首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hemodynamic effects of high arterial carbon dioxide pressure (PaCO2) during anesthesia in horses were studied. Eight horses were anesthetized with xylazine, guaifenesin, and thiamylal, and were maintained with halothane in oxygen (end-tidal halothane concentration = 1.15%). Baseline data were collected while the horses were breathing spontaneously; then the horses were subjected to intermittent positive-pressure ventilation, and data were collected during normocapnia (PaCO2, 35 to 45 mm of Hg), moderate hypercapnia (PaCO2, 60 to 70 mm of Hg), and severe hypercapnia (PaCO2, 75 to 85 mm of Hg). Hypercapnia was induced by adding carbon dioxide to the inspired gas mixture. Moderate and severe hypercapnia were associated with significant (P less than 0.05) increases in aortic blood pressure, left ventricular systolic pressure, cardiac output, stroke volume, maximal rate of increase and decrease in left ventricular pressure (positive and negative dP/dtmax, respectively), and median arterial blood flow, and decreased time constant for ventricular relaxation. These hemodynamic changes were accompanied by increased plasma epinephrine and norepinephrine concentrations. Administration of the beta-blocking drug, propranolol hydrochloride, markedly depressed the response to hypercapnia. This study confirmed that in horses, hypercapnia is associated with augmentation of cardiovascular function.  相似文献   

2.
The correlation between end-tidal partial pressure of CO2 (PETCO2) and arterial (PaCO2) was determined for spontaneously breathing ponies under halothane or isoflurane anesthesia. The PETCO2 was useful as a trend indicator of PaCO2 during the first 60 minutes of halothane or isoflurane anesthesia when PaCO2 values were less than 60 to 70 mm of Hg. Halothane anesthesia lasting greater than 90 minutes was associated with PaCO2 values in excess of 60 to 70 mm of Hg, a large arterial- to end-tidal PCO2 difference (PaCO2-PETCO2) and a significant increase in alveolar dead space. These effects were not seen during the same period of isoflurane anesthesia. Arterial blood gas analysis is therefore recommended during halothane anesthesia when the PETCO2 is greater than 60 to 70 mm of Hg. A decrease in alveolar capillary perfusion relative to alveolar ventilation is the most likely cause for the increase in alveolar dead space during halothane anesthesia. Based on these findings, isoflurane may be superior to halothane for prolonged anesthesia of spontaneously breathing horses.  相似文献   

3.
The cardiopulmonary effects of eucapnia (arterial CO2 tension [PaCO2] 40.4 +/- 2.9 mm Hg, mean +/- SD), mild hypercapnia (PaCO2, 59.1 +/- 3.5 mm Hg), moderate hypercapnia (PaCO2, 82.6 +/- 4.9 mm Hg), and severe hypercapnia (PaCO2, 110.3 +/- 12.2 mm Hg) were studied in 8 horses during isoflurane anesthesia with volume controlled intermittent positive pressure ventilation (IPPV) and neuromuscular blockade. The sequence of changes in PaCO2 was randomized. Mild hypercapnia produced bradycardia resulting in a significant (P < 0.05) decrease in cardiac index (CI) and oxygen delivery (DO2), while hemoglobin concentration (Hb), the hematocrit (Hct), systolic blood pressure (SBP), mean blood pressure (MBP), systemic vascular resistance (SVR), and venous admixture (QS/QT) increased significantly. Moderate hypercapnia resulted in a significant rise in CI, stroke index (SI), SBP, MBP, mean pulmonary artery pressure (PAP), Hct, Hb, arterial oxygen content (CaO2), mixed venous oxygen content (CvO2), and DO2, with heart rate (HR) staying below eucapnic levels. Severe hypercapnia resulted in a marked rise in HR, CI, SI, SBP, PAP, Hct, Hb, CaO2, CvO2, and DO2. Systemic vascular resistance was significantly decreased, while MBP levels were not different from those during moderate hypercapnia. No cardiac arrhythmias were recorded with any of the ranges of PaCO2. Norepinephrine levels increased progressively with each increase in PaCO2, whereas plasma cortisol levels remained unchanged. It was concluded that hypercapnia in isoflurane-anesthetized horses elicits a biphasic cardiopulmonary response, with mild hypercapnia producing a fall in CI and DO2 despite an increase in MBP, while moderate and severe hypercapnia produce an augmentation of the cardiopulmonary performance and DO2.  相似文献   

