首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
In rice–wheat rotation systems, crop straw is usually retained in the field at land preparation in every, or every other, season. We conducted a 3-year-6-season experiment in the middle–lower Yangtze River Valley to compare the grain qualities of rice under straw retained after single or double seasons per year. Four treatments were designed as: both wheat and rice straw retained(WR), only rice straw retained(R), only wheat straw retained(W), and no straw retained(CK). The varieties were Yangmai 16 wheat and Wuyunjing 23 japonica rice. The results showed contrasting effects of W and R on rice quality. Amylopectin content, peak viscosity, cool viscosity, and breakdown viscosity of rice grain were significantly increased in W compared to the CK, whereas gelatinization temperature,setback viscosity, and protein content significantly decreased. In addition, the effect of WR on rice grain quality was similar to that of W, although soil fertility was enhanced in WR due to straw being retained in two cycles. The differences in protein and starch contents among the treatments might result from soil nitrogen supply. These results indicate that wheat straw retained in the field is more important for high rice quality than rice straw return, and straw from both seasons is recommended for positive effects on soil fertility.  相似文献   

2.
Paddy and Water Environment - The System of Rice Intensification (SRI) is known as a climate-smart agricultural practice that increases rice production by changing the management of plants, soil,...  相似文献   

3.
The rice–wheat rotation covering 13.5 million ha in the Indo-Gangetic Plains is vital for food security. Its sustainability is at risk as the current production practices are inadequate resulting in high cost of cultivation and inefficient use of inputs (i.e. water, labor and energy). In a field study, we evaluated resource conserving and cost-saving alternative tillage and crop establishment options with an aim to improve system productivity and efficiency. Treatments included transplanting and direct-seeding of rice after reduced and no-tillage, followed by wheat after no-tillage. Conventional-tilled (puddled) transplanted rice followed by conventional-tilled wheat was included as a current practice. Rice yields of transplanted rice were similar irrespective of tillage/puddling. However, both dry and wet direct-seeded rice yielded 0.45–0.61 Mg ha−1 lower than puddled transplanted rice. Wheat yield after no-tillage was either higher or equivalent to conventional practice. Wheat provided more economic return (US $35 ha−1) than rice. No-till wheat was 6% more profitable than the conventional practice (T1). Rice transplanting with or without puddling had similar water application but dry direct-seeded rice had 10–12% lower and wet direct-seeded rice 20–24% higher. Machine labor without tillage was lower by maximum of 51 and 43% in rice and wheat, respectively. Similarly, human labor was also 9–16% lower in no-till rice compared to other practices. Two years results consistently showed $35 more net income when rice was transplanted without puddling than that of conventional practice. Direct-seeded/un-tilled rice had variable response in 2 years; US $16 more in year 1 and similar in year 2 to the puddled transplanted rice. Direct-seeded or transplanted rice after no-tillage can be more efficient and profitable alternatives to current practice (puddled transplanted rice), however, require further refinement in areas of cultivar development for no-till direct-seeding condition, nutrient, water and weed management to harness maximal potential.  相似文献   

4.
A long-term rotation experiment was established in 2001 to compare conservation tillage techniques with conventional tillage in a semi-arid environment in the western Loess Plateau of China. We examined resource use efficiencies and crop productivity in a spring wheat (Triticum aestivum L.)–field pea (Pisum arvense L.) rotation. The experimental design included a factorial combination of tillage with different ground covers (complete stubble removal, stubble retained and plastic film mulch). Results showed that there was more soil water in 0–30 cm at sowing under the no-till with stubble retained treatment than the conventional tillage with stubble removed treatment for both field pea (60 mm vs. 55 mm) and spring wheat (60 mm vs. 53 mm). The fallow rainfall efficiency was up to 18% on the no-till with stubble retained treatment compared to only 8% for the conventional tillage with stubble removed treatment. The water use efficiency was the highest in the no-till with stubble retained treatment for both field pea (10.2 kg/ha mm) and spring wheat (8.0 kg/ha mm), but the lowest on the no-till with stubble removed treatment for both crops (8.4 kg/ha mm vs. 6.9 kg/ha mm). Spring wheat also had the highest nitrogen use efficiency on the no-till with stubble retained treatment (24.5%) and the lowest on the no-till with stubble removed treatment (15.5%). As a result, grain yields were the highest under no-till with stubble retained treatment, but the lowest under no-till with no ground cover treatment for both spring wheat (2.4 t/ha vs. 1.9 t/ha) and field pea (1.8 t/ha vs. 1.4 t/ha). The important finding from this study is that conservation tillage has to be adopted as a system, combining both no-tillage and retention of crop residues. Adoption of a no-till system with stubble removal will result in reductions in grain yields and a combination of soil degradation and erosion. Plastic film mulch increased crop yields in the short-term compared with the conventional tillage practice. However, use of non-biodegradable plastic film creates a disposal problem and contamination risk for soil and water resources. It was concluded that no-till with stubble retained treatment was the best option in terms of higher and more efficient use of water and nutrient resources and would result in increased crop productivity and sustainability for the semi-arid region in the Loess Plateau. The prospects for adoption of conservation tillage under local conditions were also discussed.  相似文献   

5.
Wu  Xiaohong  Wang  Wei  Xie  Xiaoli  Hou  Haijun  Yin  Chunmei 《Paddy and Water Environment》2018,16(1):199-205
Paddy and Water Environment - Few studies are available on comprehensive impacts of straw retention and water regimes on nitrous oxide (N2O) emission from rice–rice-fallow rotation systems. A...  相似文献   

