首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological communities differ over time and in space, and in the forest these communities often vary according to trees and tree gaps, mediated by mechanisms that are likely to change over time and as a tree are removed. In this paper we ask the questions: What is the influence of individual trees on soil microbial community structure? Does the soil microbial community change in the short-term when a tree is removed, and does this change depend on the initial influence of the tree? We use phospholipid fatty acid (PLFA) analysis and a geostatistical approach to study effects of trees and tree removal (thinning) on soil microbial community structure in a young boreal Norway spruce (Picea abies) forest. An experiment was setup where half (four) of the included trees were cut and soil was collected prior to (t0) and one month after (t1) tree felling. The samples were collected along two perpendicular transects originating from each of the eight study trees. A tree influence index was calculated for each sample point from the distances to neighbouring trees, weighted by tree diameter. We found that individual trees are important in structuring the soil microbial community as microbial community structure responded to the gradient in tree influence. Also strong spatial structure was found corresponding to the patch structure induced by trees. Changes in microbial community structure before and after tree felling (t0 and t1) was found to differ significantly between felled and non-felled trees: samples from felled trees came to resemble samples with a low value of tree influence and samples from below non-felled trees came to resemble samples with a high value for tree influence. We thus found that soil microbial community structure in a boreal forest is spatially structured by the distribution of single trees, and that soil microbial community structure varies seasonally and is affected by tree removal, in an intricate manner that reflects the initial influence of trees.  相似文献   

2.
酸化土壤中微生物多样性降低是土壤养分减少、土传病害高发、作物产量和品质降低的重要原因。施用碱性土壤改良剂是改善酸化土壤理化特性、减少土传病害发生、提高作物产量的有效手段。为了明确不同碱性土壤改良剂对土壤微生物群落结构及多样性的影响,通过盆栽试验比较施用生石灰(S1)及氨基酸生态肥(S2)和黄腐酸水溶肥(S3)对酸化土壤微生物群落结构的改良效果。结果表明,施用3种土壤改良剂后土壤细菌丰富度和多样性均降低,而真菌群落物种丰富度没有显著变化。改良后土壤的主导菌门与改良前相同,而主导菌属存在较大差异。Iamia、Peroneutypa为S1处理特有主导菌属,节核细菌属(Arthrobacter)、德巴利酵母属(Debaryomyces)、Paraphaeosphaeria为S2处理特有主导菌属。根霉菌属(Rhizopus)、裂褶菌属(Schizophyllum)为S3处理特有主导菌属。各改良土壤中,S1处理对细菌的筛选作用最强,S2处理对真菌群落的影响最大,而S3处理相对丰度增加的菌属最多。3种土壤改良剂均能够抑制有害土壤微生物的生长和定殖,但抑制机制可能存在差异。综上所述,3种土壤改良剂均能...  相似文献   

3.
The effects of soil structure and microbial community composition on microbial resistance and resilience to stress were found to be interrelated in a series of experiments. The initial ability of Pseudomonas fluorescens to decompose added plant residues immediately after a copper or heat stress (resistance) depended significantly on which of 26 sterile soils it was inoculated into. Subsequent studies showed that both the resistance and subsequent recovery in the ability of P. fluorescens to decompose added plant residues over 28 days after stress (resilience) varied significantly between a sandy and a clay-loam soil. Sterile, sandy and clay-loam soil was then inoculated with a complex microbial community extracted from either of the soils. The resulting microbial community structure depended on soil type rather than the source of inoculum, whilst the resistance and resilience of decomposition was similarly governed by the soil and not the inoculum source. Resilience of the clay-loam soil to heat stress did not depend on the water content of the soil at the time of stress, although the physical condition of the soil when decomposition was measured did affect the outcome. We propose that soil functional resilience is governed by the physico-chemical structure of the soil through its effect on microbial community composition and microbial physiology.  相似文献   