4.
Fourteen adult beavers (Castor canadensis) weighing 16.5 +/- 4.14 kg (mean +/- SD) were anesthetized for surgical implantation of radio telemetry devices. Beavers were anesthetized with diazepam (0.1 mg/kg) and ketamine (25 mg/kg) administered IM, which provided smooth anesthetic induction and facilitated tracheal intubation. Anesthesia was maintained with halothane in oxygen via a semiclosed circle anesthetic circuit. Values for heart rate, respiratory rate, esophageal temperature, direct arterial blood pressure, end-tidal halothane concentration, and end-tidal CO2 tension were recorded every 15 minutes during the surgical procedure. Arterial blood samples were collected every 30 minutes to determine pH, PaO2, and PaCO2. Values for plasma bicarbonate, total CO2, and base excess were calculated. Ventilation was spontaneous in 7 beavers and controlled to maintain normocapnia (PaCO2 approx 40 mm of Hg) in 7 others. Vaporizer settings were adjusted to maintain a light surgical plane of anesthesia. Throughout the surgical procedure, all beavers had mean arterial pressure less than 60 mm of Hg and esophageal temperature less than 35 C. Mean values for arterial pH, end-tidal CO2, PaO2, and PaCO2 were significantly (P less than 0.05) different in spontaneously ventilating beavers, compared with those in which ventilation was controlled. Respiratory acidosis during halothane anesthesia was observed in spontaneously ventilating beavers, but not in beavers maintained with controlled ventilation. All beavers recovered unremarkably from anesthesia.  相似文献   

5.
OBJECTIVE: To characterize halothane and sevoflurane anesthesia in spontaneously breathing rats. ANIMALS: 16 healthy male Sprague-Dawley rats. PROCEDURE: 8 rats were anesthetized with halothane and 8 with sevoflurane. Minimum alveolar concentration (MAC) was determined. Variables were recorded at anesthetic concentrations of 0.8, 1.0, 1.25, and 1.5 times the MAC of halothane and 1.0, 1.25, 1.5, and 1.75 times the MAC of sevoflurane. RESULTS: Mean (+/- SEM) MAC for halothane was 1.02 +/- 0.02% and for sevoflurane was 2.99 +/- 0.19%. As sevoflurane dose increased from 1.0 to 1.75 MAC, mean arterial pressure (MAP) decreased from 103.1 +/- 5.3 to 67.9 +/- 4.6 mm Hg, and PaCO2 increased from 58.8 +/- 3.1 to 92.2 +/- 9.2 mm Hg. As halothane dose increased from 0.8 to 1.5 MAC, MAP decreased from 99 +/- 6.2 to 69.8 +/- 4.5 mm Hg, and PaCO2 increased from 59.1 +/- 2.1 to 75.9 +/- 5.2 mm Hg. Respiratory rate decreased in a dose-dependent fashion from 88.5 +/- 4.5 to 58.5 +/- 2.7 breaths/min during halothane anesthesia and from 42.3 +/- 1.8 to 30.5 +/- 4.5 breaths/min during sevoflurane anesthesia. Both groups of rats had an increase in eyelid and pupillary aperture with an increase in anesthetic dose. CONCLUSIONS AND CLINICAL RELEVANCE: An increase in PaCO2 and a decrease in MAP are clinical indicators of an increasing halothane and sevoflurane dose in unstimulated spontaneously breathing rats. Increases in eyelid aperture and pupil diameter are reliable signs of increasing depth of halothane and sevoflurane anesthesia. Decreasing respiratory rate is a clinical indicator of an increasing dose of halothane.  相似文献   

