首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effect of three land use types on decomposition of 14C-labelled maize (Zea mays L.) residues and soil organic matter were investigated under laboratory conditions. Samples of three Dystric Cambisols under plow tillage (PT), reduced tillage (RT) and grassland (GL) collected from the upper 5 cm of the soil profile were incubated for 159 days at 20 °C with or without 14C-labelled maize residue. After 7 days cumulative CO2 production was highest in GL and lowest in PT, reflecting differences in soil organic C (SOC) concentration among the three land use types and indicating that mineralized C is a sensitive indicator of the effects of land use regime on SOC. 14CO2 efflux from maize residue decomposition was higher in GL than in PT, possibly due to higher SOC and microbial biomass C (MBC) in GL than in PT. 14CO2 efflux dynamics from RT soil were different from those of PT and GL. RT had the lowest 14CO2 efflux from days 2 to 14 and the highest from days 28 to 159. The lowest MBC in RT explained the delayed decomposition of residues at the beginning. A double exponential model gave a good fit to the mineralization of SOC and residue-14C (R2 > 0.99) and allowed estimation of decomposition rates as dependent on land use. Land use affected the decomposition of labile fractions of SOC and of maize residue, but had no effect on the decomposition of recalcitrant fractions. We conclude that land use affected the decomposition dynamics within the first 1.5 months mainly because of differences in soil microbial biomass but had low effect on cumulative decomposition of maize residues within 5 months.  相似文献   

2.
Soil-dwelling insect herbivores are significant pests in many managed ecosystems. Because eggs and larvae are difficult to observe, mathematical models have been developed to predict life-cycle events occurring in the soil. To date, these models have incorporated very little empirical information about how soil and drought conditions interact to shape these processes. This study investigated how soil temperature (10, 15, 20 and 25 °C), water content (0.02 (air dried), 0.10 and 0.25 g g?1) and pH (5, 7 and 9) interactively affected egg hatching and early larval lifespan of the clover root weevil (Sitona lepidus Gyllenhal, Coleoptera: Curculionidae). Eggs developed over 3.5 times faster at 25 °C compared with 10 °C (hatching after 40.1 and 11.5 days, respectively). The effect of drought on S. lepidus eggs was investigated by exposing eggs to drought conditions before wetting the soil (2–12 days later) at four temperatures. No eggs hatched in dry soil, suggesting that S. lepidus eggs require water to remain viable. Eggs hatched significantly sooner in slightly acidic soil (pH 5) compared with soils with higher pH values. There was also a significant interaction between soil temperature, pH and soil water content. Egg viability was significantly reduced by exposure to drought. When exposed to 2–6 days of drought, egg viability was 80–100% at all temperatures but fell to 50% after 12 days exposure at 10 °C and did not hatch at all at 20 °C and above. Drought exposure also increased hatching time of viable eggs. The effects of soil conditions on unfed larvae were less influential, except for soil temperature which significantly reduced larval longevity by 57% when reared at 25 °C compared with 10 °C (4.1 and 9.7 days, respectively). The effects of soil conditions on S. lepidus eggs and larvae are discussed in the context of global climate change and how such empirically based information could be useful for refining existing mathematical models of these processes.  相似文献   

3.
Substrate samples were artificially infested with Fusarium oxysporum f. sp. conglutinans (FOC) and F. oxysporum f. sp. basilici (FOB) in order to evaluate the shift in fungal population by using culture dependent and culture independent methods. Solarization was carried out with transparent polyethylene film during a summer period on a greenhouse located in Northern Italy, in combination or not with Brassica carinata defatted seed meals and/or compost. Biosolarization treatment was carried out in a growth chamber by heating the substrate for 7 and 14 days at optimal (55–52 °C for 6 h, 50–48 °C for 8 h and 47–45 °C for 10 h/day) and sub-optimal (50–48 °C for 20 h, 45–43 °C for 8 h and 40–38 °C for 10 h/day) temperatures. Plate counts and polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) analyses were performed to evaluate the effect of biosolarization on the microbial population. The abundance of FOC and FOB were reduced as a consequence of biosolarization approach, while bacterial population (total aerobic mesophilic bacteria and Pseudomonas spp.) were higher compared to control samples during the experiment. PCR-DGGE fingerprints of the ascomycete community obtained from DNA directly extracted from infested substrate samples showed that the use of organic amendments increased the similarity of the fungal population.  相似文献   