4.
Soil and rhizosphere microbial communities in agroecosystems may be affected by soil, climate, plant species, and management. The management and environmental factors controlling microbial biomass and community structure were identified in a three-year field experiment. The experiment consisted of a tomato production agroecosystem with the following nine treatments: bare soil, black polyethylene mulch, white polyethylene mulch, vetch cover crop, vetch roots only, vetch shoots only, rye cover crop, rye roots only, and rye shoots only. The following hypotheses were tested: (1) Temperature and moisture differences between polyethylene-covered and cover-cropped treatments are partly responsible for treatment effects on soil microbial community composition, and (2) Different species of cover crops have unique root and shoot effects on soil microbial community composition. Microbial biomass and community composition were measured by phospholipid fatty acid analysis. Microbial biomass was increased by all cover crop treatments, including root only and shoot only. Cover cropping increased the absolute amount of all microbial groups, but Gram-positive bacteria decreased in proportion under cover crops. We attribute this decrease to increased readily available carbon under cover-cropped treatments, which favored other groups over Gram-positive bacteria. Higher soil temperatures under certain treatments also increased the proportion of Gram-positive bacteria. Vetch shoots increased the amount and proportion of Gram-negative bacteria, fungi, and arbuscular mycorrhizal fungi in the rhizosphere of tomato plants. The imposed treatments were much more significant than soil temperature, moisture, pH, and texture in controlling microbial biomass and community structure.  相似文献   

5.
The herbicide, glyphosate [N-(phosphonomethyl) glycine] is extensively used worldwide. Long-term use of glyphosate can cause micronutrient deficiency but little is known about potassium (K) interactions with glyphosate. The repeated use of glyphosate may create a selection pressure in soil microbial communities that could affect the nutrient dynamics such as K. The objective of this study was to determine the effect of single or repeated glyphosate applications on microbial and K properties of soils. A 54 day incubation study (Exp I) had a 3 × 5 factorial design with 3 soils (silt loam: fine, illitic, mesic Aeric Epiaqualf) of similar physical and chemical characteristics, that varied in long-term glyphosate applications (no, low, and high glyphosate field treatments) and five glyphosate rates (0, 0.5×, 1×, 2×, and 3× recommended field rates applied once at time zero). A second 6 month incubation study (Exp II) had a 3 × 3 factorial design with three soils (as described above) and three rates of glyphosate (0, 1×, and 2× recommended field application rates applied monthly). For each study microbial properties [respiration; community structure measured by ester linked fatty acid methyl ester (EL-FAME) analysis and microbial biomass K] and K fractions (exchangeable and non-exchangeable) were measured periodically. For Exp I, glyphosate significantly increased microbial respiration that was closely related to glyphosate application rate, most notably in soils with a history of receiving glyphosate. For Exp II, there was no significant effect of repeated glyphosate application on soil microbial structure (EL-FAME) or biomass K. We conclude that glyphosate: (1) stimulates microbial respiration particularly on soils with a history of glyphosate application; (2) has no significant effect on functional diversity (EL-FAME) or microbial biomass K; and (3) does not reduce the exchangeable K (putatively available to plants) or affect non-exchangeable K. The respiration response in soils with a long-term glyphosate response would suggest there was a shift in the microbial community that could readily degrade glyphosate but this shift was not detected by EL-FAME.  相似文献   

6.
Soil pore structure exerts a profound influence on distribution of moisture, O2 and micro-organisms, thereby potentially controlling organic matter (OM) decomposition in soils. Although pore space is the habitat for soil micro-organisms and the actual location of soil biochemical processes, to date, very few studies looked into this relation mainly because of practical constraints. New experimental designs need to be developed which allow specific investigations of the relation between soil pore network structure, the microbial community and OM decomposition. We therefore subjected a sandy loam soil to a number of artificial manipulations namely i) compaction, ii) artificial change in particle size distribution, iii) addition of different substrates and iv) change in soil pH to manipulate soil pore structure and the decomposer community for use in lab incubation set-ups. Moisture retention data showed that compaction and artificial change in particle size distribution decreased volumes of large (9–300 μm) and small (<0.2 and 3–9 μm) pore size classes, respectively. PLFA signature analysis showed that acidification promoted fungi, while an effect of application of either sawdust or grass on the decomposer community was smaller. Acidification significantly reduced C mineralization and microbial biomass C. Surprisingly, the largest shift in microbial community (with promotion of fungi and protozoa relative to bacteria) over all treatments was observed in the treatments with artificially changed particle size distribution. We conclude that it is possible to ‘tailor’ soil pore structure and the decomposer community in soil mesocosm incubation experiments by such manipulations. However, non-targeted effects on microbial community structure, microbial biomass and gross C mineralization seem unavoidable.  相似文献   