6.
OBJECTIVE: To evaluate a combined transcutaneous carbon dioxide pressure (tcPCO(2)) and pulse oximetry sensor in sheep and dogs. ANIMALS: 13 adult sheep and 11 adult dogs. PROCEDURES: During inhalation anesthesia, for the first 10 minutes following sensor placement, arterial blood gas was analyzed and tcPCO(2) was recorded every 2 minutes. Subsequently, the animals were hyper-, normo-, and hypoventilated. The simultaneously obtained tcPCO(2) and PaCO(2) values were analyzed by use of Bland-Altman statistical analysis. RESULTS: Mean +/- SD overall difference between tcPCO(2) and PaCO(2) 10 minutes after sensor application was 13.3 +/- 8.4 mm Hg in sheep and 8.9 +/- 12 mm Hg in dogs. During hyper-, normo-, and hypoventilation, mean difference (bias) and precision (limits of agreement [bias +/- 2 SD]) between tcPCO(2) and PaCO(2) values were 13.2 +/- 10.4 mm Hg (limits of agreement, -7.1 and 33.5 mm Hg) in sheep and 10.6 +/- 10.5 mm Hg (limits of agreement, -9.9 and 31.2 mm Hg) in dogs, respectively. Changes in PaCO(2) induced by different ventilation settings were detected by the tcPCO(2) sensor with a lag (response) time of 4.9 +/- 3.5 minutes for sheep and 6.2 +/- 3.6 minutes for dogs. CONCLUSIONS AND CLINICAL RELEVANCE: The tcPCO(2) sensor overestimated PaCO(2) in sheep and dogs and followed changes in PaCO(2) with a considerable lag time. The tcPCO(2) sensor might be useful for noninvasive monitoring of changes but cannot be used as a surrogate measure for PaCO(2).  相似文献   

7.
OBJECTIVE: To determine whether end-tidal partial pressure of carbon dioxide (PETCO2) correlated with PaCO2 in isoflurane-anesthetized African grey parrots receiving intermittent positive pressure ventilation (IPPV). DESIGN: Prospective study. ANIMALS: 14 healthy mature African grey parrots (Psittacus erithacus timnus). PROCEDURE: Each bird was anesthetized via mask with isoflurane, intubated, and connected to a pressure-limited intermittent-flow ventilator. Respiratory rate was altered while holding peak inspiratory pressure constant (5 cm H2O) to achieve a PETCO2 in 1 of 3 ranges: < 30 mm Hg, 30 to 40 mm Hg, and > 40 mm Hg. Blood was collected from the superficial ulnar artery of each bird at least once during each of the 3 ranges. Arterial blood samples were collected for blood gas analysis while PETCO2 was recorded simultaneously. RESULTS: A strong correlation between PETCO2 and PaCO2 was detected over a wide range of partial pressures, although PETCO2 consistently overestimated PaCO2 by approximately 5 mm Hg. End-tidal partial pressure of CO2 and PaCO2 also correlated well with arterial blood pH, and the acute response of the bicarbonate buffer system to changes in ventilation was similar to that of mammals. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that PETCO2 reliably estimates PaCO2 in isoflurane-anesthetized African grey parrots receiving IPPV and suggest that IPPV combined with capnography is a viable option for anesthetic maintenance in avian anesthesia.  相似文献   

