首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lime is a common amendment to overcome soil acidity in agricultural production systems. However, plant root effects on lime and soil carbon (C) dynamics in acidic soils under varied temperature remain largely unknown. We monitored root effects of soybean on the fate of lime applied to an acidic soil at 20 and 30°C in growth chambers. Soil respired CO2 was continuously trapped in columns without and with plants until the final stage of vegetative growth. Lime‐derived CO2 was separated from total respired CO2 based on δ13C measurements in CO2. Leaching was induced at early and late vegetative growth stages, and the leachates were analysed for dissolved organic (DOC) and inorganic C (DIC) concentrations. Soil respiration significantly increased with lime addition at both temperatures (p < 0.001). The presence of soybean doubled the recovery of lime‐derived CO2‐C at 20°C at the early growth stage; however, by the end of the experiment, the contribution of lime‐derived CO2‐C to soil respiration was negligible in all treatments, indicating that the contribution of lime to soil respiration was shortlived. In contrast, DIC and DOC concentrations in leachates remained elevated with liming and were greater in the presence of soybean. We observed no main temperature effects and no interactive effects of temperature and soybean presence on lime‐derived CO2‐C, DIC and DOC. These results highlight the role of plant‐modulated processes in CO2 release and C leaching from lime in acidic soils, whereas an increase in temperature may be less important. Temperature and plant roots alter the rate of key processes controlling C dynamics in a limed acidic soil. Lime‐derived CO2‐C, DIC and DOC increased more in the presence of plants than with increased temperature. Root effects are more important than temperature for inorganic and organic carbon dynamics in limed acidic soils.  相似文献   

2.
Two acidic soils (initial pH, 4.6) with contrasting soil organic C (SOC) contents (11.5 and 40 g C kg?1) were incubated with 13C-labelled lime (Ca13CO3) at four different rates (nil, target pH 5, 5.8 and 6.5) and three application depths (0–10, 20–30 and 0–30 cm). We hypothesised that liming would stimulate SOC mineralisation by removing pH constraints on soil microbes and that the increase in mineralisation in limed soil would be greatest in the high-C soil and lowest when the lime was applied in the subsoil. While greater SOC mineralisation was observed during the first 3 days, likely due to lime-induced increases in SOC solubility, this effect was transient. In contrast, SOC mineralisation was lower in limed than in non-limed soils over the 87-day study, although only significant in the Tenosol (70 μg C g?1 soil, 9.15%). We propose that the decrease in SOC mineralisation following liming in the low-C soil was due to increased microbial C-use efficiency, as soil microbial communities used less energy maintaining intracellular pH or community composition changed. A greater reduction in SOC mineralisation in the Tenosol for low rates of lime (0.3 and 0.5 g column?1) or when the high lime rate (0.8 g column?1) was mixed through the entire soil column without changes in microbial biomass C (MBC) could indicate a more pronounced stabilising effect of Ca2+ in the Tenosol than the Chromosol with higher clay content and pH buffer capacity. Our study suggests that liming to ameliorate soil acidity constraints on crop productivity may also help to reduce soil C mineralisation in some soils.  相似文献   

3.
The application of nitrogen (N) fertilizers and liming (CaCO3) to improve soil quality and crop productivity are regarded as effective and important agricultural practices. However, they may increase greenhouse gas (GHG) emissions. There is limited information on the GHG emissions of tropical soils, specifically when liming is combined with N fertilization. We therefore conducted a full factorial laboratory incubation experiment to investigate how N fertilizer (0 kg N ha−1, 12.5 kg N ha−1 and 50 kg N ha−1) and liming (target pH = 6.5) affect GHG emissions and soil N availability. We focussed on three common acidic soils (two ferralsols and one vertisol) from Lake Victoria (Kenya). After 8 weeks, the most significant increase in cumulative carbon dioxide (CO2) and nitrous oxide (N2O) fluxes compared with the unfertilized control was found for the two ferralsols in the N + lime treatment, with five to six times higher CO2 fluxes than the control. The δ13C signature of soil-emitted CO2 revealed that for the ferralsols, liming (i.e. the addition of CaCO3) was the dominant source of CO2, followed by urea (N fertilization), whereas no significant effect of liming or of N fertilization on CO2 flux was found for the vertisol. In addition, the N2O fluxes were most significantly increased by the high N + lime treatment in the two ferralsols, with four times and 13 times greater N2O flux than that of the control. No treatment effects on N2O fluxes were observed for the vertisol. Liming in combination with N fertilization significantly increased the final nitrate content by 14.5%–39% compared with N fertilization alone in all treatment combinations and soils. We conclude that consideration should be given to the GHG budgets of agricultural ferralsols since liming is associated with high liming-induced CO2 and N2O emissions. Therefore, nature-based and sustainable sources should be explored as an alternative to liming in order to manage the pH and the associated fertility of acidic tropical soils.  相似文献   