4.
《Applied soil ecology》2003,22(3):205-210
We examined the response of the temperature coefficient (Q10) for soil respiration rate to changes in environmental temperature through a laboratory incubation experiment. Soil samples were collected from three climatic areas: arctic (Svalbard, Norway), temperate (Tsukuba, Japan) and tropical (Pasoh, Malaysia). The arctic and temperate soils were incubated at 8 °C (control), 12 °C (4 °C warming) and 16 °C (8 °C warming) for 17 days. The tropical soil was incubated at 16 °C (8 °C cooling), 24 °C (control) and 32 °C (8 °C warming). Before and after the incubation experiment, the temperature dependence of soil microbial respiration was measured using an open-airflow method with IRGA by changing the temperature in a water bath. The initial Q10 before the incubation experiment was larger in the soils from higher latitudes: 3.4 in the arctic soil, 2.9 in the temperate soil, and 2.1 in the tropical soil. The response of the microbial respiration rate to change in temperature differed among the three soil types. The temperature dependence of respiration rate in the arctic soil did not change in response to warming by 4 and 8 °C with a Q10 of about 3. On the other hand, the Q10 in the temperate soil decreased with increasing incubation temperature: from 2.8 in soils incubated at 8 °C to 2.5 at 12 °C and 2.0 at 16 °C. In the tropical soil, the Q10 was not changed even by the 8 °C warming with a value of 2.1, whereas the Q10 was increased from 2.1 to 2.7 by the 8 °C cooling. These results suggest that the response of microbial respiration to climatic warming may differ between soils from different latitudes.  相似文献   

5.
Paclobutrazol is a plant growth regulator largely utilized in mango cultivation and usually applied directly to soil. The aim of this study was to examine the effect of paclobutrazol on soil microbial biomass, soil respiration and cellulose decomposition in Brazilian soils under laboratory conditions. Soil samples were collected from fields with and without a reported history of paclobutrazol application. A solution of paclobutrazol (8 mg of active ingredient kg?1 of soil) was added to soils, which were then incubated at 28 °C for 30 days. Paclobutrazol decreased soil microbial biomass, soil respiration and cellulose decomposition in soil with and without a report of paclobutrazol application, while significant increase was observed in the respiratory quotient (qCO2). Our results show that the soil microbiological attributes were negatively affected by paclobutrazol in short-term experiment.  相似文献   

6.
《Applied soil ecology》2006,31(1-2):32-42
Microcosm and litterbag experiments were conducted to determine the effects of litter quality, soil properties and microclimate differences on soil carbon (C) and nitrogen (N) mineralization in alley cropping systems. Bulk soils were collected from 0 to 20 cm depth at three sites: a 21-year old pecan (Carya illinoinensis)/bluegrass (Poa trivialis) intercrop (Pecan site) in north-central Missouri, a 12-year old silver maple (Acer saccharinum)/soybean (Glycine max)–maize (Zea mays) rotation (Maple site) in northeastern Missouri and a restored prairie site (MDC site) in southwestern Missouri. Seven tree and crop litters with varying composition were collected, including pecan, silver maple, chestnut and walnut leaf litter (tree litter) and maize, soybean and bluegrass residues (crop litter). Aerobic microcosm incubations were maintained at 25 °C and a soil water potential of −47 kPa. Unamended MDC soil mineralized 24 and 18% more CO2 than the Pecan and Maple soils, respectively. Soil amended with crop litter mineralized on average 32% more CO2 than when amended with tree litter. Net N mineralization from soybean litter was 40 mg kg−1, while all other litter immobilized N for various durations. A double pool and a single pool model best described C and N mineralization from amended soils, respectively. Cumulative CO2 mineralized, labile C fraction (C1) and potentially mineralizable C (C0) were correlated to litter total N and lignin contents and to (lignin + polyphenol):N ratio. In the field, bluegrass litter decomposed and released N twice as fast as pecan leaf litter. Soybean, maize and silver maple litter released 84, 75 and 63% of initial N, respectively, 308 days after field placement, while no differences in mass loss was observed among the three litter materials. At the Maple site, mass and N remaining, 308 days after field placement was lower at the middle of the alley, corresponding to higher soil temperature and water content. No differences in mass loss and N release patterns were observed at the Pecan site. Microclimate and litter quality effects can lead to differences in nutrient availability in alley cropping systems.  相似文献   