8.
OBJECTIVE: To compare the ability of a sidestream capnograph and a mainstream capnograph to measure end-tidal CO2 (ETCO2) and provide accurate estimates of PaCO2 in mechanically ventilated dogs. DESIGN: Randomized, double Latin square. ANIMALS: 6 healthy adult dogs. PROCEDURE: Anesthesia was induced and neuromuscular blockade achieved by IV administration of pancuronium bromide. Mechanical ventilation was used to induce conditions of standard ventilation, hyperventilation, and hypoventilation. While tidal volume was held constant, changes in minute volume ventilation and PaCO2 were made by changing the respiratory rate. Arterial blood gas analysis was performed and ETCO2 measurements were obtained by use of either a mainstream or a sidestream capnographic analyzer. RESULTS: A linear regression model and bias analysis were used to compare PaCO2 and ETCO2 measurements; ETCO2 measurements obtained by both capnographs correlated well with PaCO2. Compared with PaCO2, mainstream ETCO2 values differed by 3.15 +/- 4.89 mm Hg (mean bias +/- SD), whereas the bias observed with the sidestream ETCO2 system was significantly higher (5.65 +/- 5.57 mm Hg). Regardless of the device used to measure ETCO2, bias increased as PaCO2 exceeded 60 mm Hg. CONCLUSIONS AND CLINICAL RELEVANCE: RelevancehAlthough the mainstream cas slightly more accurate, both methods of ETCO2 measurement correlated well with PaCO2 and reflected changes in the ventilatory status. However, ETCO2 values > 45 mm Hg may inaccurately reflect the severity of hypoventilation as PaCO2 may be underestimated during conditions of hypercapnia (PaCO2 > 60 mm Hg).  相似文献   

9.
The relationship between end-tidal partial pressure of carbon dioxide (PETCO2), arterial partial pressure of carbon dioxide (PaCO2), and blood pH in isoflurane-anesthetized raptors was evaluated. PaCO2 and pH were determined in serial arterial samples from isoflurane anesthetized birds and compared with concurrent end-tidal partial pressure of carbon dioxide measured with a Microstream sidestream capnograph. Forty-eight paired samples, taken from 11 birds of prey (weighing 416-2,062 g), were used to determine correlations coefficients between PaCO2 and PETCO2, and between PETCO2 and pH. Limits of agreement between PaCO2 and PETCO2 also were calculated. Strong correlations were observed between PaCO2 and PETCO2 (r = 0.94; P < 0.0001) as well as between PETCO2 and pH (r = -0.90; P < 0.0001). However, the level of agreement between PaCO2 and PETCO2 varied considerably. Low values of PETCO2, ranging from 18 to 29 mm Hg, exceeded the concomitantly measured values of PaCO2 by an average of 6.0 mm Hg (6.0 +/- 1.9 mm Hg; mean +/- SD). Conversely, high values of PETCO2, ranging from 50 to 63 mm Hg, were on average 7.6 mm Hg (7.6 +/- 9.8 mm Hg) lower than values of PaCO2. In the 30 to 49 mm Hg range for PETCO2, the difference between PETCO2 and PaCO2 was on average 1.0 mm Hg (1.0 +/- 8.5 mm Hg). These results suggest that the capnograph used provided a sufficiently accurate estimation of arterial partial pressure of carbon dioxide for birds weighing > 400 g and receiving manual positive ventilation with a Bain system. In our study, the linear relationship observed between the pH and the end-tidal partial pressure of carbon dioxide suggested that the monitoring of end-tidal partial pressure of carbon dioxide also can be useful to prevent respiratory acidosis.  相似文献   

10.
OBJECTIVE: To evaluate the relationship between end-tidal partial pressure of CO(2) (ETCO(2)) and PaCO(2) in isoflurane-anesthetized harp seals. ANIMALS: Three 5-month-old 25- to 47-kg harp seals (Phoca groenlandica). PROCEDURES: PaCO(2) was determined in serial arterial samples from isoflurane-anesthetized seals and compared with concomitant ETCO(2) measured with a side-stream microstream capnograph. Twenty-four paired samples were subjected to linear regression analysis and the Bland-Altman method for assessment of clinical suitability of the 2 methods (ie, PaCO(2) and ETCO(2) determinations). The influence of ventilation rate per minute (VR) on the ETCO(2) to PaCO(2) difference (P[ET-a] CO(2)) was examined graphically. RESULTS: The correlation coefficient between the 2 measurements was 0.94. The level of agreement between ETCO(2) and PaCO(2) varied considerably. Values of ETCO(2) obtained with a VR of < 5 underestimated PaCO(2) to a greater degree (mean bias, -4.01 mm Hg) and had wider limits of agreement of -13.10 to 5.07 mm Hg (-4.01 mm Hg +/- 1.96 SD), compared with a VR of > or = 5 (mean bias, -2.24 mm Hg; limits of agreement, -7.79 to 3.30 mm Hg). CONCLUSIONS AND CLINICAL RELEVANCE: These results indicate that a microstream sidestream capnograph provides a noninvasive, sufficiently accurate estimation of PaCO(2) with intermittent positive ventilation at a VR > or = 5 in anesthetized harp seals.  相似文献   