4.
Recently, large areas of tropical peatland have been converted into agricultural fields. To be used for agricultural activities, peat soils need to be drained, limed and fertilized due to excess water, low nutrient content and high acidity. Water depth and amelioration have significant effects on greenhouse gas (GHG) production. Twenty-seven soil samples were collected from Jabiren, Central Kalimantan, Indonesia, in 2014 to examine the effect of water depth and amelioration on GHG emissions. Soil columns were formed in the peatland using polyvinyl chloride (PVC) pipe with a diameter of 21 cm and a length of 100 cm. The PVC pipe was inserted vertically into the soil to a depth of 100 cm and carefully pulled up with the soil inside after sealing the bottom. The treatments consisting of three static water depths (15, 35 and 55 cm from the soil surface) and three ameliorants (without ameliorant/control, biochar+compost and steel slag+compost) were arranged using a randomized block design with two factors and three replications. Fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from the soil columns were measured weekly. There was a linear relationship between water depth and CO2 emissions. No significant difference was observed in the CH4 emissions in response to water depth and amelioration. The ameliorations influenced the CO2 and N2O emissions from the peat soil. The application of biochar+compost enhanced the CO2 and N2O emissions but reduced the CH4 emission. Moreover, the application of steel slag+compost increased the emissions of all three gases. The highest CO2 and N2O emissions occurred in response to the biochar+compost treatment followed by the steel slag-compost treatment and without ameliorant. Soil pH, redox potential (Eh) and temperature influenced the CO2, CH4 and N2O fluxes. Experiments for monitoring water depth and amelioration should be developed using peat soil as well as peat soil–crop systems.  相似文献   

5.
Soil samples were collected from litter, humus and mineral soil layers to a depth of 50 cm in 37–42 year-old limed and unlimed plots in one beech and three spruce stands in S Sweden for determination of carbon (C) and nitrogen (N) pools, C and N mineralization rates and nitrification rates. The samples were sifted while still fresh and incubated at a constant temperature (15°C) and soil moisture (50 % WHC) for 110–180 days with periodic subsamplings. The C and N pools in the uppermost soil layers were significantly lower in plots limed with 9–10 t CaCO3 ha?1 than in unlimed plots, whereas the pools in the deeper mineral soil did not differ markedly between the treatments. In the whole soil profile, the C and N pools had, on average, decreased by 16% (P<0.05) and 11% (P>0.05), respectively, after 40 yrs. The smaller reduction in N pools resulted in significantly lower C:N ratios and increased N immobilization in the limed spruce plots but not in the limed beech plot. C and net N mineralization rates were increased in some of the limed plots and decreased in others. This indicates that liming can still have a stimulatory effect after 40 yrs in some soils. The nitrification potential was increased in the limed plots. Liming did not increase tree growth in the stands investigated. We conclude that liming with high doses of CaCO3 is likely to reduce pools of soil C and possibly even soil N in relation to unlimed areas in spruce and beech forests in S Sweden. If trees in limed stands do not respond with better growth, the treatment will thus result in a net ecosystem loss of C and N in relation to unlimed areas. It was not possible to conclude whether the effects of low doses of lime would be similar to those of high doses.  相似文献   

