly improve Madagascar's greenhouse gas mitigation contribution.  相似文献   

8.
Agroforestry and grass buffers have been proposed for improving water quality in watersheds. Soil porosity can be significantly influenced by buffer vegetation which affects water transport and water quality. The objective of the study was to compare differences in computed tomography (CT)-measured macroporosity (>1,000-μm diam.) and coarse mesoporosity (200- to 1,000-μm diam.) parameters for agroforestry and grass buffer systems associated with rotationally grazed and continuously grazed pasture systems. Soils at the site were Menfro silt loam (fine-silty, mixed, superactive, mesic Typic Hapludalf). Six replicate intact soil cores, 76.2 mm diam. by 76.2 mm long, were collected using a core sampler from the four treatments at five soil depths (0–50 cm at 10-cm intervals). Images were acquired using a hospital CT scanner and subsequently soil bulk density and saturated hydraulic conductivity (K sat) were measured after scanning the cores. Image-J software was used to analyze five equally spaced images from each core. Bulk density was 5.9% higher and saturated hydraulic conductivity (K sat) values were five times lower for pasture treatments relative to buffer treatments. For the 0–10 cm soil depth, CT-measured soil macroporosity (>1,000 μm diam.) was 13 times higher for the buffer treatments compared to the pasture treatments. Buffer treatments had greater macroporosity (0.020 m3 m−3) compared to pasture (0.0045 m3 m−3) treatments. CT-measured pore parameters were positively correlated with K sat. The project illustrates benefits of agroforestry and grass buffers for maintaining soil porosity critical for soil water and nutrient transport.  相似文献   

9.
Soil moisture content from 0 to 2 m depth was monitored under 2–6 year old radiata pine (Pinus radiata) with three understoreys of bare ground, lucerne (Medicago sativa) and ryegrass/clover (Lolium perenne/Trifolium spp.) and under adjacent open-grown lucerne and ryegrass/clover pastures. By the fifth year soil moisture depletion/recharge pattern under the trees alone was similar to that under open pasture and under trees with pasture understoreys. Maximum plant available moisture storage was 207–223 mm in the top meter of this Templeton silt loam soil but only 69–104 mm at 1–2 m depth where coarse textures often predominated. Lucerne reduced soil moisture content (SMC) to lower levels during drier summers and extracted more water from 1 to 2 m depth than ryegrass/clover. Evapotranspiration (ET) during early summer when soil moisture was high was close to the Penman potential evapotranspiration (E p ), but the difference increased when SMC in the top meter dropped below 200 mm. The silvopasture treatments had higher ET in winter than pasture alone but this was still less than E p . Soil moisture deficits (SMD) at the end of each summer were sufficiently large to require slightly higher than normal winter rainfall and ET < E p to recharge the soil to field capacity before the next summer. The soil moisture results, taken together with root and growth data, suggest that trees and understorey pastures are complementary in the first three or four growing seasons but this balance subsequently declines in favor of the pine trees. Management options, to extend the period that understorey pastures are productive, include reducing tree stockings, more vigorous pruning, using competitive understoreys and changing from pines to deciduous trees. Research on new silvopastoral combinations is suggested.  相似文献   