11.
OBJECTIVE: To characterize variables used to monitor rabbits during inhalation anesthesia. ANIMALS: 8 male New Zealand White rabbits. PROCEDURE: Rabbits were similarly anesthetized with halothane (HAL) or isoflurane (ISO) in a crossover study; half received HAL followed by ISO, and the protocol was reversed for the remaining rabbits. After induction, minimum alveolar concentration (MAC) was determined for each agent, using the tail-clamp method, and variables were recorded at 0.8, 1.0, 1.5, and 2.0 MAC (order randomized). RESULTS: Mean +/- SEM MAC was 1.42 +/- 0.05 and 2.07 +/- 0.09% for HAL and ISO, respectively. Directly measured auricular mean arterial blood pressure was 52.8 +/- 5.6 and 54.8 +/- 6.1 mm Hg at 0.8 MAC for HAL and ISO, respectively, and decreased from these values in a parallel dose-dependent manner. Respiratory frequency remained constant (range, 69 to 78 breaths/min) over the range of HAL doses but incrementally decreased from a mean of 53 (at 0.8 MAC) to 32 breaths/min (at 2.0 MAC) for ISO. The PaCO2 was similar at 0.8 MAC for HAL and ISO and progressively increased with increasing doses of both agents; PaCO2 at 2.0 MAC for ISO was significantly greater than that at 2.0 MAC for HAL (79.8 +/- 13.7 vs 54.9 +/- 4.0 mm Hg, respectively). Eyelid aperture consistently increased in a dose-dependent manner for both anesthetics. CONCLUSIONS: Arterial blood pressure, PaCO2, and eyelid aperture consistently and predictably changed in rabbits in response to changes in anesthetic doses. The magnitude of respiratory depression was greater for ISO than for HAL.  相似文献   

12.
OBJECTIVE: To determine the disposition of lidocaine after IV infusion in anesthetized horses undergoing exploratory laparotomy because of gastrointestinal tract disease. ANIMALS: 11 horses (mean +/- SD, 10.3 +/- 7.4 years; 526 +/- 40 kg). PROCEDURE: Lidocaine hydrochloride (loading infusion, 1.3 mg/kg during a 15-minute period [87.5 microg/kg/min]; maintenance infusion, 50 microg/kg/min for 60 to 90 minutes) was administered IV to dorsally recumbent anesthetized horses. Blood samples were collected before and at fixed time points during and after lidocaine infusion for analysis of serum drug concentrations by use of liquid chromatography-mass spectrometry. Serum lidocaine concentrations were evaluated by use of standard noncompartmental analysis. Selected cardiopulmonary variables, including heart rate (HR), mean arterial pressure (MAP), arterial pH, PaCO2, and PaO2, were recorded. Recovery quality was assessed and recorded. RESULTS: Serum lidocaine concentrations paralleled administration, increasing rapidly with the initiation of the loading infusion and decreasing rapidly following discontinuation of the maintenance infusion. Mean +/- SD volume of distribution at steady state, total body clearance, and terminal half-life were 0.70 +/- 0.39 L/kg, 25 +/- 3 mL/kg/min, and 65 +/- 33 minutes, respectively. Cardiopulmonary variables were within reference ranges for horses anesthetized with inhalation anesthetics. Mean HR ranged from 36 +/- 1 beats/min to 43 +/- 9 beats/min, and mean MAP ranged from 74 +/- 18 mm Hg to 89 +/- 10 mm Hg. Recovery quality ranged from poor to excellent. CONCLUSIONS AND CLINICAL RELEVANCE: Availability of pharmacokinetic data for horses with gastrointestinal tract disease will facilitate appropriate clinical dosing of lidocaine.  相似文献   