6.
Peatlands, including fens, are important ecosystems in the context of the global carbon cycle. Future climate change and other anthropogenic activities are likely to increase nutrient loading in many peatland ecosystems and a better understanding of the effects of these nutrients on peatland carbon cycling is necessary. We investigated the effects of six years of nitrogen and phosphorus fertilization, along with liming, on carbon mineralization dynamics in an intermediate fen in northern Minnesota. Specifically, we measured CO2 and CH4 emission from intact peat cores, as well as CH4 production and CH4 consumption at multiple depths in short-term laboratory incubations. Despite increased nitrogen and phosphorus availability in the upper 5 cm of peat, increased pH, and clear shifts in the vegetation community, fertilization and liming had limited effects on microbial carbon cycling in this fen. Liming reduced the net flux of CO2 approximately 3-fold compared to the control treatment, but liming had no effect on CH4 emissions from intact cores. There were no nutrient effects on CO2 or CH4 emissions from intact cores. In all treatments, rates of CH4 production increased with depth and rates of CH4 consumption were highest near the in situ water-table level. However, nutrient and liming had no effect on rates of CH4 production or CH4 consumption at any depth. Our results suggest that over at least the intermediate term, the microbial communities responsible for soil carbon cycling in this peatland are tolerant to wide ranges of nutrient concentrations and pH levels and may be relatively insensitive to future anthropogenic nutrient stress.  相似文献   

7.
We assessed the effect of liming on (1) N2O production by denitrification under aerobic conditions using the 15N tracer method (experiment 1); and (2) the reduction of N2O to N2 under anaerobic conditions using the acetylene inhibition method (experiment 2). A Mollic Andosol with three lime treatments (unlimed soil, 4 and 20 mg CaCO3 kg?1) was incubated at 15 and 25 °C for 22 days at 50% and then 80% WFPS with or without 200 mg N kg?1 added as 15N enriched KNO3 in experiment 1. In experiment 2, the limed and unlimed soils were incubated under completely anaerobic conditions for 44 h (with or without 100 mg N kg?1 as KNO3). In experiment 1, limed treatments increased N2O fluxes at 50% WFPS but decreased these fluxes at 80% WFPS. At 25 °C, cumulative N2O and 15N2O emissions in the high lime treatment were the lowest (with at least 30% less 15N2O and total N2O than the unlimed soil). Under anaerobic conditions, the high lime treatment showed at least 50% less N2O than the unlimed treatment at both temperatures with or without KNO3 addition but showed enhanced N2 production. Our results suggest that the positive effect of liming on the mitigation of N2O evolution from soil was influenced by soil temperature and moisture conditions.  相似文献   

8.
Soil pH and calcium carbonate contents are often hypothesized to be important factors controlling organic matter turnover in agricultural soils. The aim of this study was to differentiate the effects of soil pH from those related to carbonate equilibrium on C and N dynamics. The relative contributions of organic and inorganic carbon in the CO2 produced during laboratory incubations were assessed. Five agricultural soils were compared: calcareous (74% CaCO3), loess (0.2% CaCO3) and an acidic soil which had received different rates of lime 20 years ago (0, 18 or 50 t ha−1). Soil aggregates were incubated with or without rape residues under aerobic conditions for 91 days at 15 °C. The C and N mineralized, soil pH, O2 consumption and respiratory quotient (RQ=ΔCO2/ΔO2) were monitored, as well as the δ13C composition of the evolved CO2 to determine its origin (mineral or organic). Results showed that in non-amended soils, the cumulative CO2 produced was significantly greater in the limed soil with a pH>7 than in the same soil with less or no lime added, whereas there was no difference in N mineralization or in O2 consumption kinetics. We found an exponential relationship between RQ values and soil pH, suggesting an excess production of CO2 in alkaline soils. This CO2 excess was not related to changes in substrate utilization by the microbial biomass but rather to carbonates equilibrium. The δ13C signatures confirmed that the CO2 produced in soils with pH>7 originated from both organic and mineral sources. The contribution of soil carbonates to CO2 production led to an overestimation of organic C mineralization (up to 35%), the extent of which depended on the nature of soil carbonates but not on the amount. The actual C mineralization (derived from organic C) was similar in limed and unlimed soil. The amount of C mineralized in the residue-amended soils was ten times greater than in the basal soil, thus masking the soil carbonate contribution. Residue decomposition resulted in a significant increase in soil pH in all soils. This increase is attributed to the alkalinity and/or decarboxylation of organic anions in the plant residue and/or to the immobilization of nitrate by the microbial biomass and the corresponding release of hydroxyl ions. A theoretical composition (C, O, H, N) of residue and soil organic matter is proposed to explain the RQ measured. It emphasizes the need to take microbial biomass metabolism, O2 consumption due to nitrification and carbon assimilation yield into account when interpreting RQ data.  相似文献   