7.
We investigated the fate of root and litter derived carbon in soil organic matter and dissolved organic matter in soil profiles, in order to explain mechanisms of short-term soil carbon storage. A time series of soil and soil solution samples was investigated at the field site of The Jena Experiment between 2002 and 2004. In addition to the main experiment with C3 plants, a C4 species (Amaranthus retroflexus L.) naturally labeled with 13C was grown on an extra plot. Changes in organic carbon concentration in soil and soil solution were combined with stable isotope measurements to follow the fate of plant carbon into the soil and soil solution. A split plot design with plant litter removal versus double litter input simulated differences in biomass input. After 2 years, the no litter and double litter treatment, respectively, showed an increase of 381 g C m?2 and 263 g C m?2 to 20 cm depth, while 71 g C m?2 and 393 g C m?2 were lost between 20 and 30 cm depth. The isotopic label in the top 5 cm indicated that 115 g C m?2 and 156 g C m?2 of soil organic carbon were derived from C4 plant material on the no litter and the double litter treatment, respectively. Without litter, this equals the total amount of 97 g C m?2 that was newly stored in the same soil depth, whereas with double litter this clearly exceeded the stored amount of 75 g C m?2. Our results indicate that litter input resulted in lower carbon storage and larger carbon losses and consequently accelerated turnover of soil organic carbon. Isotopic evidence showed that inherited soil organic carbon was replaced by fresh plant carbon near the soil surface. Our results suggest that primarily carbon released from soil organic matter, not newly introduced plant organic matter, was transported in the soil solution. However, the total flow of dissolved organic carbon was not sufficient to explain the observed carbon storage in deeper soil layers, and the existence of additional carbon uptake mechanisms is discussed.  相似文献   

8.
Germinability and virulence of sclerotia of Sclerotium rolfsii were assessed after 50 days of exposure of 14C-labeled sclerotia to soil at 0, −5 and −15 kPa and pH 6.9, or to soil at 15, 25 or 30 °C, pH 5 or 8 and −1 kPa. Evolution of 14CO2 accounted for the greatest share of endogenous carbon loss from sclerotia under all soil conditions, except in water-saturated soil (0 kPa), in which sclerotial exudates contributed the major share of carbon loss. Total evolution of 14CO2 from sclerotia in soil at −15 kPa (42.4% of total 14C) and at −5 kPa (38%) was significantly higher than at 0 kPa (23.8%). Evolution of 14CO2 in soil at 25 or 30 °C was more rapid than at 15 °C with regardless of pH. Loss of endogenous carbon by sclerotia was the greater after 50 days of exposure to soil at 0 kPa, or at 25 or 30 °C and pH 8, than at other soil conditions. Sclerotia exposed to water-saturated soil (0 kPa) showed a more rapid decline in nutrient independent germinability, viability and virulence, than to those exposed to −5 or −15 kPa. Sclerotia became dependent on nutrient for germination and lost viability and virulence within 30–40 days in soil at 25 or 30 °C, pH 8. However, more than 60% of sclerotia retained viability in soil at 15 °C regardless of pH, even after 50 days. Radish shoot growth was increased significantly by the sclerotia that had been exposed to soil at 0 kPa, or to soil at 25 or 30 °C and pH 8 for 50 days. In conclusion, carbon loss by sclerotia during incubation on soil at different pH levels, temperatures and water potentials was inversely correlated with sclerotial ability to infect radish seedlings. The relationship between carbon loss by sclerotia and radish shoot length was positive.  相似文献   