10.
Changes in soil properties and nematode population status under Flemingia macrophylla [(Willd.) Merrill], Pueraria phaseoloides (Roxb.) Benth, and natural bush fallows were assessed in three villages in southern Cameroon. In each village, experiments were set up in a 4–5 year-old bush fallow dominated by Chromolaena odorata (L.) R. M. King and H. Rob and a more than 20 year-old secondary forest. Total aboveground biomass production of P. phaseoloides was 7.45 Mg ha−1, 4.2 times higher than F. macrophylla (1.78 Mg ha−1; P < 0.05). In two years (24 MAP), the soil bulk density under P. phaseoloides, F.macrophylla and the natural regrowth in both bush and forest land use systems decreased (P < 0.05). Within the same period, there was a general improvement in aggregate stability. The particle size distribution changed over 3 years (36 MAP), such that at 0–10 cm depth, the percent sand content had reduced whiles the percent clay content had increased under all the fallow systems in both bush and forest land use systems (LUSs). Soil N also increased significantly (P < 0.05) after cropping under all the fallow systems in both LUS. In contrast, soil organic carbon decreased, but the extent was lower under P. phaseoloides and F. macrophylla compared to the natural regrowth. Soil P also decreased after cropping under all the fallow systems in both LUS whereas decrease in Mg was only observed under P. phaseoloides. F. macrophylla had Mg content after cropping similar to the initial in both LUS. Soil contents of K and Ca were not significantly different over time under all the fallow systems. Comparing the initial Helicotylenchus multicinctus population to that at 12 MAP, both P. phaseoloides and F. macrophylla reduced density of H. multicinctus (P < 0.05). However, when the initial population density was compared to that at 24 MAP only under P. phaseoloides was the reduction maintained. The study concluded that the general improvement in the soil physical properties, impacted positively on the N and organic carbon contents which were sustained to a larger extent under the planted fallows than the natural regrowth. Furthermore, P. phaseoloides could be used as one component for the biological control of Helicotylenchus multicinctus, a phytopathogenic nematode.  相似文献   

11.
Land management practices that simultaneously improve soil properties are crucial to high crop production and minimize detrimental impact on the environment. We examined the effects of crop residues on crop performance, the fluxes of soil N2O and CO2 under wheat-maize (WM) and/or faba bean-maize (FM) rotations in Amorpha fruticosa (A) and Vetiveria zizanioides (V) intercropping systems on a loamy clay soil, in subtropical China. Crop performance, soil N2O and CO2 as well as some potential factors such as soil water content, soil carbon, soil nitrogen, microbial biomass and N mineralization were recorded during 2006 maize crop cultivation. Soil N2O and CO2 fluxes are determined using a closed-based chamber. Maize yield was greater after faba bean than after wheat may be due to differences in supply of N from residues. The presence of hedgerow significantly improved maize grain yields. N2O emissions from soils with maize were considerably greater after faba bean (345 g N2O–N ha−1) than after wheat (289 g N2O–N ha−1). However, the cumulated N2O emissions did not differ significantly between WM and FM. The difference in N2O emissions between WM and FM was mostly due to the amounts of crop residues. Hedgerow alley cropping tended to emit more N2O than WM and FM, in particular A. fruticosa intercropping systems. Over the entire 118 days of measurement, the N2O fluxes represented 534 g N2O–N ha−1 (AWM) and 512 g N2O–N ha−1 (AFM) under A. fruticosa species, 403 g N2O–N ha−1 (VWM) and 423 g N2O–N ha−1 (VFM) under Vetiver grass. We observed significantly higher CO2 emission in AFM (5,335 kg CO2–C ha−1) from June to October, whereas no significant difference was observed among WM (3,480 kg CO2–C ha−1), FM (3,302 kg CO2–C ha−1), AWM (3,877 kg CO2–C ha−1), VWM (3,124 kg CO2–C ha−1) and VFM (3,309 kg CO2–C ha−1), indicating the importance of A. fruticosa along with faba bean residue on CO2 fluxes. As a result, crop residues and land conversion from agricultural to agroforestry can, in turn, influence microbial biomass, N mineralization, soil C and N content, which can further alter the magnitude of crop growth, soil N2O and CO2 emissions in the present environmental conditions.  相似文献   