9.
Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles, such as sulphur dioxide, ammonia and nitric acid. The most important causes of soil acidification on agricultural land, however, are the application of ammonium‐based fertilizers and urea, elemental S fertilizer and the growth of legumes. Acidification causes the loss of base cations, an increase in aluminium saturation and a decline in crop yields; severe acidification can cause nonreversible clay mineral dissolution and a reduction in cation exchange capacity, accompanied by structural deterioration. Soil acidity is ameliorated by applying lime or other acid‐neutralizing materials. ‘Liming’ also reduces N2O emissions, but this is more than offset by CO2 emissions from the lime as it neutralizes acidity. Because crop plants vary in their tolerance to acidity and plant nutrients have different optimal pH ranges, target soil pH values in the UK are set at 6.5 (5.8 in peaty soils) for cropped land and 6.0 (5.3 in peaty soils) for grassland. Agricultural lime products can be sold as ‘EC Fertiliser Liming Materials’ but, although vital for soil quality and agricultural production, liming tends to be strongly influenced by the economics of farming. Consequently, much less lime is being applied in the UK than required, and many arable and grassland soils are below optimum pH.  相似文献   

10.
 Potential effects of earthworms (Lumbricus terrestris L.) inoculated into soil on fluxes of CO2, CH4 and N2O were investigated for an untreated and a limed soil under beech in open topsoil columns under field conditions for 120 days. Gas fluxes from L. terrestris, beech litter and mineral soil from soil columns were measured separately in jars at 17  °C. The inoculation with L. terrestris and the application of lime had no effect on cumulative CO2 emissions from soil. During the first 3–4 weeks earthworms significantly (P<0.05) increased CO2 emissions by 16% to 28%. In contrast, significantly lower (P<0.05) CO2 emission rates were measured after 11 weeks. The data suggest that earthworm activity was high during the first weeks due to the creation of burrows and incorporation of beech litter into the mineral soil. Low cumulative CH4 oxidation rates were found in all soil columns as a result of CH4 production and oxidation processes. L. terrestris with fresh feces and the beech litter produced CH4 during the laboratory incubation, whereas the mineral soil oxidised atmospheric CH4. Inoculation with L. terrestris led to a significant reduction (P<0.02) in the CH4 oxidation rate of soil, i.e. 53% reduction. Liming had no effect on cumulative CH4 oxidation rates of soil columns and on CH4 fluxes during the laboratory incubation. L. terrestris significantly increased (P<0.001) cumulative N2O emissions of unlimed soil columns by 57%. The separate incubation of L. terrestris with fresh feces resulted in rather high N2O emissions, but the rate strongly decreased from 54 to 2 μg N kg–1 (dry weight) h–1 during the 100 h of incubation. Liming had a marked effect on N2O formation and significantly (P<0.001) reduced cumulative N2O emissions by 34%. Although the interaction of liming and L. terrestris was not significant, N2O emissions of limed soil columns with L. terrestris were 8% lower than those of the control. Received: 2 September 1999  相似文献   

11.
As ecosystem engineers, ants can mediate soil processes and functions by producing biogenic structures. In their mounds, ants not only directly produce CO2 by respiration, but may also indirectly impact soil greenhouse gas emissions by affecting substrate availability and soil physicochemical characteristics. Recent studies focused on overall gas production from ant mounds. However, little is known about mound material respiration and N2O emissions in ant mounds in wetlands. We measured CO2 and N2O emissions from mound soils of three different ant species (Lasius niger Linnaeus, Lasius flavus Fabricius, and Formica candida Smith) and natural marsh soils in a laboratory incubation experiment. On the whole, average soil CO2 and N2O emission rates from ant mounds were significantly higher than from the natural marsh soils. Over the 64 days incubation, the cumulative soil CO2 and N2O production from ant mounds was, respectively, 1.5–3.0 and 1.9–50.2 times higher than from the natural soils. Soil gas emissions from ant mounds were significantly influenced by the specific ant species, with soil CO2 and N2O emissions from L. niger mounds being higher than those from F. candida or L. flavus mound soils. Cumulative CO2 and N2O emissions from ant mound soils were positively correlated with soil clay, total carbon, dissolved organic carbon, total nitrogen and NH4+ content. Our laboratory results indicated that mound soil is an important source of CO2 and N2O emission from ant mounds in marshes, making mounds potential “hot spots” for CO2 and N2O emissions. Ants may increase the spatial heterogeneity of soil gas emissions by changing mound soil physicochemical properties, especially carbon and nutrition content, and soil texture. Contributions from ant mound materials should be considered when describing soil C and N cycles and their driving factors in wetland ecosystems.  相似文献   