9.
Trifluralin is a herbicide intensively used in Turkish cotton agriculture. The recommended field dose [(RFD), 480 g active ingredient l?1], 2 × RFD, 4 × RFD and 6 × RFD of this herbicide were added to virgin (previously no trifluralin applied) and cotton field soils (previously trifluralin applied) from a district (Yumurtal?k, Adana) under Mediterranean climate conditions in order to determine their effects on soil microbial activity as measured by carbon mineralization at the different temperature conditions (20 °C, 25 °C and 30 °C). C mineralization of all samples was determined by the CO2 respiration method over 30 days (20 °C, 25 °C and 30 °C at constant moist). The ratio (%) of carbon mineralization at all doses of cotton field soil at 30 °C was significantly higher than all other field dose–temperature combinations (P < 0.001). Based on these results, trifluralin is used as a carbon source by soil microorganisms. The herbicide trifluralin was degraded completely in the cotton field but a small fraction remained in the virgin field. This result can be explained by the cotton field soil having both more active microbial populations and more microorganisms adapted to the trifluralin applications than the virgin field.  相似文献   

10.
Over a 2-year study, we investigated the effect of environmental change on the diversity and abundance of soil arthropod communities (Acari and Collembola) in the Maritime Antarctic and the Falkland Islands. Open Top Chambers (OTCs), as used extensively in the framework of the northern boreal International Tundra Experiment (ITEX), were used to increase the temperature in contrasting communities on three islands along a latitudinal temperature gradient, ranging from the Falkland Islands (51°S, mean annual temperature 7.5 °C) to Signy Island (60°S, ?2.3 °C) and Anchorage Island (67°S, ?3.8 °C). At each island an open and a closed plant community were studied: lichen vs. moss at the Antarctic sites, and grass vs. dwarf shrub at the Falkland Islands. The OTCs raised the soil surface temperature during most months of the year. During the summer the level of warming achieved was 1.7 °C at the Falkland Islands, 0.7 °C at Signy Island, and 1.1 °C at Anchorage Island.The native arthropod community diversity decreased with increasing latitude. In contrast with this pattern, Collembola abundance in the closed vegetation (dwarf shrub or moss) communities increased by at least an order of magnitude from the Falkland Islands (9.0 ± 2 × 103 ind. m?2) to Signy (3.3 ± 8.0 × 104 ind. m?2) and Anchorage Island (3.1 ± 0.82 × 105 ind. m?2). The abundance of Acari did not show a latitudinal trend.Abundance and diversity of Acari and Collembola were unaffected by the warming treatment on the Falkland Islands and Anchorage Island. However, after two seasons of experimental warming, the total abundance of Collembola decreased (p < 0.05) in the lichen community on Signy Island as a result of the population decline of the isotomid Cryptopygus antarcticus. In the same lichen community there was also a decline (p < 0.05) of the mesostigmatid predatory mite Gamasellus racovitzai, and a significant increase in the total number of Prostigmata.Overall, our data suggest that the consequences of an experimental temperature increase of 1–2 °C, comparable to the magnitude currently seen through recent climate change in the Antarctic Peninsula region, on soil arthropod communities in this region may not be similar for each location but is most likely to be small and initially slow to develop.  相似文献   