12.
In sodic soils, excessive amounts of salts have an adverse effect on soil biological activity and stability of soil organic matter. The study analyzes the role of silvopastoral systems to improve soil organic matter and microbial activity with a view for effective management of soil fertility. The silvopastoral systems for the present study (located at Saraswati Reserved Forest, Kurukshetra; 29°4′ to 30°15′ N and 75°15′ to 77°16prime; E) are characterized by tree species of Acacia nilotica, Dalbergia sissoo and Prosopis juliflora along with grass species of Desmostachya bipinnata and Sporobolus marginatus. Soil microbial biomass carbon was measured using the fumigation extraction technique and nitrogen mineralization rates using aerobic incubation method. The microbial biomass carbon in the soils of D. bipinnata and S. marginatus treatments were low. In silvopastoral systems, microbial biomass carbon increased due to increase in the carbon content in the soil – plant system. A significant relationship was found between microbial biomass carbon and plant biomass carbon (r = 0.83) as well as the flux of carbon in net primary productivity (r = 0.92). Nitrogen mineralization rates were found greater in silvopastoral systems compared to 'grass-only' system. Soil organic matter was linearly related to microbial biomass carbon, soil N and nitrogen mineralization rates (r = 0.95 to 0.98, p < 0.01). On the basis of improvement in soil organic matter, enlarged soil microbial biomass pool and greater soil N availability in the tree + grass systems, agroforestry could be adopted for improving the fertility of highly sodic soil. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
The importance of agroforestry systems as carbon sinks has recently been recognized due to the need of climate change mitigation. The objective of this study was to compare the carbon content in living biomass, soil (0–10, 10–20, 20–30 cm in depth), dead organic matter between a set of non-agroforestry and agroforestry prototypes in Chiapas, Mexico where the carbon sequestration programme called Scolel’te has been carried out. The prototypes compared were: traditional maize (rotational prototype with pioneer native trees evaluated in the crop period), Taungya (maize with timber trees), improved fallow, traditional fallow (the last three rotational prototypes in the crop-free period), Inga-shade-organic coffee, polyculture-shade organic coffee, polyculture-non-organic coffee, pasture without trees, pasture with live fences, and pasture with scattered trees. Taungya and improved fallow were designed agroforestry prototypes, while the others were reproduced traditional systems. Seventy-nine plots were selected in three agro-climatic zones. Carbon in living biomass, dead biomass, and soil organic matter was measured in each plot. Results showed that carbon in living biomass and dead organic matter were different according to prototype; while soil organic carbon and total carbon were influenced mostly by the agro-climatic zone (P < 0.01). Carbon density in the high tropical agro-climatic zone (1,000 m) was higher compared to the intermediate and low tropical agro-climatic zones (600 and 200 m, respectively, P < 0.01). All the systems contained more carbon than traditional maize and pastures without trees. Silvopastoral systems, improved fallow, Taungya and coffee systems (especially polyculture-shade coffee and organic coffee) have the potential to sequester carbon via growing trees. Agroforestry systems could also contribute to carbon sequestration and reducing emissions when burning is avoided. The potential of organic coffee to maintain carbon in soil and to reduce emissions from deforestation and ecosystem degradation (REDD) is discussed.  相似文献   

14.
Seedling growth response of two tropical tree species (Schima superba and Cryptocarya concinna) to simulated N deposition was studied during a period of 11 months. One-year-old seedlings were grown in forest soil treated with N as NH4NO3 at Control–no N addition, N5–5, N10–10, N15–15, and N30–30 g N m−2 year−1. The objective was to examine the effects of N addition on seedling growth and compare this effect between the two tropical tree species of different species-N-requirement. Results showed that both species responded significantly to N addition and exhibited positive effect to lower rate of N addition and negative effect to higher rate of N addition on growth parameters (height and stem base diameter, biomass production, and net photosynthetic rate). The highest values were observed in the N10 plots for S. superba and in the N15 plots for C. concinna, but the lowest values were observed in the N30 plots for both species. However, the reduction in the N30 plots was more pronounced for S. superba than for C. concinna relative to the control plots. Our findings suggest that response of seedling growth of tropical tree species to atmospheric N deposition may vary depending on rate of N deposition and species-N-requirement.  相似文献   