12.
Abstract

A pot experiment was carried out in the greenhouse with two loamy sand Dystric Cambisols derived from schist to investigate the effect of liming and phosphorus (P) application on plant growth and P availability and its assessment by four soil test methods: 0.01M calcium chloride (CaCl2), cation anion exchange membrane (CAEM), Egnér‐Riehm, and Olsen procedures. Soils were first incubated for two weeks with lime at four levels, depending on their content of exchangeable aluminum (Al). Phosphorus was added at two rates (75 and 150 mg P kg‐1) and the incubation proceeded for an additional two‐week period. Sudangrass (Sorghum sudanenses cv. Tama) was then planted and harvested four weeks later. During incubation and plant growth, soils were maintained at 70% of field moisture capacity. Although pH value and soil extractable P in original soils were similar, the results showed a significant difference on the effect of liming and P application. Acidity was the major limitation for DM yield in the soil with the highest amount of exchangeable Al, while P availability was the main constraint in the other soil. Liming above pH (0.01M CaCl2) 5.3–5.5 did not increase DM yield in either soil and showed a negative effect on one soil (9.7 to 6.9 and 10.2 to 7.8 g pot‐1). Phosphorus content and uptake by sudangrass increased with liming, revealing a positive effect of lime on the availability of P to plants. Added P showed a lower efficiency in the soil with highest amounts of Al compounds. Soil tests performed after the execution of the pot experiment showed variable tendencies to predict P availability, according to the nature of the procedures and soils. Soluble‐P in 0.01M CaCl2 increased with the rise of soil pH. Extractable CAEM‐P and Egnér‐Riehm‐P also increased with liming, but reflected the soil depletion caused by plant uptake. Extractable Olsen‐P presented the most inconclusive results, suggesting the limitation of this method for acid soils which have been limed.  相似文献   

13.
为了确定红壤施用石灰后钙、镁移动和土壤酸化速率,监测了耕层(10~20cm)和底土(20~60cm)的pH和交换性Ca2+、Mg2+、Al2+的长期变化。结果表明,耕层交换性Ca2+在施用石灰后的一年半时间达到最高值,此后随着时间的推移而急剧减少;而底土的交换性Ca2+随石灰用量的增加和施用石灰后时间的推移而增加。镁在土壤剖面中的移动比钙快;施用石灰后耕层和底土酸度的降低与交换性Ca2+的增加基本同步。在本试验条件下,不论施用石灰与否都存在着复酸化过程,但施用石灰后复酸化作用更强。  相似文献   

14.
Liming an acid soil increased the yield and N content of subterranean clover in both field and glasshouse experiments. Application of Mo increased the N concentration of field-grown subterranean clover which corresponded with observed colour and growth differences, but did not change C2H2 reduction activity. Herbage Mo was not increased by liming, suggesting an absolute deficiency of Mo in these acid soils. In the glasshouse liming increased nodulation which increased the amount of N2 fixed but the lime had no direct effect on nitrogenase activity as measured by C2H2 reduction. In the field both inoculation and lime application increased soil populations of R. trifolii, but clover yield was greater with liming alone than with inoculation alone, indicating the sensitivity of the host plant to soil acidity.  相似文献   