11.
《Applied soil ecology》2011,47(3):413-421
Substrate input as well as climatic factors affect C and N cycling and microbial properties in forest soils. We used a microcosm approach to investigate the response of CO2 efflux, net N mineralization, and microbial community-level physiological profile (CLPP) to temperature (5 vs. 15 °C) and substrate (with and without sucrose addition) addition in surface mineral soils collected from 4-, 6-, 13-, and 15-year old (ages in 2007) hybrid poplar (Populus deltoides × Populus × petrowskyana var. Walker) stands in northern Alberta. In the early stage of incubation (0–2 h), CO2 efflux was higher at 5 °C than at 15 °C with little effect from substrate addition, while 24 h after the addition of substrate, CO2 efflux became higher under the 15 °C incubation. After 72 h incubation, temperature and substrate addition effects on CO2 efflux subsided and CO2 efflux rates tended to converge among the treatments. Net N mineralization was significantly affected by substrate addition and stand age, while rates of net ammonification were higher at 5 °C than at 15 °C. Net N mineralization occurred without sucrose addition while net immobilization occurred with sucrose addition. The soil from the youngest stand had the lowest N mineralization rate among the stands for each corresponding substrate-incubation temperature treatment. We used Ecoplates from Biolog™ to study sole-carbon-source-utilization profiles of microbial communities at the end of the incubation. Principal component analysis of C utilization data separated microbial communities with respect to substrate addition, incubation temperature and stand age. Our data showed that organic matter mineralization and microbial substrate utilization were affected by incubation temperature, substrate availability and stand age, indicating that the responses of microbial communities in the studied hybrid poplar plantations to temperature changes were strongly mediated by labile C availability and stand development.  相似文献   

12.
《Pedobiologia》2014,57(3):131-138
Long-term studies of Common beech litter decomposition are scarce and the relationship of its limit values to nutrients/heavy metals dynamics has not been sufficiently studied. The present study is a rare case in which beech litter decomposes almost entirely and enables analyses of the impacts of nutrients and heavy metals on litter decomposition. The aim of the present paper is to (i) determine a decomposition pattern of leaf litter and estimate the limit values and to (ii) determine the dynamics of the main nutrients and heavy metals (concentration and net amounts, based on ash-free litter) in an unpolluted stand of Common beech.Common beech (Fagus sylvatica L.) leaf litter was incubated in polyester litterbags (1.5 mm mesh size) and 41 samplings were made over a period of 6.5 years until a mass loss of 88.9% was achieved. Carbon (C) plus 12 more nutrients and heavy metals were analyzed.Mass losses of both whole litter and of C were used in order to estimate the limit values as well as to determine significant differences between the two approaches. An asymptotic function gave significant limit values that were close to 100% (p < 0.0001). These results were also supported by a single exponential function (p < 0.0001). The initial increase in concentrations of nutrients was followed by a decrease of N, P, K, Ca, Na and Mn. A similar pattern was observed for some of the heavy metals (Cu, Cd and Fe) while Zn concentrations decreased continuously. A net release (e.g. a decrease in the net amounts) was observed for all nutrients and heavy metals except for Cd. The litter fraction did not leave any stable residues (i.e. limit values were close to 100%), which was at least partly due to the low initial N and very high Mn concentration (20 times higher than in other studies).  相似文献   

13.
Tussocks formed by Carex stricta are a relatively large carbon (C) pool in sedge meadows, but the stability of organic matter in these ecosystems is not well understood. We initiated year-long incubation experiments (22.5 °C) to evaluate the CO2 and CH4 production potentials of sedge meadow substrates under field moist and inundated treatments from five sites in the Upper Midwest, USA (4 reference, 1 restored). C mineralization potentials decreased with depth (tussocks > underlying soil), and were positively correlated with macro-organic matter content and negatively with lignin. Across sites, C stored in tussocks and soil at the restoration was the least stable, suggesting that the restoration of C-storage function may take decades. Mineralization potentials were similar between field moist and inundated treatments, but inundation resulted in higher methane production, accounting for 24–51% of total carbon mineralized from tussocks. In the field however, C. stricta tussocks emitted less methane (393 ± 76 mg CH4 m−2 d−1) than tussock interspaces (1362 ± 371 mg CH4 m−2 d−1) early in the growing season; we suggest that tussock tops oxidized methane produced from deeper anoxic horizons. Our results highlight the importance of considering how microtopography modulates greenhouse gas flux from wetlands and suggests that the C stored in the older, more decomposed C. stricta tussock sedge meadow substrates (both within and between sites) is relatively stable.  相似文献   