13.
Sixteen 3- to 5-year-old African elephants were anesthetized one or more times for a total of 27 diagnostic and surgical procedures. Xylazine (0.1 +/- 0.04 mg/kg of body weight, mean +/- SD) and ketamine (0.6 +/- 0.13 mg/kg) administered IM induced good chemical restraint in standing juvenile elephants during a 45-minute transport period before administration of general anesthesia. After IM or IV administration of etorphine (1.9 +/- 0.56 micrograms/kg), the mean time to lateral recumbency was 20 +/- 6.6 and 3 +/- 0.0 minutes, respectively. The mean heart rate, systolic blood pressure, and respiration rate during all procedures was 50 +/- 12 beats/min, 106 +/- 19 mm of Hg, and 10 +/- 3 breaths/min, respectively. Cardiac arrhythmias were detected during 2 procedures. One elephant with hypotension responded to a decrease in the concentration of halothane and IV infusion of dobutamine HCl. Alterations in systolic blood pressure, ear flapping, and trunk muscle tone were useful for monitoring depth of anesthesia. Results indicated that halothane in oxygen was effective for maintenance of surgical anesthesia in juvenile African elephants after induction with etorphine.  相似文献   

14.
The correlation between end-tidal partial pressure of CO2 (PETCO2) and arterial PCO2 (PaCO2) was studied in six halothane-anesthetized dogs maintained under four different ventilatory regimens: (A) spontaneous breathing; (B) assisted positive-pressure ventilation; (C) intermittent manual inflation; and (D) ventilator-controlled breathing. For procedures A, B, and D together, there was a strong correlation between PETCO2 and PaCO2 (r = 0.8) that was highly significant at P less than 0.0001 for PETCO2 values between 31.3 and 61 mm of Hg. In spontaneous and controlled breathing, PETCO2 is representative of PaCO2 and provides a useful noninvasive tool for monitoring the patient maintained under general anesthesia. Furthermore, data suggest that any ventilatory support of the anesthetized patient markedly improves blood gas and acid-base status compared with that of the unsupported, spontaneously breathing animal.  相似文献   

15.
Arterial blood was collected from 25 clinically normal horses immediately before and serially throughout the first hour of halothane oxygen anaesthesia. Blood was analysed for oxygen and carbon dioxide partial pressure (PaO2, PaCO2). Measurements of inspired oxygen concentration during anaesthesia permitted direct correlation with blood gases. Horses were divided arbitrarily into two groups based on their age: two to seven years, n = 15; over seven years, n = 10. Average (+/- sd) PaO2 and PaCO2 was 14.1 +/- 1.5 kPa (106 +/- 11 mmHg) and 5.9 +/- 0.6 kPa (44.4 +/- 4.4 mmHg) respectively in conscious, young horses and 14.0 +/- 0.7 and 5.8 +/- 0.5 kPa (105 +/- 5 and 43.3 +/- 3.8 mmHg) respectively in conscious older horses. Arterial oxygen tension decreased to 9.3 +/- 1.0 and 8.5 +/- 1.4 kPa (69.6 +/- 7.8 and 63.7 +/- 10.4 mmHg) in young and older air breathing horses respectively immediately following intravenous anaesthetic induction, recumbency and orotracheal intubation. At this time, PaCO2 was 6.5 +/- 0.5 and 6.0 +/- 0.7 kPa (48.7 +/- 3.5 and 45.1 +/- 4.9 mmHg) respectively. By 30 mins after the start of halothane in oxygen (6 litres/min) anaesthesia PaO2 increased to a maximum in both study groups. Arterial PCO2 increased steadily during anaesthesia and 60 mins after induction PaCO2 was 10.5 +/- 2.4 kPa (78.5 +/- 17.8 mmHg) in the younger horses and 9.2 +/- 1.6 kPa (68.8 +/- 11.8 mmHg) in the older horses. During inhalation anaesthesia PaO2 tended to be greater at comparable time periods in the younger horses despite a slightly greater degree of hypoventilation.  相似文献   