7.
A greenhouse pot experiment was conducted to investigate the influence of soil moisture content and plant species on soil microbial community structure using cultivation-independent methods. White clover and ryegrass were grown individually or in a mixture. Plants were subjected to soil moisture content corresponding to 60% field capacity (FC) and 80% FC. Total plant biomass of white clover and ryegrass increased with increasing soil moisture contents. At a given soil moisture content, total biomass of white clover was lower in the ryegrass–clover (RC) mixture compared with those grown individually, while total biomass of ryegrass was higher. Microbial community structure assessed by phospholipid fatty acid analysis (PLFA) was more affected by plant species than soil moisture. Community level physiological profiles (CLPP), in terms of diversity of substrate utilization and average well colour development (AWCD) were affected by plant species and soil moisture. Soil moisture effects were more pronounced in clover than in ryegrass. AWCD and diversity of substrate utilization in the ryegrass–clover mix were similar to those of sole clover while they differed from that of ryegrass suggesting a dominant effect of clover in the mix.  相似文献   

8.
Biolog, 16S rRNA gene denaturing gradient gel electrophoresis (DGGE), and phospholipid fatty acid (PLFA) analyses were used to assess soil microbial community characteristics in a chronosequence of tea garden systems (8-, 50-, and 90- year-old tea gardens), an adjacent wasteland, and a 90-year-old forest. Biolog analysis showed that the average well color development (AWCD) of all carbon sources and the functional diversity based on the Shannon index decreased (P 〈 0.05) in the following order: wasteland 〉 forest 〉 tea garden. For the DCCE analysis, the genetic diversity based on the Shannon index was significantly lower in the tea garden soils than in the wasteland. However, compared to the 90-year-old forest, the tea garden soils showed significantly higher genetic diversity. PLFA analysis showed that the ratio of Gram positive bacteria to Cram negative bacteria was significantly higher in the tea garden soils than in the wasteland, and the highest value was found in the 90-year-old forest. Both the fungal PLFA and the ratio of fungi to bacteria were significantly higher in the three tea garden soils than in the wasteland and forest, indicating that fungal PLFA was significantly affected by land-use change. Based on cluster analysis of the soil microbial community structure, all three analytical methods showed that land-use change had a greater effect on soil microbial community structure than tea garden age.  相似文献   

9.
Using a scheme of agricultural fields with progressively less intensive management (deintensification), different management practices in six agroecosystems located near Goldsboro, NC, USA were tested in a large-scale experiment, including two cash-grain cropping systems employing either tillage (CT) or no-tillage (NT), an organic farming system (OR), an integrated cropping system with animals (IN), a successional field (SU), and a plantation woodlot (WO). Microbial phospholipid fatty acid (PLFA) profiles and substrate utilization patterns (BIOLOG ECO plates) were measured to examine the effects of deintensification on the structure and diversity of soil microbial communities. Principle component analyses of PLFA and BIOLOG data showed that the microbial community structure diverged among the soils of the six systems.Lower microbial diversity was found in lowly managed ecosystem than that in intensive and moderately managed agroecosystems, and both fungal contribution to the total identified PLFAs and the ratio of microbial biomass C/N increased along with agricultural deintensification. Significantly higher ratios of C/N (P 〈 0.05) were found in the WO and SU systems, and for fungal/bacterial PLFAs in the WO system (P 〈 0.05). There were also significant decreases (P 〈 0.05) along with agricultural deintensification for contributions of total bacterial and gram positive (G+) bacterial PLFAs.Agricultural deintensification could facilitate the development of microbial communities that favor soil fungi over bacteria.  相似文献   