6.
Despite being a major domain of global food supply, rice?Cwheat cropping system is questioned for its contribution to carbon flux. Enhancing the organic carbon pool in this system is therefore necessary to reduce environmental degradation and maintain agricultural productivity. A field experiment (November 2002?CMarch 2006) evaluated the effects of soil management practices such as tillage, crop residue, and timing of nitrogen (N) application on soil organic carbon (SOC) sequestration in the lowland of Chitwan Valley of Nepal. Rice (Oryza sativa L.) and wheat (Triticum aestivum L.) were grown in rotation adding 12?Mg?ha?1?y?1 of field-dried residue. Mung-bean (Vigna radiata L.) was grown as a cover crop between the wheat and the rice. Timing of N application based on leaf color chart method was compared with recommended method of N application. At the end of the experiment SOC sequestration was quantified for five depths within 50?cm of soil profile. The difference in SOC sequestration between methods of N application was not apparent. However, soils sequestered significantly higher amount of SOC in the whole profile (0?C50?cm soil depth) with more pronounced effect seen at 0?C15?cm soil depth under no-tillage as compared with the SOC under conventional tillage. Crop residues added to no-tillage soils outperformed other treatment interactions. It is concluded that a rice?Cwheat system would serve as a greater sink of organic carbon with residue application under no-tillage system than with or without residue application when compared to the conventional tillage system in this condition.  相似文献   

7.
8.
Application of sand can ameliorate rice paddy fields converted from saline–sodic land. However, the requirement of huge amount of sand has been limiting its practical application. In this study, flushing during saline sodic-sensitive stages of rice plant growth was incorporated into the ameliorating system to reduce the sand usage. A split-plot design was adopted with sand application (SA) with two levels as main plots and flushing during the sensitive stages (FL) with two levels as subplots in a hard saline–sodic soil, Northeast China. Four treatments included CK (no-sand, no-flush flooding), NF (non-sand, flush flooding), SN (sand, no-flush flooding), and SF (sand, flush flooding). The results showed that both SA and FL significantly affected all the investigated yield parameters. The combined effect of SA and FL on the grain yield was additive in the first year in respect of the effect on panicle density and seed weight per panicle; while it showed synergistic effect on the seed weight per panicle and grain yield in the second year. The rice yield in different treatments was in the order of SF > SN > NF > CK in both years, with the highest yield (4.37 t ha?1) obtained by SF treatment in the second year. Our results demonstrate that half the traditional amount of sand in combination with water-flushing during the saline–sodic-sensitive growth stages of rice is sufficiently effective in ameliorating saline–sodic soil and thereby enhancing rice grain yield in saline–sodic paddy fields.  相似文献   

9.
A 2-year field experiment was conducted during the wet seasons (July–October) of 2008 and 2009 on a Typic Hapludoll Mollisol in Indo-Gangetic Plains Region (IGPR) to: (i) investigate the effects of field water re-ponding intervals and plant spacing on the growth, yield, and water productivity (WP) of two rice cultivars under system of rice intensification (SRI) management, and (ii) assess comparative performance of SRI versus ‘best management practices’(BMP) of rice cultivation. This experiment was designed with 14 treatments, 12 under SRI, and 2 BMP (controls). SRI treatments comprised of 3 irrigation regimes viz, irrigation at 1, 3, and 5 day(s) after disappearance of ponded water (DADPW), 2 plant spacings (20 × 20, 25 × 25 cm), and 2 rice cultivars (Pant Dhan 4 and Hybrid 6444). Two BMP (control) treatments comprised of standard cultivation recommendations for flooding and spacing. The experiment was laid-out in a factorial randomized complete block design with three replications. Statistical analysis of data revealed significant variations in root–shoot characteristics and rice yield under SRI between years, reflecting different rainfall patterns. During 2009, a low rainfall year, the panicle numbers m?2, dry root weight m?2, root volume m?2, filled spikelet number panicle?1, and filled spikelet weight panicle?1 were significantly higher, which resulted in a rice grain yield enhancement by 5.1 % over 2008, when there was unusually heavy rainfall. Climate × irrigation regime interaction revealed a non-significant influence of irrigation regimes on growth and yield during 2008, whereas in 2009, irrigation at 1 DADPW and 3 DADPW increased grain yield by 12.8 and 8 %, respectively over 5 DADPW. Better root–zone soil moisture regimes, balancing water, and oxygen availability were responsible for higher yields under irrigation at 1 and 3 DADPW. In 2008, soil moisture content (SMC) in 0–15 cm layer was 91, 86, and 82 % of field capacity (FC) at panicle initiation, and 88, 80, and 77 % at panicle emergence stage when irrigation was at 1, 3, and 5 DADPW, respectively; the lower layers (15–30, 30–45 cm) retained their SMC between 87 and 94 % of FC at both stages. During 2009, SMC in all the three layers at both stages was more than 85 % of FC when irrigating at 1 DADPW, and a little more than 70 % for the 0–15 cm layer and >80 % for the other two layers when irrigation was done at 3 DADPW. SMC dropped to below 60 % of FC in the 0–15 cm layer and remained between 67 and 77 % of FC in the other two layers, with lower yield resulting when irrigations were applied at 5 DADPW. However, WP was the highest with irrigation at 5 DADPW (38.5 kg ha cm?1). Wider plant spacing (25 × 25 cm) resulted in generally and significantly higher grain yield and WP. On an average, SRI (6.1 t ha?1) resulted in yield advantage of 0.9 t ha?1 over BMP (5.2 t ha?1). Overall, it is inferred that in SRI, wider planting (25 × 25 cm) with field re-ponding at 3 DADPW if there is adequate water availability and at 5 DADPW under limited water supply conditions, may lead to higher rice yields and WP in sub-humid tarai Mollisols of IGPR and comparable agro-climatic conditions in Indian sub-continent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号