15.
Liming of acidic agricultural soils has been proposed as a strategy to mitigate nitrous oxide (N2O) emissions, as increased soil pH reduces the N2O/N2 product ratio of denitrification. The capacity of different calcareous (calcite and dolomite) and siliceous minerals to increase soil pH and reduce N2O emissions was assessed in a 2-year grassland field experiment. An associated pot experiment was conducted using homogenized field soils for controlling spatial soil variability. Nitrous oxide emissions were highly episodic with emission peaks in response to freezing–thawing and application of NPK fertilizer. Liming with dolomite caused a pH increase from 5.1 to 6.2 and reduced N2O emissions by 30% and 60% after application of NPK fertilizer and freezing–thawing events, respectively. Over the course of the 2-year field trial, N2O emissions were significantly lower in dolomite-limed than non-limed soil (p < .05), although this effect was variable over time. Unexpectedly, no significant reduction of N2O emission was found in the calcite treatment, despite the largest pH increase in all tested minerals. We tentatively attribute this to increased N2O production by overall increase in nitrogen turnover rates (both nitrification and denitrification) following rapid pH increase in the first year after liming. Siliceous materials showed little pH effect and had no significant effect on N2O emissions probably because of their lower buffering capacity and lower cation content. In the pot experiment using soils taken from the field plots 3 years after liming and exposing them to natural freezing–thawing, both calcite (p < .01) and dolomite (p < .05) significantly reduced cumulative N2O emission by 50% and 30%, respectively, relative to the non-limed control. These results demonstrate that the overall effect of liming is to reduce N2O emission, although high lime doses may lead to a transiently enhanced emission.  相似文献   

16.
The autotrophic ammonia-oxidising bacterial (AOB) community composition was studied in acid coniferous forest soil profiles at a site in southwestern Sweden 6 years after liming. Liming caused a significant increase in pH in the organic horizons, while the mineral soil was unaffected. The AOB communities were studied by single-strand conformation polymorphism (SSCP) in parallel with denaturing gradient gel electrophoresis (DGGE) analysis of partial 16S rRNA genes amplified by PCR using primers reported to be specific for β-Proteobacteria AOB, followed by nucleotide sequencing. High genetic diversity of Nitrosospira-like sequences was found in the limed soil profiles, whereas no AOB-like sequences were detected in the control soil at any depth, according to both the SSCP and DGGE analyses. This clearly showed that liming induced growth of a diverse flora of AOB at this forest site. Both Nitrosospira cluster 2 and cluster 4 sequences were present in the limed soil profiles, regardless of soil pH, but we found a higher number of sequences affiliated with cluster 4. The high lime dose seemed to affect the AOB community more than the low dose, and its effects reached deeper into the soil profile. Seven different Nitrosospira-like sequences were found 10 cm under the litter layer in the soil limed with the high dose, but only two in the soil amended with the low lime dose.  相似文献   

17.
Summary The effect of liming on in-situ N transformations was studied in two stands of different ages of each of Scots pine (Pinus sylvestris L.), Douglas fir [Pseudotsuga menziesii (Mirb.) Franco], and common oak (Quercus robur L.). The stands were located on acid sandy soils in an area with high atmospheric N input. The organic matter of the upper 10-cm layer of the soil, including the forest floor, had a relatively high N content (C: N ratio <25) in all stands. Using a sequential core technique, N transformations were measured in both control plots and plots that had been limed 3 years previously with 3 t ha-1 of dolomitic lime. Limed plots had a higher net NO inf3 sup- production and a higher potential for NO inf3 sup- leaching than the controls in all stands except that of the younger oak. Net N mineralization did not differ significantly between limed and control plots in oak stands and younger coniferous stands but was significantly lower in the limed plots of the older coniferous stands. It is concluded that long-term measurements of net N mineralization in limed forest soils are needed to evaluate the effect of liming with respect to the risk of groundwater pollution.  相似文献   

18.
Purpose

Aglime application can promote carbon dioxide (CO2) emissions from acid soils. However, the controlling mechanisms are still poorly understood, particularly the role of fertiliser-ammonium oxidation. This study therefore assessed the effects of aglime on soil inorganic C (SIC)– and soil organic C (SOC)–derived CO2 emissions from acid soils amended with ammonium.

Materials and methods

Ammonium at three N rates [0% (A0), 0.005% (A1), and 0.2% (A2) w/w] and labelled aglime (Ca13CO3,13C 5.94% aa) at three rates [0% (L1), 0.067% (L1), and 0.392% (L2) w/w] were applied to two contrasting acid soils (Nariva series, Mollic Fluvaquents; and Piarco series, Typic Kanhaplaquults) and incubated in 1-l media bottles for 23 days. A calcareous soil (Princes Town series, Aquentic Eutrudepts, carbonate δ13C of ??4.79‰) was included as a control that only received ammonium at the three rates.