10.
11.
为明确菜-菌轮作模式对土壤微生物的影响,基于高通量测序技术,对4种轮作模式下的土壤微生物群落结构与多样性进行了研究,结果显示:不同轮作模式下土壤样品中真菌和细菌OUT总数分别是2298和15840条,相较于常规轮作模式A,菜-菌轮作模式B、C、D下真菌的OUT总数、ACE指数、Chao1指数、Shannon指数降低显著,Simpson指数增加明显,但细菌的各参数没有显著的差异;其土壤全氮、碱解氮、速效钾、有机质含量显著高于常规轮作模式A;真菌的优势群落是子囊菌门,相对丰度在66%以上,枝孢属、镰刀菌属两类致病菌群的丰度在菜-菌轮作模式B、C、D中降低明显;细菌的优势群落是变形菌门、放线菌门、绿弯菌门以及酸杆菌门,鞘氨醇单胞菌属、伯克霍尔德氏菌属丰度在菜-菌轮作模式B、C、D中显著提高;聚类分析表明菜-菌轮作模式C、D下微生物群落结构相似度最高,常规轮作模式A可划分为区别于菜-菌轮作模式B、C、D的单独类群。综上所述,菜-菌轮作可降低真菌群落丰度,改变土壤微生物群落的结构组成,同时提高土壤中有益菌群的丰度,降低有害菌群的丰度。  相似文献   

12.
长期不同施肥条件下红壤性水稻土微生物群落结构的变化   总被引:10,自引:2,他引:10  
以位于江西省红壤研究所内长期定位试验的水稻土(始于1981年)为研究对象,运用磷脂脂肪酸(phospholipid fatty acid,PLFA)和BIOLOG分析技术研究了不施肥(CK)、单施化肥(NPK)及有机肥与化肥混施(NPKM)三种施肥方式对土壤微生物群落结构的影响。结果表明:长期施化肥和有机肥与化肥混施处理的PLFA总量均高于未施肥处理,两者分别较未施肥处理高91%和309%;PLFA主成分分析(PCA)显示施肥促进了土壤微生物群落结构的变化,其中NPKM处理增加了革兰氏阴性细菌(G-细菌)、真菌、放线菌和原生动物的数量,NPK处理增加了革兰氏阳性细菌(G+细菌)的数量,不施肥处理较施肥处理提高了真菌/细菌比例,CK和NPK处理的微生物群落结构更为相似;各施肥处理间土壤的AWCD值(平均每孔颜色变化率,average well color development,AWCD)表明,NPKM处理能够促进土壤微生物群落对碳源的利用能力,进而增加土壤中微生物的整体活性,而NPK处理减弱了土壤微生物的活性。代谢功能多样性分析同时表明,NPKM处理增加了微生物群落的多样性,而NPK处理使土壤微生物的多样性降低;土壤PLFA与土壤养分的相关性分析显示,土壤总PLFA量与土壤有机质和全氮呈极显著相关(p0.01),与速效养分相关性不大。  相似文献   

13.
Soil microorganisms are critical to carbon and nutrient fluxes in terrestrial ecosystems. Understanding the annual pattern of soil microbial community structure and how it corresponds to soil nutrient availability and plant production is a fundamental first step towards being able to predict impacts of environmental change on ecosystem functioning. We investigated the composition, structure and nutrient stoichiometry of the soil microbial community in mesic arctic tundra on 9 sample dates in 6 months from winter to fall using phospholipid fatty acid analysis (PLFA), quantitative polymerase chain reaction (qPCR), epifluorescent microscopy and chloroform-fumigation–extraction (CFE). PLFA analysis indicates that the winter microbial community was fungal-dominated, cold-adapted and associated with high C, N and P in the soil solution and microbial biomass. The microscopy data suggest that both bacteria and fungi were active and growing in soils between −5 °C and 0 °C. A significant shift occurred in the PLFA data, qPCR patterns, microscopy and microbial biogeochemistry after the thaw period, resulting in a distinct community that persisted through our spring, summer and fall sample dates, despite large changes in plant productivity. This shift was characterised by increasing relative abundances of certain bacteria (especially Gram +ves) as well as a decline in fungal biomass, and corresponded with decreasing C, N and P in the soil solution. The summer period of low substrate availability (plant–microbe competition) was associated with microbial indicators of nutritional stress. Overall, our results indicate that tundra microbial communities are clearly differentiated according to the changes in soil nutrient status and environmental conditions that occur between winter and post-thaw, and that those changes reflect functionally important adaptations to those conditions.  相似文献   