16.
Despite numerous benefits of laparoscopic procedures, the serious hypercapnia and respiratory acidosis in hypercapnic patients with decreased pulmonary compliance during carbon dioxide-induced pneumoperitoneum (CDP) may be developed. Tracheal gas insufflation (TGI) has been shown to be a useful adjunct to controlled mechanical hypoventilation. This study was undertaken to identify whether TGI superimposed on controlled mechanical ventilation (CMV) improve ventilatory efficiency during CDP in rabbits. Sixteen paralyzed and anesthetized rabbits were used. The animals were assigned to two groups-CMV group: CMV alone; TGI group: CMV superimposed by TGI with flow rate of 2L/min. The animals were insufflated to intra-abdominal pressure of 8 mmHg with CO2 gas. Then, tidal volume (V(T)) was changed to maintain the set peak inspiratory pressure (PIP) value, while other ventilatory settings were kept constant. The set PIP value corresponding to 30, 60, and 90 min after the start of peritoneal insufflation of CO2 were 15, 22, and 25 cm H2O, respectively. During CDP with TGI, PaCO2 decreased significantly (p<0.01) from CMV without TGI of 82.1 +/- 14.1 to 47.5 +/- 5.5, 58.1 +/- 9.9 to 40.0 +/- 4.6, 47.1 +/- 9.4 to 32.7 +/- 5.1 mmHg at PIP of 15, 22, and 25 cm H2O, respectively. The inspired V(T) decreased significantly (p<0.05) from CMV without TGI of 18.4 +/- 3.9 to 12.8 +/- 2.8 ml at PIP of 15 cm H2O. TGI superimposed on CMV is more effective than CMV alone in enhancing ventilatory efficiency during CDP in rabbits.  相似文献   

17.
OBJECTIVE: To determine whether a laryngeal mask airway (LMA) provides a better airway than a facemask in spontaneously breathing anesthetized rabbits, and to test if it can be used for mechanically controlled ventilation. STUDY DESIGN: Randomized prospective experimental trial. ANIMALS: Sixteen young, healthy, specific pathogen-free Giant Flemish cross Chinchilla rabbits (10 females and 6 males) weighing 4.1 +/- 0.8 kg. METHODS: Rabbits were assigned randomly to one of three treatment groups: facemask with spontaneous ventilation (FM-SV; n = 5), LMA with spontaneous ventilation (LMA-SV; n = 5), and LMA with controlled ventilation (LMA-CV; n = 6). In dorsal recumbency, and at 2.3% end-tidal isoflurane concentration, Fé isoflurane, Fi isoflurane, partial pressure of expired isoflurane (PECO(2)), partial pressure of inspired carbon dioxide (PiCO(2)), heart rate, respiratory rate, minute volume, arterial oxygen tensions (PaO(2)), arterial carbon dioxide tensions (PaCO(2)), arterial pH (pH(a)), arterial standard base excess (SBE(a)) values were measured for 120 minutes. Results Two individuals in the FM-SV group had PaCO(2) > 100 mm Hg. One rabbit in the FM-SV had PaO(2) < 80 mm Hg. All FM-SV rabbits showed signs of airway obstruction, and two were withdrawn from the study at 45 and 90 minutes, respectively, because cyanosis was observed. No signs of airway obstruction were observed in either LMA group. Four rabbits in the LMA-CV group developed gastric tympanism, one of which refluxed gastric contents after 110 minutes. There were no differences between FM-SV and LMA-SV in any variable tested. PaCO(2) and PECO(2) were decreased, while PaO(2) and minute volume were increased in the LMA-CV group compared to the LMA-SV group. CONCLUSIONS: An LMA provided a better airway than a facemask during spontaneous breathing in rabbits, as the use of a facemask was associated with hypercapnia and low partial pressures of oxygen. Although an LMA can be used for intermittent positive pressure ventilation (IPPV), gastric tympanism may develop, especially at a peak inspiratory pressure of 14 cm H(2)O. CLINICAL RELEVANCE: The LMA can be used in rabbits but further work is needed before it is applied routinely.  相似文献   