14.
The herbicide sulfentrazone is classified as highly mobile and persistent and this study aimed to examine degradation of this compound on a Typic Hapludox soil that is representative of regions where sulfentrazone is used in Brazil. Soil samples were supplemented with sulfentrazone (0.7 μg active ingredient (a.i.) g?1 soil), and maintained at 27 °C. Soil moisture was corrected to 30%, 70%, or 100% water-holding capacity (WHC) and maintained constant until the end of the experimental period. Soils without added herbicide were used as controls. Aliquots were taken after 14, 30, 60, 120, 180, and 255 days of incubation for quantitative analysis of sulfentrazone residues by gas chromatography. Another experiment was conducted in soil samples, with and without the herbicide, at different temperatures (15, 30, and 40 °C), with moisture kept constant at 70% of WHC. The sulfentrazone residues were quantified by gas chromatography after 14, 30, 60, and 120 days of incubation. Sulfentrazone degradation was not affected by soil moisture. A significant effect was observed for the temperature factor after 120 days on herbicide degradation, which was higher at 30 °C. A half-life of 146.5 days was recorded. It was observed that the herbicide stimulated growth of actinomycetes, whereas bacterial and fungal growth was not affected. The microorganisms selected as potential sulfentrazone degraders were Rhizobium radiobacter, Ralstonia pickettii, Methylobacterium radiotolerans, Cladosporium sp., Eupenicillium sp., and Paecilomyces sp.  相似文献   

15.
《Applied soil ecology》2006,31(1-2):53-61
Two soils from a secondary tropical forest at La Union, Philippines, predominantly vegetated with Swietenia marcrophylla and Gmelina arborea were amended with different leaf litter types (Eucalyptus camaldulensis, S. macrophylla, G. arborea, and Calliandra calothyrsus) and incubated in the laboratory for 49 days at 25 °C. The experiment was carried out to elucidate the reasons for a low ATP-to-microbial biomass C ratio and a high microbial biomass C-to-N ratio. This has been measured repeatedly in tropical forest soils. In the non-amended soils, the microbial biomass C-to-N ratio of 12.1 exceeded the soil organic C-to-total N ratio of 11, while the ergosterol-to-microbial biomass C ratio of 0.14% and the ATP-to-microbial biomass C ratio of 4.1 μmol g−1 were both low. At the end of the incubation, the addition of the different leaf litter types led generally to a decrease in the microbial biomass C-to-N ratio and to an increase in the ATP-to-microbial biomass C ratio, adenylate energy charge (AEC) and especially to an increase in the ergosterol-to-microbial biomass C ratio. The increase in the ATP-to-microbial biomass C ratio and the decrease in the microbial biomass C-to-N ratio were positively related to the N concentration in the leaf litter, the increase in the ergosterol-to-microbial biomass ratio negatively. The reasons for a low ATP-to-microbial biomass C ratio and a high microbial biomass C-to-N ratio are P deficiency and probably a reduced access of soil microorganisms to N containing organic components at low soil organic C levels.  相似文献   

16.
Dicyandiamide (DCD, C2H4N4) is a nitrification inhibitor that has been studied for more than 80 years. However, there are few papers that have examined the use of DCD on dairy farms where cattle graze pasture and where urine is the primary form of nitrogen (N) deposited onto soils. After DCD was applied (10 kg DCD ha?1) with bovine urine (700–1200 kg N ha?1) to five soils throughout New Zealand, the reduction in direct nitrous oxide (N2O) emissions was significant and remarkably consistent (71 ± 8%, average ± standard error). The application of DCD to these soils occurred in autumn and winter; daily average soil temperature (T) was reported but these data were not further analysed. Perusal of the literature suggested no consensus on the temperature dependence of DCD degradation in soils. Based on published data from controlled-environment studies of soils sampled in four countries, we quantified the relation between T and the time for DCD concentration in soils to decline to half its application value (t½) as t½ (T) = 168e?0.084T with parameter standard errors of ±16 d and ±0.011 d?1, respectively (n = 16). For example, at 5 °C a 1 °C increase in T reduced t½ from 110 to 101 d whereas at 25 °C the reduction was 20–19 d. Analysing T data from the New Zealand trials using our t½ (T) function, over 43–89 d when direct N2O emissions from treated plots became indistinguishable from the controls, the estimated percentage of applied DCD remaining in the soil averaged 43 ± 10%. These calculations suggested the apparently remaining DCD was ineffective with respect to direct N2O emissions. In the absence of measurements, explanations for this interpretation included vertical displacement of the DCD and sorption onto organic matter in soils. The consistent DCD efficacy from these trials corresponded with T generally <10 °C, so it is suggested as an application criteria for the reduction of direct N2O emissions from pastoral soils subjected to urine excretion by grazing cattle.  相似文献   