15.
Nitrogen fixation during litter decomposition was studied for 34 months using litterbags containing newly fallen litter of coniferous species Cryptomeria japonica and Pinus densiflora and that of deciduous species Quercus serrata. Litterbags were set in contact with the forest floor in a deciduous broad-leaved forest near the top of a slope and in a C. japonica stand at the middle of the slope at a watershed in eastern Japan. Nitrogen-fixing activity, estimated by acetylene reduction after 16 and 19 months of incubation, was 62.65–3.86 nmoles C2H4 h−1 g−1 DW in Cryptomeria litter, but only 1.07–0.09 in Pinus and 0.72–0.04 in Quercus. The rate of N increase in decomposing litter was highest in Cryptomeria. Fungal biomass in decomposing litter, estimated by ergosterol content, increased during the initial 16 months of incubation in Cryptomeria and Quercus, and during the initial 19 months of incubation in Pinus. The litter decomposition rate was highest in Cryptomeria among the three species, due to increased N content and fungal biomass in Cryptomeria litter. Thus, N increase in decomposing Cryptomeria litter affects the subsequent N dynamics and decomposition pattern.  相似文献   

16.
Temperate forest soils are one source of nitrous oxide (N2O), which is an important greenhouse gas and the most important ozone-depleting substance. To clarify N2O flux mechanisms in relation to soil temperature, moisture, and nitrification activity, we measured N2O fluxes and net nitrification rates over 3 years at the lower (Japanese cedar) and upper (deciduous broad-leaved trees) parts of a hill slope in a small forest catchment in the northern Kanto region of Japan. The N2O flux was measured by the closed-chamber technique every month, along with soil temperature and water-filled pore space (WFPS). At the lower slope, the N2O flux increased with increasing soil temperature (r 2 = 0.383, P < 0.01) owing to an increase in the nitrification rate. At the upper slope, no positive linear correlation of N2O flux with soil temperature, WFPS, or nitrification rate was observed. The low N2O flux at the upper slope during summer was caused by the low summertime WFPS there. We attributed the higher mean N2O fluxes observed at the lower slope (median 2.36 μg N m−2 h−1) than at the upper slope (median 1.10 μg N m−2 h−1) to a high soil moisture during summer season in the surface soil of the lower slope.  相似文献   

17.
An investigation was carried out in an Entisol at farmers’ field in Jaipur district, Rajasthan, India during 2002–2004 to evaluate the effect of traditionally grown trees on soil biological characteristics. Traditionally grown trees in farm lands for study consisted of Prosopis cineraria (L.), Dalbergia sissoo (Roxb.) ex DC, Acacia leucophloea (Roxb.) and Acacia nilotica (L.) Del. having a canopy diameter of 8 m. Results revealed significant and substantial improvement in soil biological activity in terms of microbial biomass C, N and P, dehydrogenase and alkaline phosphatase activity under different tree based agroforestry systems as compared to a no tree control (cropping alone). Soil microbial biomass C, N and P under agroforestry varied between 262–320, 32.1–42.4 and 11.6–15.6 μg g−1 soil, respectively, with corresponding microbial biomass C, N and P of 186, 23.2 and 8.4 μg g−1 soil under a no tree control. Fluxes of C, N and P through microbial biomass were also significantly higher in P. cineraria based land use system followed by D. sissoo, A. leucophloea and Acacia nilotica in comparison to a no tree control. Thus, it is concluded that agroforestry system at farmers’ field enhance soil biological activity and amongst trees, P. cineraria based system brought maximum and significant improvement in soil biological activity.  相似文献   

18.
As vegetation coverage increases, soil water content can decrease due to water uptake and evapotranspiration. At a very high level of plant density, poor growth and even mortality can occur due to the decrease of soil water content. Hence, a better understanding of the relationship between soil water content and the density of plants is important to design effective restoration projects. To study these relationships, we developed a soil water dynamic simulation model of a Caragana intermedia woodland under different slope gradient and slope aspect conditions in the Huangfuchuan watershed on the basis of the previous studies and field experiments. The model took into account the major processes that address the relationships of plants and the environment, including soil characteristics, precipitation, infiltration, vegetation transpiration, and soil evaporation. Daily changes in soil water content, transpiration, and evaporation of the Caragana intermedia woodland with different vegetation coverage, slope gradient, and slope aspect were simulated from 1971 to 2000. Based on the model simulations, we determined the functional relationships among soil water content, plant coverage and slope as well as the optimal plant density on flat slopes. We also determined the effects of slope gradient and slope aspect on soil water content. When slope gradient was less than 10°, the optimal plant density was sensitive to slope gradient. In the slope range from 10° to 30°, plant density was not sensitive to slope gradient. Therefore, it is important to consider planting densities on the hillsides with slope gradients less than 10° for reconstructing vegetation. __________ Translated from Acta Phytoecologica Sinica, 2005, 29(6): 910–917 [译自: 植物生态学报]  相似文献   