18.
Arterial hypertension developed in a horse anesthetized for arthroscopy and lavage of an inflamed right carpal joint. Anesthesia was induced with xylazine HCl, butorphanol, guaifenesin, and thiamylal Na and was maintained with halothane in oxygen. Arterial hypertension and tachycardia developed within 15 minutes after a pneumatic tourniquet was placed 8 to 10 cm proximal to the right carpus and inflated to 800 mm of Hg. The surgical procedure was expedited, halothane was discontinued and anesthesia was maintained with guaifenesin to facilitate bandaging. Heart rate decreased from 72 to 42 beats/min after the tourniquet cuff was deflated. Mean arterial pressure decreased from 260 mm of Hg to 128 mm of Hg. Differential diagnosis for a rapidly increasing arterial pressure during halothane anesthesia include inadequate plane of anesthesia, signs of pain, hypercapnia, hypoxemia, and/or hyperthermia.  相似文献   

19.
Cardiovascular and respiratory responses to variable PaO2 were measured in 6 horses anesthetized only with halothane during spontaneous (SV) and controlled (CV) ventilation. The minimal alveolar concentration (MAC) for halothane in oxygen was determined in each spontaneously breathing horse prior to establishing PaO2 study conditions--mean +/- SEM, 0.95 +/- 0.03 vol%. The PaO2 conditions of > 250, 120, 80, and 50 mm of Hg were studied in each horse anesthetized at 1.2 MAC of halothane and positioned in left lateral recumbency. In response to a decrease in PaO2, total peripheral resistance and systolic and diastolic arterial blood pressure decreased (P < 0.05) during SV. Cardiac output tended to increase because heart rate increased (P < 0.05) during these same conditions. During CV, cardiovascular function was usually less than it was at comparable PaO2 during SV (P < 0.05). Heart rate, cardiac output, and left ventricular work increased (P < 0.05) in response to a decrease in PaO2, whereas total peripheral resistance decreased (P < 0.05). During SV, cardiac output and stroke volume increased and arterial blood pressure and total peripheral resistance decreased with duration of anesthesia at PaO2 > 250 mm of Hg. During SV, minute expired volume increased (P < 0.05) because respiratory frequency tended to increase as PaO2 decreased. Decrease in PaCO2 (P < 0.05) also accompanied these respiratory changes. Although oxygen utilization was nearly constant over all treatment periods, oxygen delivery decreased (P < 0.05) with decrease in PaO2, and was less (P < 0.05) during CV, compared with SV, for comparable PaO2 values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Anesthesia of equids is associated with pulmonary dysfunction. Cardiovascular and respiratory effects of inhalation anesthetic agents and duration of anesthesia have been studied, using oxygen as the carrier gas. To our knowledge, the effects of inspired oxygen have not been determined. We studied the cardiovascular and respiratory effects of 2 inspired oxygen fractions (0.30 and greater than 0.85) in 5 laterally recumbent, halothane-anesthetized horses. Mean systemic arterial blood pressure, cardiac output, central venous pressure, pulmonary arterial pressure, arterial pH, and arterial base excess were similar in horses of the 2 groups during 4 hours of anesthesia at constant end-tidal halothane concentration. End-tidal partial pressure of CO2, arterial partial pressure of CO2 and O2, and alveolar-to-arterial O2 tension difference were greater in horses exposed to the higher oxygen concentration. On the basis of the data obtained, we suggest that greater hypoventilation and ventilation/perfusion mismatch occur when horses are breathing high-oxygen fraction. Arterial partial pressure of O2 was not different between the 2 groups of horses after they were disconnected from the anesthesia circuit and allowed to breathe room air. Horses recovered from anesthesia without complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号