14.
不同培肥方式对土壤有机碳与微生物群落结构的影响   总被引:3,自引:1,他引:3  
为揭示旱作区耕地土壤有机碳累积规律及其与土壤微生物群落间的相互作用机制,试验采用磷脂脂肪酸(PLFA)指纹图谱及土壤腐殖质形态分组的方法,通过田间定位试验,研究了马铃薯-马铃薯-油用向日葵-马铃薯-油用向日葵轮作模式下,有机、无机肥配施(不施肥、单施化肥、化肥配施牛粪、化肥配施羊粪、化肥配施生物有机肥、化肥配施黄腐酸钾)对土壤有机碳累积、土壤腐殖质形态的影响及其与土壤微生物群落结构间的相互关系。结果表明:在连续培肥5年间,随培肥时间延长,土壤有机碳呈波动性上升趋势。与对照相比,化肥配施牛粪、化肥配施羊粪处理土壤有机碳以年6.61%和8.97%的增长率累积增加,不同处理外源有机碳含量及有机肥种类的差异影响了土壤有机碳的累积速率。化肥配施高量有机肥(化肥+羊粪、化肥+牛粪)处理显著提高了土壤稳结态、松结态腐殖质含量及松结态/紧结态腐殖质的比例,且以PLFA表征的土壤细菌、真菌、放线菌、原生动物、土壤微生物群落总生物量与对照处理间均有显著性差异(P0.05)。与对照相比,各施肥处理的革兰氏阳性菌/革兰氏阴性菌(G+/G-)值均呈降低趋势;但不同有机无机相结合的土壤培肥方式对土壤G+/G-的比例没有显著差异。多元分析表明,基于土壤微生物主要类群磷脂脂肪酸含量的排序轴与基于土壤有机碳、腐殖质形态的排序轴之间相关性(P1=0.568,P2=0.611)较好,累积变量在98.69%上揭示不同有机无机培肥措施影响下的土壤微生物群落生物量与环境因子间的相互关系。土壤松结态腐殖质含量与土壤G+/G-比值正相关。外源有机碳的施入促进了土壤紧结态腐殖碳向稳结态、松结态腐殖质转化;较高量外源有机碳施入有助于提升土壤细菌、真菌的生物量。总体而言,土壤微生物群落结构的变化是受有机无机培肥措施所引起的土壤有机碳含量、腐殖质形态变化驱动;化肥配施牛粪和化肥配施羊粪有利于土壤有机碳积累和松结态腐殖质的形成,促进土壤中微生物生物量提高。研究结果可为宁夏中部干旱区土壤合理培肥提供科学依据。  相似文献   

15.
Timber harvesting influences both above and belowground ecosystem nutrient dynamics. Impact of timber harvesting on soil organic matter (SOM) mineralization and microbial community structure was evaluated in two coniferous forest species, ponderosa pine (Pinus ponderosa) and lodgepole pine (Pinus contorta). Management of ponderosa pine forests, particularly even-aged stand practices, increased the loss of CO2-C and hence reduced SOM storage potential. Changes in soil microbial community structure were more pronounced in ponderosa pine uneven-aged and heavy harvest stands and in lodgepole pine even-aged stand as compared to their respective unmanaged stands. Harvesting of trees had a negative impact on SOM mineralization and soil microbial community structure in both coniferous forests, potentially reducing coniferous forest C storage potential.  相似文献   