Results and discussion

The application of ammonium at the A2 rate significantly (p?<?0.05) increased cumulative SIC-CO2 emissions by 15.8 and 27.1% in comparison to the A0 rate for the Nariva and Piarco soils, respectively, when they were limed at the L2 rate. The lower rate of ammonium (A1), however, had no effect on these emissions, which suggests that enough acidity may not have been generated at this rate to significantly enhance the release of SIC-CO2. Furthermore, no effect of ammonium rates was observed on SIC-CO2 emissions from the calcareous soil, which refutes the hypothesis that this amendment plays a greater role in regulating these emissions from calcareous soils compared with acid soils. Also, in contradiction to another hypothesis, the aglime-induced priming effect on SOC decomposition was more apparent in the low-C Piarco soil. This effect was also significantly (p?<?0.05) greater at the L2 rate (above the lime requirement for Piarco), which demonstrates the negative impact that over-liming could have on the sequestration of C in this soil. Our results also showed that ammonium addition may also help to reduce the magnitude of the aglime-induced priming effect in the Piarco soil when it is not over-limed.

Conclusions

Overall, the findings of this study suggest that ammonium fertiliser broadcast at conventional rates may not serve as a significant regulator of SIC-CO2 emissions from highly to moderately acidic soils amended with aglime. Our findings also indicate a need to consider nitrogen management as an important factor regulating the effects of aglime on SOC-CO2 emissions.

  相似文献   

19.
A temporary decline in tree growth has often been observed after liming in coniferous forests poor in N but seldom in forests rich in N. To test the hypothesis that the decline was caused by decreases in N supply, C and N mineralization were estimated in incubated soil: (1) after liming in the laboratory, and (2) after earlier liming in the field. Liming increased the C mineralization rate in needle litter, nor humus and 0 to 5 cm mineral soil for a period of 40 to 100 days at 15°C. After that period, liming had no effect on the CO2 evolution rate in materials poor in N (C:N ratios 30 to 62) but increased the CO2 evolution rate in materials rich in N (C:N ratios 24 to 28). When liming induced nitrification, the CO2 evolution rate was reduced. Liming resulted in lower net N mineralization rate in needle litter and mor humus. The reduction was more pronounced when NH4 + was the only inorganic form than when NO3 ? was the predominant form. The reason is probably that chemical fixation of NH3 and amino compounds increases with increasing pH. Because of the fixation, the incubation technique most likely underestimated the mineralized N available to the roots. Taking this underestimation into consideration, liming initially reduced the N release in the litter layer. In the other soil layers, liming increased the N release in soils rich in N and had only small effects in soils poor in N. For the total N supply to the roots in the litter, humus and 0 to 5 cm mineral soil layers, liming caused a slight reduction in soils poor in N and a slight increase in soils rich in N. Data on tree growth corresponded with these results.The hypotheses that tree growth depressions can be caused by reduced N supply after liming and that tree growth increases can be caused by increased N supply after liming thus seem reasonable.  相似文献   

20.
Abstract

Information on the redistribution of applied micronutrients into different fractions as a result of lime application is important to predict plant accumulation of nutrients and to select appropriate chemical extraction procedures for evaluation of micronutrient availability. The present work was carried out to study the influence of liming on the availability and redistribution of zinc (Zn) and copper (Cu) among soil fractions. Additionally, the effect of liming was evaluated on the recovery of these micronutrients by different chemical extractants (Mehlich‐1, Mehlich‐3, and diethylenetriaminepentaacetate (DTPA), which were correlated with Zn and Cu concentrations in corn (Zea mays L.) plants and soil fractions (exchangeable, organic matter, amorphous iron oxides, and crystalline iron oxides). The results showed that Zn added to soil samples that did not receive lime was retained mainly in the exchangeable and organic matter fractions. The liming resulted in distribution of Zn into iron oxides and as a result decreased the plant accumulation of Zn. Mehlich‐3 was the most efficient extractant to predict the plant accumulation of Zn in the acid soils, whereas DTPA was the most efficient in the limed soils. The oxide crystalline fraction was the major fraction responsible for retaining Cu in the soils. However, Cu added to soil was distributed mainly into organic matter. Mehlich‐3 was the most suitable extractant for predicting the bioavailability of Cu in limed or unlimed soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号