17.
Polar ecosystems are currently experiencing some of the fastest rates of climate warming. An increase in soil temperature in High Arctic regions may stimulate soil permafrost melting and microbial activity, thereby accelerating losses of greenhouse gases. It is therefore important to understand the factors regulating the rates of C turnover in polar soils. Consequently, our aims were to: (1) assess the concentration of low molecular weight (MW) dissolved organic carbon (DOC) in soil, (2) to investigate the temperature-dependent turnover of specific low MW compounds, and (3) to analyse the influence of substrate concentration on C cycling. Microbial mineralisation of labile low MW DOC in two High Arctic tundra soils was investigated using soil solutions spiked with either 14C-labelled glucose or amino acids. Spiked solutions were added to the top- and sub-soil from two ecosystem types (lichen and Carex dominated tundra), maintained at three temperatures (4–20 °C), and their microbial mineralisation kinetics monitored. 14CO2 evolution from the tundra soils in response to 14C-glucose and -amino acid addition could best be described by a double first order exponential kinetic equation with rate constants k1 and k2. Both forms of DOC had a short half-life (t1/2) in the pool of microbial respiratory substrate (t1/2 = 1.07 ± 0.10 h for glucose and 1.63 ± 0.14 h for amino acids; exponential coefficient k1 = 0.93 ± 0.07 and 0.64 ± 0.06 h?1 respectively) whilst the second phase of mineralisation, assumed to be C that had entered the microbial biomass, was much slower (average k2 = 1.30 × 10?3 ± 0.49 × 10?4 h?1). Temperature had little effect on the rate of mineralisation of 14C used directly as respiratory substrate. In contrast, the turnover rate of the 14C immobilized in the microbial biomass prior to mineralisation was temperature sensitive (k2 values of 0.99 × 10?3 h?1 and 1.66 × 10?3 h?1 at 4 and 20 °C respectively). Concentration-dependent glucose and amino acid mineralisation kinetics of glucose and amino acids (0–10 mM) were best described using Michaelis–Menten kinetics; there was a low affinity for both C substrates by the microbial community (Km = 4.07 ± 0.41 mM, Vmax = 0.027 ± 0.005 mmol kg?1 h?1). In conclusion, our results suggest that in these C limiting environments the flux of labile, low MW DOC through the soil solution is extremely rapid and relatively insensitive to temperature. In contrast, the turnover of C incorporated into higher molecular weight microbial C pools appears to show greater temperature sensitivity.  相似文献   