16.
为明确切碎秸秆与秸秆颗粒对黑土亚表层土壤微生物群落结构的影响效应,从而评价不同秸秆还田方式对亚表层的培肥效果,该研究于2016—2018年在东北黑土区进行一次性玉米秸秆深埋还田试验,设置切碎秸秆低量(QS1)、切碎秸秆高量(QS5)、秸秆颗粒低量(KL1)与秸秆颗粒高量(KL5)4种秸秆还田处理,并与秸秆不还田(CK)进行对比,于每年玉米收获季对土壤理化指标及微生物菌群结构进行监测。结果表明,1)秸秆还田第1年,切碎秸秆处理显著提高土壤总磷脂脂肪酸含量及真菌摩尔百分数,其高量处理较CK最高增加71.0%和120.5%,而秸秆颗粒处理对细菌、革兰氏阳性菌和革兰氏阴性菌的摩尔百分数增幅更显著,其高量处理最高增加41.6%、29.7%和26.3%;还田第2年高量处理显著提高各菌群磷脂脂肪酸含量,且切碎高量处理的真菌摩尔百分数含量显著高于颗粒高量处理21.0%;还田第3年仅高量处理下的菌群结构有显著分异。2)还田初期切碎秸秆处理显著提高真菌:细菌比值,而低量还田则对革兰氏阳性菌和革兰氏阴性菌比有提高,随还田时间的增加,高量还田比值提高更显著,利于长期维持生态系统稳定性。3)秸秆高量还田可显著改...  相似文献   

17.
明确生物质炭等改良剂对土壤酶活性及土壤微生物群落结构的影响,对南方红壤旱地改良剂的合理施用及评价不同改良剂对旱地红壤肥力的影响具有重要意义。针对江西旱地红壤进行室内培养试验,试验设置4个处理,即CK、Ca(过氧化钙,1.72 g/kg)、C(生物质炭,21.46 g/kg)、C+Ca(过氧化钙,1.72 g/kg;生物质炭,21.46 g/kg),利用磷脂脂肪酸方法(PLFA),研究改良剂对土壤微生物量和组成以及土壤酶活性、土壤活性有机碳的影响。结果表明:旱地红壤中添加生物质炭和过氧化钙土壤提高可溶性有机碳(DOC)和微生物量碳(MBC)含量;增加蔗糖酶(INV)、淀粉酶(AMY)及脲酶(URE)活性,特别是配施(C+Ca)显著提高土壤活性碳含量及酶活性。PLFA分析表明,土壤微生物总PLFAs量的大小顺序为:C+CaCCaCK;各处理土壤细菌的相对丰度最大,大约占微生物总含量的80%,放线菌次之,大约占微生物总含量的13%~15%,而真菌和丛枝菌根真菌的相对丰度较低。生物质炭和过氧化钙增加了革兰氏阴性菌(GN)/革兰氏阳性菌(GP)值,尤以C+Ca处理增加幅度最大。主成分分析(PCA)表明,添加生物质炭和过氧化钙能够改善土壤微生物群落结构;计算主成分的综合得分,配施(C+Ca)处理的综合得分最高,对土壤微生物群落结构的影响最大。冗余分析(RDA)表明,土壤MBC、DOC和土壤INV酶活性是影响土壤微生物数量和结构的主要因子。因此,施用生物质炭和过氧化钙能够明显提高旱地红壤微生物生物量,改变红壤微生物群落结构以及激发红壤酶活性,且配施效果最显著。  相似文献   