19.
This study tested the hypothesis that incorporation of green leaf manure (GLM) from leguminous trees into agroforestry systems may provide a substitute for inorganic N fertilisers to enhance crop growth and yield. Temporal and spatial changes in soil nitrogen availability and use were monitored for various cropping systems in southern Malawi. These included Gliricidia sepium (Jacq.) Walp. trees intercropped with maize (Zea mays L.), with and without pigeonpea (Cajanus cajan L.), sole maize, sole pigeonpea, sole gliricidia and a maize + pigeonpea intercrop. Soil mineral N was determined before and during the 1997/1998, 1998/1999 and 1999/2000 cropping seasons. Total soil mineral N content (NO3 + NH4+) was greatest in the agroforestry systems (p<0.01). Pre-season soil mineral N content in the 0–20 cm horizon was greater in treatments containing trees (≤85 kg N ha−1) than in those without (<60 kg ha−1; p<0.01); however, soil mineral N content declined rapidly during the cropping season. Uptake of N was substantially greater in the agroforestry systems (200–270 kg N ha−1) than in the maize + pigeonpea and sole maize treatments (40–95 kg N ha−1; p<001). Accumulation of N by maize was greater in the agroforestry systems than in sole maize and maize + pigeonpea (p<0.01); grain accounted for 55% of N uptake by maize in the agroforestry systems, compared to 41–47% in sole maize and maize + pigeonpea. The agroforestry systems enhanced soil fertility because mineralisation of the applied GLM increased pre-season soil mineral N content. However, this could not be fully utilised as soil N declined rapidly at a time when maize was too small to act as a major sink for N. Methods for reducing losses of mineral N released from GLM are therefore required to enhance N availability during the later stages of the season when crop requirements are greatest. Soil mineral N levels and maize yields were similar in the gliricidia + maize and gliricidia + maize + pigeonpea treatments, implying that addition of pigeonpea to the tree-based system provided no additional improvement in soil fertility.  相似文献   

20.
Fine root turnover plays important roles in carbon allocation and nutrient cycling in forest ecosystems. Seasonal dynamics of fine roots is critical for understanding the processes of fine root turnover. From May to October 2002, soil core method was used for estimating the seasonal pattern of fine root (diameter < 1 mm) parameters (biomass, specific root length (SRL) and root length density (RLD)) in a Manchurian ash (Fraxinus mandshurica) plantation located at the Maoershan Experiment Station, Heilongjiang Province, northeast of China. The relationships of fine root biomass, SRL and RLD with available nitrogen in soil, average soil temperature per month in 10 cm depth and soil moisture content were analyzed. Seasonal variation of fine root biomass was significant (P < 0.05). The peak values of fine root biomass were observed both in spring and in autumn, but SRL and RLD were the highest in spring and lowest in autumn. Specific root length and root length density were higher in spring and summer, which means that fine root diameter was thinner. In autumn, both parameters decreased significantly due to secondary incrassation of fine root diameter or the increase of tissue density. Seasonal dynamics of fine roots was associated with available nitrogen in soil, soil temperature in 10 cm depth and moisture content. Fine root biomass has a significant relationship with available NH4 +-N in soil. Available NO3 -N in soil, soil temperature in 10-cm depth and moisture content have a positive correlation with fine root biomass, SRL and RLD, although these correlations are not significant (P > 0.05). But the compound effects of soil available N, soil temperature and soil moisture content are significant to every root parameter. The variations of these three root parameters in different seasons show different physiological and ecological functions in different growing periods. Translated from Scientia Silvae Sinicae, 2006, 42(9): 7–12 [译自: 林业科学]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号