18.
《Soil & Tillage Research》2007,92(1-2):109-119
Soil compaction may affect N mineralization and the subsequent fate of N in agroecosystems. Laboratory incubation and field experiments were conducted to determine the effects of surface soil compaction on soil N mineralization in a claypan soil amended with poultry litter (i.e., Turkey excrement mixed with pine shavings as bedding). In a laboratory study, soil from the surface horizon of a Mexico silt loam soil was compacted to four bulk density levels (1.2, 1.4, 1.6 and 1.8 Mg m−3) with and without poultry litter and incubated at 25 °C for 42 days. A field trial planted to corn (Zea mays L.) was also conducted in 2002 on a Mexico silt loam claypan soil in North Central Missouri. Soil was amended with litter (0 and 19 Mg ha−1) and left uncompacted or uniformly compacted. Soil compaction decreased soil inorganic N by a maximum of 1.8 times in the laboratory study; this effect was also observed at all depths of the field trial. Compacted soil with a litter amendment accumulated NH4+-N up to 7.2 times higher than the noncompacted, litter-amended soil until Day 28 of the laboratory incubation and in the beginning of the growing season of the field study. Ammonium accumulation may have been due to decreased soil aeration under compacted conditions. Application of litter increased soil N mineralization throughout the growing season. In the laboratory study, soil inorganic N in unamended soil was negatively correlated with soil bulk density and the proportion of soil micropores, but was positively related with soil total porosity and the proportion of soil macropores. These results indicate that soil compaction, litter application and climate are interrelated in their influences on soil N mineralization in agroecosystems.  相似文献   

19.
Generalist predators play a key role in agriculturally and environmentally sustainable systems of pest control. A detailed knowledge on their ecology, however, is needed to improve management practices to maximize their service of pest control. The present study examines the habitat use and activity patterns of larval and adult Cantharis beetles that are abundant predators in arable land. Laboratory experiments revealed that sixth instar larvae of Cantharis fusca and Cantharis livida significantly preferred high relative humidity levels of 85–90% to lower ones. This can explain their preference for meadows over fields due to the more favorable microclimatic conditions in the former habitats. Surface activity of sixth instar Cantharis larvae during autumn, winter and early spring occurred at soil temperatures above 0 °C. However, no correlation between surface activity and soil temperature, air temperature or relative humidity was found above 0 °C. Catches of sixth instar Cantharis larvae within fenced pitfall traps were higher in a meadow (Mean ± S.D.; 13.8 ± 7.63 individuals m−2) than in a field (4.60 ± 2.89 individuals m−2). Mark-recapture density estimations for sixth instar larvae indicated mean densities of 25.9 ± 5.63 (field) and 42.8 ± 16.0 individuals m−2 (meadow). The same pattern was found for adult emergence rates in the field (0.17 ± 0.39 adults m−2) and meadow (1.83 ± 1.17 adults m−2) as well as for adult densities in the vegetation (field 4.89 ± 3.62 adults 60 m−2; meadow 12.5 ± 11.2 adults 60 m−2). It is concluded that especially in winter elements that provide plant cover should be incorporated in arable fields to enhance larval cantharid population densities and to attract them from their prime grassland habitats into arable sites.  相似文献   

20.
During the past couple of decades, understanding of rhizosphere biology has progressed with the discovery of a special group of microorganisms known as plant growth promoting rhizobacteria (PGPR) and its application for sustainable agriculture has increased tremendously in various parts of the world. The search for microorganisms that improve soil fertility and enhance plant nutrition has continued to attract attention due to the increasing cost of fertilizers and some of their negative environmental impacts. In this study we demonstrated, a novel bacterial species Pontibacter niistensis NII-0905 isolated from forest soil in Western ghat forest soil with potential plant growth promoting ability (PGP) such as phosphate solubilization, indole acetic acid (IAA), siderophore and hydrogen cyanide (HCN) production. The activity varies with different growth temperatures, strain solubilize 28.5 ± 0.9, 48.02 ± 1.9 and 65.07 ± 2.1 μg mL−1 at 4, 15 and 30 °C respectively and produced 24.8 μg mL−1 day−1 of indole acetic acid (IAA) in tryptophan amended media. Qualitative detection of siderophore production and HCN were also detected at all temperature tested. At a lower temperature (4 °C) strain NII-0905 retained all the plant growth promotion attributes. A significant increase in the growth of cow pea was recorded with inoculations of strain NII-0905 in pot experiments. Scanning electron microscopic study revealed the root colonization on cow pea seedlings against the untreated one. These results demonstrate that, the isolate NII-0905 has the promising PGPR attributes for both in cold as well as in humid condition. It has potential as a biofertilizer to enhance soil fertility and promote the plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号