18.
The dynamics of indigenous bacterial and fungal soil communities were followed throughout the decomposition of wheat straw residue. More precisely, such dynamics were investigated in the different soil zones under the influence of decomposing wheat straw residue (i.e. residues, soil adjacent to residue = detritusphere, and bulk soil). The genetic structures of bacterial and fungal communities were compared throughout the decomposition process long by applying B- and F-ARISA (for bacterial and fungal-automated ribosomal intergenic spacer analysis) to DNA extracts from these different zones. Residue decomposition induced significant changes in bacterial and fungal community dynamics with a magnitude of changes between the different soil zones ordered as followed: residue > detritusphere > bulk soil, confirming the spatial structuration of the sphere of residue influence to the 4-6 mm soil zone in contact with residue. Furthermore, significant differences in the structure of bacterial and fungal communities were apparent between the early (14 and 28 days) and late (from 56 to 168 days) stages of decomposition. These could be related to ecological attributes such as the succession of r- (copiotrophs) and K- (oligotrophs) strategists. Microbial diversity at the early (28 days) and late (168 days) stages of degradation was further analysed by a molecular inventory of 16S and 18S rDNA in DNA extracts from the residue zone. This confirmed the succession of different populations during residue decomposition. Fluorescent Pseudomonas spp. and Neurospora sp. were dominant in the early stage with subsequent stimulation of Actinobacteria and Deltaproteobacteria taxa, as well as Basidiomycota fungal taxa and Madurella spp. According to the ecological attributes of these populations, microbial succession on fresh organic residue incorporated in soil would be dominated by copiotrophs and r-strategists in the early stages, with oligotrophs (K-strategists) increasing in relative abundance as substrate quantity and/or quality declines over time.  相似文献   

19.
为揭示不同施肥方式对茶园土壤微生物群落的季节性影响,采用宏基因组测序,比较分析了同一茶园习惯施肥(CF)、微生物有机肥配施控释复合肥(MC),在冬季至夏季3个时间点[11月14日(CF1、MC1)、3月1日(CF2、MC2)、5月15日(CF3、MC3)]的土壤微生物群落组成和结构。结果表明,共获得311211956条高质量测序数据和1763759个Unigenes。主成分和相关性分析表明,MC1和CF1的土壤微生物基因丰度聚为一类,其他独聚一类。不同季节,CF和MC的细菌、古菌、真菌分别占微生物总数的88%~89%、0.8%~2.0%、0.02%~0.10%;古菌数量逐渐增加,真菌数量先增加后降低。CF2、CF3的古菌数量分别高于MC2、MC3,而真菌数量相反;CF2、CF3的细菌、真菌丰度分别显著低于MC2、MC3,古菌丰度相反。MC1、MC2、MC3之间的细菌、古菌、真菌丰度存在显著差异,而CF1与CF3的真菌丰度接近。相较于CF,MC提高了土壤细菌中的变形菌门、放线菌门、芽单胞菌门、绿弯菌门、拟杆菌门、硝化螺旋菌门、装甲菌门相对丰度,降低了酸杆菌门、疣微菌门、浮霉菌门相对丰度;提高了古菌中的奇古菌门相对丰度,降低了广古菌门、泉古菌门、深古菌门相对丰度;提高了真菌中的毛霉门、捕虫霉门、隐真菌门相对丰度,降低了担子菌门相对丰度。总体上,CF和MC优势细菌门、优势古菌门、优势真菌门相对丰度的季节性变化趋势存在一定差异。茶园土壤微生物群落组成和结构呈现一定的季节性、施肥方式性变化规律;微生物有机肥配施控释复合肥可以提高土壤细菌丰度、真菌数量和丰度,降低古菌数量和丰度,改变土壤优势菌群的组成,为充分利用微生物资源、提高茶树养分利用率等提供了理论依据。  相似文献   

20.
《Soil biology & biochemistry》2001,33(4-5):679-682
Accelerated biodegradation of organic contaminants in planted soil is frequently reported yet our current understanding of plant–microbe interactions does not allow us to predict which plant species can encourage the development of rhizosphere communities with enhanced degradation capacity. In a companion study, five grass species (Sudan grass, ryegrass, tall fescue, crested wheatgrass, and switch grass) were grown in a Matapeake silt loam soil to study the degradation of atrazine and phenanthrene by rhizosphere microorganisms (see Fang et al., 2000, this vol., Fang, C., Radosevich, M., Fuhrmann, J. J., 2000. Atrizine and phenanthrene degradation in grass rhizosphere soil. Soil Biology & Biochemistry, in press). In the present paper substrate utilization patterns (BIOLOG®), and fatty acid methyl ester (FAME) profiles of the same rhizosphere microbial communities were determined. Both FAME and BIOLOG® analyses detected changes in soil microbial community structure among treatments. However, community structure did not directly correlate to either ATR or PHE degradation rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号